Debugging and testing middleware with
aspect-based control-flow and causal patterns

Luis Daniel Benavides Navarro, Rémi Douence, Mario Siidholt

OBASCO project; EMN-INRIA, LINA
Dépt. Informatique, Ecole des Mines de Nantes
4 rue Alfred Kastler, 44307 Nantes cédex 3, France
{1benavid,douence,sudholt}@emn.fr

Abstract. Many tasks that involve the dynamic manipulation of mid-
dleware and large-scale distributed applications, such as debugging and
testing, require the monitoring of intricate relationships of execution
events that trigger modifications to the executing system. Furthermore,
events often are of interest only if they occur as part of specific execu-
tion traces and not all possible non-deterministic interleavings of events
in these traces. Current techniques and tools for the definition of such
manipulations provide only very limited support for such event relation-
ships and do not allow to concisely define restrictions on the interleaving
of events.

In this paper, we argue for the use of aspect-based high-level program-
ming abstractions for the definition of relationships between execution
events of distributed systems and the control of non-deterministic inter-
leavings of events. Concretely, we provide the following contributions: we
(i) motivate that such abstractions improve on current debugging and
testing methods for middleware, (ii) introduce corresponding language
support for pointcuts and advice defined in terms of causal event se-
quences by extending an existing aspect-oriented system for the dynamic
manipulation of distributed systems, and (iii) evaluate our approach in
the context of the debugging and testing of Java-based middlewares, in
particular, JBoss Cache for replicated caching.

1 Introduction

Many tasks that involve the dynamic manipulation of middleware and large-
scale distributed applications, such as debugging and testing, require the mon-
itoring of intricate relationships of execution events that trigger modifications
to the executing system. Such relationships, which often include events occuring
on different hosts, have to be defined declaratively as well as monitored and
modified efficiently. Consider, for instance, coherency of replicated data under
transactional control in middleware cache infrastructures, such as JBoss Cache:
in this case, the correctness of sequences of events corresponding to executions

Work partially supported by AOSD-Europe, the European Network of Excellence in
AOSD (www.aosd-europe.net).

2 D. Benavides, R. Douence, M. Siidholt

of two-phase-commit protocols involving multiple machines has to be checked.
Furthermore, execution events of a distributed system frequently are of interest
only if they occur as part of specific execution traces but not in the presence
of different interleavings of the events that are part of those traces and occur
due to non-deterministic executions. The definition of reproducible test cases,
for instance, frequently requires constraints to be imposed on non-deterministic
executions.

Several approaches to define such relationships among and constraints on
events in distributed systems have been proposed. Such approaches include, for
example, causal event relationships based on logical clocks [17,13,1], data path
expressions for concurrent programs [23], and control-flow based event relation-
ships [18]. However, such declarative means for the definition of event relation-
ships have not been integrated into mainstream middlewares and corresponding
support in current tools for the debugging and testing of distributed infras-
tructures is very limited. Intricate relationships between distributed events and
restrictions on the interleavings of concurrent events can be directly defined
in current execution environments only in terms of conditions on the execution
state of individual hosts. Hence, relationships involving multiple hosts have to be
expressed using complex encodings that are difficult to understand, to maintain,
and result in inefficient event monitoring and execution of modifications.

In this paper, we argue for the use of high-level abstractions for the definition
of relationships between execution events of distributed systems, their modifica-
tion and the control of non-deterministic interleavings of events. Concretely, we
provide three contributions. First, we motivate that such mechanisms improve
on current debugging and testing methods for distributed systems, in particular,
real-world middleware infrastructures (Sec. 2). Second, we introduce correspond-
ing aspect-based programming language support that provides declarative means
to monitor and modify causal sequences of events in pointcuts and advice. We
present suitable language support (Sec. 3) and a corresponding implementation
(Sec. 4) in terms of an extension of the AWED language and system [4, 2] for the
dynamic manipulation of distributed systems using distributed aspects. Third,
we evaluate our approach in Sec. 5 in the context Java-based middlewares, in
particular, for debugging and testing of JBoss Cache, a Java-based middleware
for replicated caching, and ActiveMQ, the Apache message broker. We also show
how current best practices for the debugging and testing of distributed systems
can be improved using our approach in a practical and efficient manner. Related
work is discussed in Sec. 6 and a conclusion given in Sec. 7.

A copy of the code, the benchmarks and evaluations in the context of JBoss-
Cache and ActiveMQ can be found at [2].

2 DMotivation

In this paper, we argue for the use of sophisticated relationships between events
to be used to monitor and manipulate middleware and distributed infrastruc-
tures. We claim, in particular, that control-flow based relationships, sequence

Debugging and testing middleware . .. 3

relationships and events that are causally-connected, e.g., with respect to a no-
tion of logical time, are crucial in this context. In this section, we motivate these
claims for typical debugging and testing tasks of distributed infrastructures.

2.1 Expressive breakpoints for distributed debugging

Current tools for distributed debugging, such as Eclipse and the Distributed
Debugging Tool [26,12], apply debugging techniques for sequential programs to
distributed applications. Such tools almost always employ a centralized debug-
ging component that coordinates execution of independent local debuggers that
only support breakpoints in terms of local entities (e.g., updates of local objects,
local files, etc.). The distributed debugger can match local breakpoints in differ-
ent machines and control the execution by, e.g., stopping it and inspecting the
local state of different machines. However, this kind of tools has not been widely
adopted by developers, mainly because they do offer only small added value over
the use of sequential debuggers on a per-machine basis.
We argue that there are two major reasons for this lack of added value:

— Lack of means for the expressive definitions of distributed breakpoints in-
volving, in particular, control flow and sequence relationships between dis-
tributed execution events.

— Lack of means to handle non-determinism in distributed and concurrent
applications.

In the following, we consider three basic debugging scenarios that frequently
occur in middlewares to illustrate these issues involving control-flow relation-
ships and non-deterministic relationships among events, especially ones involv-
ing causally-connected events (thus effectively extending discussions in recent
work on distributed debugging [18, 20]).

Debugging control flow As a first example, consider a distributed application
that uses synchronous remote method invocation (e.g., Java RMI) for communi-
cation between three different hosts. A developer may be interested in setting a
line breakpoint in one host, H say, that is triggered only in the dynamic extent of
a (previous) method call occuring on another host G. Note that such debugging
scenarios are based on (typically implicit) specifications of correct program be-
havior. e.g., that an erroneous execution path is characterized by the sequence
of calls G;H on the mentioned hosts where H occurs before the call to G returns.
Using current tools, the developer has three options:

— She can apply a breakpoint to the method called on host G and once this
match is triggered she can, at runtime, add the line breakpoint at H. However,
in this case all subsequent occurrences of the second breakpoint are matched:
identifying a specific call of interest can be very difficult.

— The programmer could pollute the original code with state information to
track the necessary control flow dependencies (i.e., store state information
that then has to be suitably forwarded to the other hosts) and match the
specific breakpoint in H.

4 D. Benavides, R. Douence, M. Siidholt

— The programmer could add a breakpoint directly on the execution of H,
match the corresponding breakpoint there without taking into account the
originating control flow and decide manually what to do at each match.

Using (formal or informal) reasoning mechanisms, all of these options could be
proven to correctly identify the erroneous path with respect to the specifications
above. However, clearly none of these situations is acceptable, because they are
tedious to implement and are highly error prone. All three represent common
practice with current debuggers for distributed middleware and applications,
though.

Debugging non-deterministic event relations Events that may occur con-
currently and that should trigger debugging operations only if they are in-
terleaved in specific ways further complicate matters. Debugging of replicated
caching infrastructures, for example, may involve replication actions that orig-
inate from the same transaction but are triggered asynchronously (e.g. as part
of a two phase-commit protocol). Errors often depend in this case on the order
in which the replication actions are applied but the decision, as part of a debug-
ging action, whether two actions occur in the relevant order is difficult to take if
debugging processes (as is often the case) may introduce arbitrary delays in the
observation of events.

Since current debugging tools do not provide abstractions to concisely express
such cases, programmers once again have to resort to manually encode and
interpret distributed state by applying one of the three options introduced above.
This approach becomes, however, rapidly unmanageable if many events and
many hosts are involved.

Often such debugging tasks can be much facilitated by ensuring that oc-
currences of events obey strict ordering requirements, possibly imposing deter-
ministic sequences of events in a previously non-deterministic systems. This is
useful, in particular, in order to systematically explore possible erroneous traces.
Once again current debuggers do not support such facilities, but have to resort
to encodings of distributed state. Extending previous work [14,23,18,20] that
has highlighted casual relationships as a means to remedy this problem, our
approach seamlessly integrates notions of causality with expressive control-flow
based event relationships.

2.2 Test-driven development

Current techniques for the test-driven development for distributed applications
are also limited by a lack of support for the expression of distributed event
relationships. Distributed unit test cases, in particular, are almost always imple-
mented by means of sequential abstractions that test conditions of distributed
concerns on the local state of individual machines. For example, test cases related
to replication in JBoss Cache [15] frequently use a seemingly intuitive testing
scenario: a test case is defined in terms of two cache instances, such that after
an operation on a source cache, the state of the second cache can be tested to

Debugging and testing middleware . .. 5

compare the new and old versions. This idiom seems obvious and simple; how-
ever, it does not allow to take into account, for example, the communication
behavior, such as sequences of intermediate synchronous or asynchronous calls,
which obviously may strongly interfere with the cache behavior. Consequently,
the definition of reproducible test cases are subject to the same restrictions as
discussed above, for example, if reproducibility depends on specific interleavings
of a set of concurrent events being tested (that are part of a potentially much
larger set of possible interleavings).

3 Language support

In this section we propose a language to support manipulations and evolutions
of distributed applications. It is based on the AWED system (Aspect With Ex-
plicit Distribution [4,6]): that explicitly supports monitoring of sequences of
distributed execution events that trigger dynamic modifications. This enables
us to concisely express different debugging scenarios involving control-flow and
sequence-like relationships between events. Furthermore, we introduce in this
paper an extension of AWED in order to support causally-related events and
causal communications (based on an event reordering mechanisms).

3.1 The AWED language

Aspect Oriented Programming supports separation of concerns. An aspect modi-
fies a base application: its pointcut specifies points of interest (i.e., events) in the
base application execution and its advice specifies a piece of code to be executed
before, after, or instead of such a point of interest. In this paper, a pointcut can
denote a single event (e.g., a method call) or a sophisticated sequence of events.
The base application and the aspect are woven into a single application where
the aspect monitors the base program execution and triggers its advice.
AWED supports AOP in a distributed context. In particular, a pointcut
can monitor events on several hosts. A sequence of events can involve different
hosts. An advice can be executed remotely, synchronously or asynchronously to
the base execution. Furthermore, an aspect can be deployed on a group of hosts.
The grammar shown in Fig. 1 shows the essentials of pointcut definitions
in the AWED language (the full language definition can be found in [6]). The
pointcut language allows matching of method calls (terminal call), nested calls
(cflow means control-flow) and arbitrary (regular) sequences of method calls
(non-terminal Seg). The constructors host and on specify (groups of) hosts
where a pointcut is matched (or where an advice is executed). The constructors
target and args bind values (such as the receiver or the arguments of a method
call) to variables. This enables values to be passed from a matching execution
event to the corresponding advice. Pointcuts can be composed using logical op-
erators (union, intersection and complement). Sequences (Seq) are defined in
terms of transitions of non-deterministic finite-state automata. An automaton
is a set of transitions Step. Each transition has a label id and its pointcut Pc

6 D. Benavides, R. Douence, M. Siidholt

// Pointcuts

Pc n= call(MSig) | cflow(Pc) | Seq
| host(Group) | on({ Hosts })
| target({Type}) | args({Arg})
| Pc||Pc | Pc&& Pc | |Pc
Seq = Id: seq({Step}) | step(Ild,Id)
Step = Id: Pc — Target
Target == Id | .. || Id
Hosts = localhost | jphost | "Ip:Port” | Groupld

Fig. 1. The AWED language (excerpts)

non-deterministically leads to a set of Id. The constructor step identifies the
transition in the automaton that should trigger advice.

3.2 Distributed debugging with AWED

AWED can be applied to debug intricate relationships between execution events.
It generalizes previous approaches to the debugging of control-flow based rela-
tionships between events. In this subsection we show how the original AWED
model allows to handle debugging problems expressed in terms of control-flow-
based and arbitrary sequence-based relationships between distributed events.

Distributed control flow. Sequences of calls that are nested within each
other’s control flow can be defined using the cflow pointcut constructor. Ex-
tending Nishizawa’s et al. [22] work, AWED supports control-flow pointcuts
over distributed executions taking into account Java’s thread model as well: it
enables matching of sequences of events that originate in local threads, span
threads spawned at remote locations, and spawned child threads. The control-
flow model is also transparent regarding synchronous and asynchronous commu-
nication contexts.

As an example consider testing and debugging of JBoss Cache as presented
in the motivation section. A concrete problem of the two-phase commit protocol
consists in ensuring that remote calls to prepare methods are always triggered
by a corresponding call at a local cache site. A remote call that has not been
appropriately triggered can be caught by the following pointcut:

Icflow(call(* Transaction.prepare(..)) && host(”source”))
&& call(x Cache.remotePrepare(..)) && host(”target”)

This pointcut matches all the calls to the remotePrepare method on hosts be-
longing to the host (or host group) target that are not in the distributed control
flow of calls occurring at source hosts. Hence, a simple pointcut definition can
address the complexity of a distributed control flow breakpoint. Such control-
flow relationships for debugging have already been studied, e.g., as part of Li’s
work [18] for distributed (CORBA and COM) component-based systems and

Debugging and testing middleware . .. 7

Chern and De Volder’s work on sequential control-flow based breakpoints [9]: we
extend such approaches by supporting the notion of control flow in the presence

of asynchronous and synchronous method calls.

Distributed sequences of events. As introduced above, AWED supports
pointcuts over sequences of execution events, e.g., sequences of calls that do not
have to be nested into other calls of the sequence. Hence, such sequences allow
the definition of more general event-based contexts than the control-flow based

event sequences considered above.

In the context of the debugging of JBoss Cache, for example, a very frequent
requirement consists in the definition of contexts depending on the activation
state of the cache. Concretely, one may want to identify remote put operations
(which introduce data in the cache) that occur after the local cache has been
initialized and before it has been stopped. A corresponding pointcut can be

specified in AWED as follows:

al : seq(start > t1,

t1: call(* Cache.start(..)) && host(localhost)> t2 || t3,
t2: call(* Cache.put(..)) && !'host(localhost) > t2 ||t3,
t3: call(x Cache.stop(..)) && host(localhost) > t1)

&& step(al,t2)

This pointcut defines an automaton named al
having three transitions t1, t2 and t3: once started,
put operations can occur or the cache can be
stopped. Note that the start and stop operations
of the cache are matched on the local host, while
the put operations must not occur on the local
host. The term step(al, t2) allows an advice to
be triggered relative to a specific transition t2 of
the automaton. At the first line start > t1 defines
that the initial transition is t1. The expression t1:
pointcutDef > t2 || t3is interpreted as follows:
if pointcutDef matches the current event, then
the automaton is now ready to accept an execution
event as defined by t2 or t3. Figure 2 shows the
graphical interpretation of the defined automaton.

The expressive power of our approach is mainly

t1l

Q\/

t3

Fig.2. Graphical rep-
resentation of a start-
action(s)-stop automaton

determined by the expressivity of our pointcut language. AWED basically pro-
vides regular pointcuts. An extension by guards on transitions of the correspond-
ing finite-state machines, thus providing a turing-complete pointcut language,
is however unproblematic (and is provided as part of the existing implemen-
tation). This feature would also allow to directly characterize concurrent and
timed events. By explicitly providing regular pointcuts, existing analysis tech-
niques of, e.g., deadlocks using model checking of distributed and concurrent
systems, should be applicable. This is, however, subject of future work.

8 D. Benavides, R. Douence, M. Siidholt

A second element determining the power of our approach is the granularity of
events that can be referred to by pointcuts. We have restricted the pointcut lan-
guage deliberately to method calls: a more fine-grained event model that would
allow, e.g., to refer to the evaluation of subexpressions of arithmetical expres-
sions (that are supported by some aspect approaches) could incur considerable
execution overhead and are less relevant for the debugging of middlewares.

The case for causality relationships Sequence pointcuts in AWED do not
guard against problems of the underlying communication network, in particular
concerning message delivery such as inversion of sent messages due to random
delays in message transmission. The previous sequence pointcut involving start,
put and stop on JBoss Cache events is unproblematic in this respect since
message inversions resulting in put operations outside the ordinary operating
conditions of cache can be easily filtered out by additional pointcuts if necessary.
In other cases, e.g., inversion of bank deposits and withdrawals, such problems
would however wreak havoc.

Generally, AWED’s automata-based pointcuts are therefore subject to two
problems:

— They may not match valid sequences of events that happen to arrive in the
wrong order at the host where the sequence is to be matched.

— They may match wrong sequences that stem from events that occur at differ-
ent hosts in the wrong order but whose order has been inverted, e.g., because
of message delays, at the host where the sequence is matched.

An AWED developer has to take care in order to avoid these problems: either
by the careful definition of pointcuts and manual synchronization of distributed
executions or by ensuring that additional constraints on the base application’s
semantics exclude them. The next subsection proposes new language constructs
to enable pointcuts to directly support causality relationships and ordering con-
straints of messages.

3.3 AWED with causal pointcuts

Much research work has been done on orderings of distributed events starting
with Lamport’s landmark paper [17] on the use of logical time. In particular,
vector clocks [19] can be used to enforce causal relations between events and
implement causal communication by reordering events. We now show how we
have integrated these notions into AWED.

Causal sequences without reordering To extend AWED with causal in-
formation, without including reordering of messages, we have introduced a new
sequence constructor seqCausal and two transition modifiers, causal and conc,
see Fig. 3. The two modifiers respectively ensure that the labelled transition is
causally related to or concurrently executed with respect to the transitions lead-
ing to the start state of the labelled transition. The constructor seqCausal is

Debugging and testing middleware . .. 9

// Pointcuts

Seq = Id: SeqCons({Step}) | step(ld,Id)
SeqCons ::= seq | seqCausal | seqCausalOrder
Step = [[Jcausal | conc]ld: Pc — Target

Fig.3. AWED with causal pointcuts

syntactic sugar for sequence pointcuts whose transitions are by default labelled
as causal unless they have been explicitly declared using conc to execute con-
currently.

As an example let us consider the following pointcut definition:

al : seqCausal(causal s1: call(x Cache.prepare(..)) && host(”source”) > s2,
conc s2: call(x Cache.commit(..)) && host(”target”) > s1)
&& step(al, s2)

This sequence matches a prepare event in a JBoss Cache transaction, followed
by a commit only if it is not causally related to the prepare event. Then the
following prepare event is matched only if it is causally related to the previous
matched commit event. This pointcut can therefore be used to test for unex-
pected calls to commit methods. As we show in the evaluation section, Sec. 5,
this pointcut is useful to test for a real bug that affected the JBoss Cache in-
frastructure.

Causal pointcuts with reordering Causal pointcuts without reordering only
enforce that causally-related events are matched but they do not ensure all
sequences will be matched.

To resolve this second problem, we harness the property — already demon-
strated by Lamport’s totally ordered broadcast operation [17] — that logical
time values cannot only be used to test for causality relationships but that they
also support the reordering of messages that arrive at a host in the wrong order.
To allow reordering according to causal relationships, we have extended AWED
with a third sequence pointcut constructor, seqCausalOrder that ensures that
all causal relations are matched by, if necessary reordering, incoming events. Its
semantics ensures that each event is delayed to wait for the event that precedes
it causally.

As a concrete example, the following pointcut can be used to ensure that
commit operations are correctly interleaved with prepare operations:

al : seqCausalOrder(
t1: call(* Cache.prepare(..)) && host(”source”) > t2 || t3,
t2: call(x Cache.commit(..)) && host(”target”) > t1,
t3: call(* Cache.prepare(..)) && host(”source”))
&& step(al, t3)

Indeed, a cache web repeats sequences of prepare commit. So, two prepare
should never occur in a row (transition t3): an error should be reported in
this case. In order to prevent reporting of spurious errors (e.g., when a commit

10 D. Benavides, R. Douence, M. Siidholt

occurs before prepare but is monitored after it) the messages must be ordered
as specified by seqCausalOrder.

Note that this construct requires a larger overhead than the one without
reordering. In particular with the previous construct the events are consumed
as soon as they arrive, and causality is only an additional test defined by the
causal and conc labels. In the case of causally ordered sequences, messages are
delayed and processed only once all the causally preceding messages are received.
The causal and conc labels are automatically supported in the totally ordered
construct (they do not pose an additional overhead).

4 Implementation

In this section, we present how distributed aspects with support for causal events
and message reordering have been implemented by extending the non-causal im-
plementation of the AWED system [4, 5]. Note that while we present a Java-based
implementation (and an evaluation of Java-based middlewares in the following
section), conceptually our approach is not tied to Java. The Arachne aspect
system, for instance, features (non causal) regular sequence pointcuts for C ap-
plications and has been applied to the modification of network protocols used
for the communication in distributed systems [11].

In the following, we first present the overall architecture of the resulting sys-
tem. Second, we discuss how AWED can be used to test causality on distributed
infrastructures that have not been prepared for the provision or use of causality
information. Third, we discuss the implementation of the framework that sup-
ports causal finite state machines to support causal sequences without message
reordering. Finally, we will present the mechanisms for message reordering that
were included to support the pointcut construct seqCausalOrder.

4.1 AWED architecture

AWED is a dynamic aspect language that weaves aspects with classes at load
time and allows aspect deployment and undeployment at execution time. Its
implementation presents an optimized partially evaluated interpreter for dis-
tributed aspects. Figure 4 shows the overall architecture, ¢.e., its compilation
chain and the main structures of its runtime framework. In the top left part of
the figure we can see how the application and aspect code is compiled into
Java bytecode. The bytecode is then read by AWED’s instrumentation and
transformation framework at load time, producing a version of the application
that is instrumented at the necessary joinpoints (here a subset of the method
calls). When executing the instrumented application, and once it reaches an in-
strumented joinpoint, the application dispatches joinpoint notifications to the
Registry framework that takes care of the recognition of distributed sequence
pointcuts. This framework passes the joinpoint notification to each aspect in-
stance, that, in turn, evaluates each joinpoint to match pointcuts and to ap-
ply advice. An AWED runtime framework, including a registry, is running at

Debugging and testing middleware ... 11

runtime on each logical host, i.e., JVM. In order to support remote pointcuts
each registry, i.e., each JVM, communicates joinpoint notifications to the other
JVMs using an extension of the JGroups framework [16], one of the most popular
Java-based middleware for group communication. This part of the infrastructure
contains all necessary support for non-causal event relationships, in particular
remote regular sequence pointcuts.

In figure 4, we have also detailed the two main extensions incorporated to the
runtime framework in order to support the causal constructs. First, the commu-
nication framework (see the box labelled “JGroups extension” in the figure) has
been extended to support causality-supporting protocols. The extended JGroups
component uses the original JGroups framework augmented with specific proto-
cols for causality. In the figure we show a traditional protocol stack that supports
different protocols, including the User Datagram Protocol (UDP). The protocol
stack shows, at the top, the Causal AWED protocol. This protocol can be any
of two new protocols that we have implemented. Second, the pointcut class hi-
erarchy (see the class diagram for causal pointcuts highlighted in magnifying
glass in the figure) has been augmented by support for causal sequence-based
aspects, concretely by support for causal pointcuts with or without reordering
and a notion of transition guards. In the following we present both extensions
in some more detail.

Application Aspect
source code code

PCutRegular Transitions
Javac compiles to AWED compiles to AR
(Application's Java Aspect's Java Guards
bytecode bytecode
|PCutCausa|| |PCutCausa\Order|
Reads Reads

AWED VM= JVM + AWED's runtime framework

AY
AWED's Instrumentation and j

transformation framework Aspect
bytecode
l Loads Uses
Partial class diagram of classes
Application instrumented for Regist bytecode su_ppor_ting causal pointcuts defined

joinpoint dispatching egistry using finite state machines

) framework
JGroups extension

with guards
CAUSAL AweD

MEF;GEZ Extended protocol stack
PING
Coor]

V Communicates with others AWED VMs

Fig. 4. AWED architecture.

12 D. Benavides, R. Douence, M. Siidholt

Causality-supporting protocols. The two new protocols that support causality do
not modify actual communication, but just handle causality and delegate actual
communication to the other protocols in the protocol stack. The first proto-
col that we have implemented is the Causal tags + clock increase protocol.
This protocol tags the distributed messages with a vector clock time, and will
calculate the value of the new vector clock times at a host upon arrival of new
messages. This protocol can be used to detect causal relations, but it can not
be used to impose causal ordering of messages. The second protocol that we
have implemented is Causal tags. This is a more lightweight protocol that tags
messages with vector clock times but does not update the vector clock. This
protocol can be used with specialized adapters to add causality information to
distributed infrastructures and applications that have not been aware of causal-
ity information in the first place.

4.2 Adding causality to non-causal distributed applications.

Most distributed infrastructures and applications do not implement causality
natively. Adapting such applications to support causality typically is very cum-
bersome and error prone. To avoid this problem, we propose specialized adapters
that can be used to instrument causality transparently in legacy applications.
To prove that this is a feasible solution we have implemented an adapter for
RMI based applications, thus covering a wide spectrum of distributed Java ap-
plications. This adapter is realized using Java’s notion of customized sockets.
The adapter basically implements a mechanism similar to that provided by
the Causal tags + clock increase protocol. Thus, each message in the legacy
application is now tagged with a vector clock and a local vector clock is updated
upon arrival of each RMI message. This connector can be combined with the
AWED framework that is running the Causal tags protocol to detect causal
relations in the legacy application. This deployment do not need any partic-
ular modification of the legacy application. To use the specific connector, the
programmer just specifies an option for the JVM when invoking AWED.

Causal sequence constructs with guarded finite state machines. In order to im-
plement the causal sequence construct as presented in section 3 we have modified
the compiler and the runtime infrastructure of the previous non-causal execution
system of AWED. The previous AWED system has already used finite state ma-
chines to support regular sequence pointcuts. The corresponding implementation
evaluates each join point and, depending on the current state of the automaton,
accepts or rejects a joinpoint. In case of acceptance, a state transition is executed
before executing the advice. We have extended this model to support guards.
Thus, at compile time the state machine is constructed with specific guards,
mainly to support the causal tests required by causal relationships expressed
using the conc or causal transition modifiers.

At runtime, the new execution system includes two major extensions. First,
before accepting or rejecting a joinpoint, the state machine evaluates the corre-
sponding guard, e.g., the causal information of the current joinpoint, and if the

Debugging and testing middleware ... 13

guard is satisfied the joinpoint is evaluated. The second modification address
the management of vector clocks: evaluation of causal regular sequences has to
compute a new value for the vector clock each time that it accepts a joinpoint.
This approach has a major benefit compared with other frameworks implement-
ing causality: finer grained control over events tagged with vector clocks and, as
a consequence, less performance overhead.

To implement the causal sequence construct with reordering we have fur-
ther extended the automata-based pointcut recognition component. Each such
component now has its own vector clock that is advanced each time a message
is processed (including messages not in the alphabet of the state machine). To
address reordering, the state machine uses a delay queue where it stores the
messages that do not arrive in the right (causal) order. The messages in this
queue are causally ordered but not necessarily consecutive. Upon arrival of a
new message it gets evaluated: if it is accepted and if the message causally is
the next message with respect to the vector clock of the state machine, it is
processed and the first message in the delay queue is evaluated again.

Finally, a note on the scalability of our approach: Concerning scalability of
the pointcut matching, the principal property is that the AWED architecture (cf.
Fig. 4) does not impose any centralized control, in particular, for the monitor-
ing of pointcuts that involve causal relationships. The other components of the
AWED architecture (principally matching of other pointcut types and execution
of remote advice) do not require central control either as discussed as part of
our previous work [4].

5 Evaluation

In this section we present a qualitative and quantitative evaluation of our ap-
proach using JBoss Cache [15], a Java-based middleware infrastructure for repli-
cated caching (part of JBoss middleware tools). First, we analyze a non-trivial
test case for replicated caching and show that aspects based on control-flow
and causal patterns significantly improve the corresponding debugging and unit
testing tasks. Second, we evaluate the performance of our prototype implemen-
tation in a two-fold manner. A series of micro-benchmarks provides evidence
that our implementation supports regular causal sequences with no to reason-
able small performance overhead. Finally, in order to provide concrete evidence
that we meet the objectives set out in the motivation, we compare AWED’s use
of sophisticated regular causal sequences to the use of the Eclipse debugger as
a popular tool for the debugging of distributed Java applications by means of
loose coordination of per-host debugging sessions.

5.1 Qualitative evaluation

In the following we present a qualitative evaluation of our approach involving
debugging and testing scenarios in two Java-based middlewares, JBoss Cache [15]
and Apache’s ActiveMQ [27].

==

= O © WO o s W N

14 D. Benavides, R. Douence, M. Siidholt

private void performTest() throws Exception {
// repeat the test several times since it’s not always reproducible
for (int i = 0; i < NUM_RUNS; i++) {
if (exception != null) { // terminate the test on the first failed worker
fail(”Due to an exception: ” + exception); }
// start several worker threads to work with the same FQN
Worker[] t = new Worker[NUM_WORKERS];
for (int j = 0; j < t.length; j++) {
t[j] = new Worker(”worker ” + i + 7:”7 + j); t[j].start(); }
// wait for all workers to complete before repeating the test
for (Worker aT : t) aT.join(); } }

Fig. 5. Deadlock detection test case method

Deadlock testing in JBoss Cache. In JBoss Cache (Ver. 2.0.0GA) the
method performTest of class ReplicatedTransactionDeadlockTest (see Fig. 5)
implements a test case to detect a deadlock bug. The test case uses two caches,
actions on the first cache are replicated onto the second cache by means of
the replication framework. The method triggers multiple workers in multiple
threads. Each worker starts a transaction, puts a value in the cache (all workers
use the same memory position in the cache) and commits the transaction. The
test has to be repeated a number of times (first for block in the figure) since
it can’t be reproduced easily. The original bug occurred when a worker, after
a successful prepare phase of the two phase commit protocol, commits a trans-
action and releases the lock over the source cache after the local commit but
before completing the final commit phase with the remote caches. In this case,
other workers may interleave their transaction operations, in particular, acquire
the lock at the same cache position and thus preclude the first transaction to
terminate its remote commit phase, thus entering a deadlock situation, because
no worker can acquire all necessary local and remote locks anymore.

A programmer dealing with that bug faces tree problems: (i) how two re-
produce the problem, (ii) how to debug it and (iii) how to write a suitable test
case to identify it in the future. To deal with the first problem the code shown
in Fig. 5 triggers several threads that execute transactions concurrently, hoping
for the bug to be reproduced. This approach is subject to several problems, in
particular, that a unit test session could pass over the bug without noticing it.
Regarding the second problem, as part of a corresponding debugging session
a programmer would have to apply a breakpoint either to the line for remote
prepare or in the line that throws the corresponding exception. In the first case
the debugger will stop on each prepare (buggy or not). In the second case it
will, eventually, stop only on an error of one of the threads. Then, depending of
how threads are scheduled, it could stop the application(s) in a buggy state or
in a correct state, because the other action could have or have not enough time
to complete the transaction. Additionally, the programmer could perform many
runs without reproducing the bug. A test case for this bug is, of course, subject
to all the problems detailed above.

==

N N

= O © N O O AW N e

Debugging and testing middleware ... 15

pointcut deadlock():
sl:seqCausalOrder(
tPrep:
call(* ReplicationInterceptor.runPreparePhase(..)) && host(src) > tCommit || t2ndPrep,
tCommit: call(x PessimisticLockInterceptor.commit(..)) && host(targ) > tPrep,
tSecondPrepare: call(* ReplicationInterceptor.runPreparePhase(..)) && host(src)) &&
step(sl, tSecondPrepare);

Fig. 6. Pointcut for deadlock detection in a synchronous transactional cache.

pointcut prepare(): call(* ReplicationInterceptor.runPreparePhase(..)) && host(src);
pointcut commit(): ... && call(* BaseRpclnterceptor.replicateCall(..)) && ...

pointcut generateDeadlock():
s1l:seqOrderedCausal(
tPrep : prepare() > tCommit || t2ndPrep,
tCommit : commit() > tCommit || t2ndPrep,
t2ndPrep: prepare());

before(): generateDeadlock() && step(sl, tCommit) { while(block){ Thread.yield(); } }
after(): generateDeadlock() && step(sl, t2ndPrep) { block=false; }

Fig. 7. Aspect ensuring the generation of the buggy behavior for deadlock detection.

Using our approach we can improve on the three development scenarios: de-
bugging, unit testing and bug reproduction. Fig. 6 shows a pointcut that can be
used to define a breakpoint that will occur only if the bug appears. The pointcut
implements a sequence (i.e., finite state machine) with three states and three
transitions. The first state accepts a call to the method runPreparePhase, from
the ReplicationInterceptor class in the cache that belongs to the source
group (source and target are dynamic groups that can be handled using
AWED). Once such a method is received, the state machine changes its state to
a state that accepts tCommit transitions and tSecondPrepare, the latter repre-
senting a prepare operation issued by another worker. If the target cache receives
a tCommit message, the normal behavior, it returns to the first state. Finally, if
the sequence detects, after the first tPrepare message, a tSecondPrepare mes-
sage on the source cache, the state machine recognizes a deadlock state. Note
that the sequence definition must be ordered causally in order to ensure that the
events will be detected in the correct order in any distributed setting.

AWED’s regular causal pointcut definitions can also be helpful for bug repro-
duction and unit testing. The main problem with current test case definitions,
such as that introduced above, is that it is of haphazard nature, i.e., it does
not always allow to reproduce the bug situation. Figure 7 shows an excerpt of
code from an aspect that will interact with the original test case of Fig. 5 to
impose the desired order of events in the presence of only two workers. The as-
pect excerpt includes the definition of a state machine that matches a call to
the method runPreparePhase, which means that the corresponding transaction
has acquired the lock and is going to broadcast a prepare message to the target
cache. Then, if it detects a call to the replicateCall method having as pa-

16 D. Benavides, R. Douence, M. Siidholt

rameter a commit method call, a before advice will suspend the current thread
until another runPreparePhase is detected. A buggy implementation will allow
this reordering of events, a correct implementation will produce a lock-timeout
exception because the cache node will be locked by the second transaction.

Debugging ActiveMQ. We have also performed experiments over the Apache
project’s ActiveMQ message broker [27] that is used, e.g., for the integration of
enterprise information systems. From an analysis of the list of the 359 open issues
in ActiveMQ’s bug tracking system as of Aug. 2008, we have found six issues
classified as blockers: at least four of these are caused by the wrong ordering of
events or messages. Similarly, out of the 13 messages classified as critical at least
five are related to message or event ordering. We have successfully woven causal
aspects on ActiveMQ. To test the applicability of our approach we have de-
bugged a use case regarding a deadlock situation in a configuration setting with
four brokers and a use case involving the wrong ordering of repeatedly delivered
messages in the context of transactions session with roll back. In both cases we
have successfully defined simple pointcut definitions that exactly test for the
corresponding error situations. These tests provide evidence that our approach,
in particular the AWED system, is applicable generally to Java-based middle-
ware. Finally, as for JBoss Cache, these debugging experiments have incurred
only minimal overhead in both the Java client and the ActiveMQ broker.

5.2 Micro-Benchmarks

We have run performance tests of our implementation using the performance
framework of JBoss Cache. This framework allows to run multiple performance
test over cache configurations. The tests were performed in a cluster of 4 nodes.
Each node was equipped with a double core AMD Opteron 250 (2400 MHz)
processor in 32 bit mode, 4 GB of memory and a 1 GB network interface. The
test case scenario we have used is the default Web-Session simulator of the
JBoss Cache framework that basically simulates the interaction of a replicated
http session in a cluster of application servers. This test can be parametrized on
the number of requests and the ratio of reads to writes requests.

We have evaluated the performance of the extended protocols developed
to support causality in AWED. To this end, we have compared four different
protocol configurations: (i) the performance of JBoss Cache with a standard,
non-causal, configuration of its communication protocol stack (denoted Normal
below), (ii) the causality protocol Causal natively provided by JGroups and (iii)
our new protocols Causal tags and Causal tags + clock increment.

Table 1 shows the results of several test sessions in our cluster. The first
set of sessions was performed with a ratio of 80% reads and 20% writes over
100.000 operations (left part of the table) and the second set of tests considers
a ratio of 20% reads and 80% writes (right part of the table). Each node in
the test executes 100.000 requests and only the writes are replicated to the
other members. The data shows that in both cases the Normal protocol and

Debugging and testing middleware ... 17

Protocol Requests per second
20% writes 80% writes
Average |Standard dev.||Average |Standard dev.
Normal 63,350.23|7,004.93 58,033.77(9,792.51
Causal 60,961.14(11,867.69 53,814.05|7,085.89
Causal tags + clock inc.[52,107.34|27,790.92 53,463.53(7,310.65
Causal tags 60,396.03(7,420.05 59,487.43|7,405.64

Table 1. Test results of 100.000 requests with respectively 20% and 80% writes

the Causal tags protocol presents the best performance average For the test
with 20% writes, the Causal protocol (full causality, i.e., vector clocks, clock
increment and reordering) presents lower performance overhead than the Causal
tags + clock increment protocol. Overall our new protocols do not impose a
significant performance overhead (especially in the case of a large number of
writes to the cache) compared to the standard JBoss Cache protocols.

5.3 Remote debugging vs. distributed debugging

In order to provide evidence that we have achieved the main objective set out in
the motivation part, that is, that regular causal sequences improve on a per-host
approach to debugging, we compare the performance of a remote debugging ses-
sion with Eclipse and a distributed debugging session with AWED. To this end,
we have again used the JBoss Cache benchmark framework. We first compare
two debugging sessions, one with Eclipse and one with AWED, without break-
points in order to measure the overhead of the frameworks. We then compare
both debugging sessions in the presence of a high-frequency breakpoint (i.e.,
reached and fired many times).

AWED runtime overhead vs. Eclipse remote debugging overhead. Table 2 (left
part) compares the overhead of the debugging infrastructure posed by eclipse
in a debugging session and the overhead posed by our AWED prototype. This
test doesn’t include any breakpoint, thus it only compares the overhead of the
execution frameworks. The table shows small and comparable overhead for both
frameworks. This is not surprising due to the fact that both frameworks are
based on the Java agent technology and no breakpoints are evaluated.

As a last experiment we have compared the overhead of Eclipse and AWED in
the presence of a high-frequency breakpoint: a breakpoint in the method invoke
of the interceptor class ReplicationInterceptor. Table 2 (right part) shows the
behavior of the Eclipse debugger attached to four nodes running the JBoss Cache
framework and the behavior of AWED breakpoints under such conditions. In
table 2 the protocol configuration labeled as invasive causality implies that the
application being debugged has been invasively modified with an adapter for
causality, thus AWED system can predicate over application’s own messages.
Using the Eclipse debugger we have executed the benchmarks first in JBoss
Cache normal configuration and then with JBoss Cache using JGroups default

18 D. Benavides, R. Douence, M. Siidholt

Protocol Requests per second|No. of ||[Requests per second|No. of
Average |Std. dev. |requests||Average|Std. dev. |requests
Eclipse |Normal 55,111.79(7,792.45 [10° 2.80 0.21 100
Debugger|Causal 55,172.60(5,764,97 |10° 3.39 0.30 100
AWED |[Causal tags + clock inc.|[56,079.85|5,983.75 [10° 234.77 |5.07 10°
Invasive causality 53,045.19[10,223.90 |10° 237.61 |7.58 10°

Table 2. Debugging session without breakpoints (left half) and with a high-frequency
breakpoint (right half).

CAUSAL protocol. The performance in these configurations is very bad and after
several problems with memory overflow and unacceptable delays for the test
we have reduced the number of request to 100. On the other hand, the test of
performance using the AWED framework are at least seventy times faster and
do not impose any restrictions in the conditions of the test. This is due to the
fact that, even tough the Eclipse debugger and AWED’s dynamic framework use
similar execution technology, AWED implements several optimization techniques
and was designed with distribution in mind [6]. Our approach thus scales much
better than the discussed debugging methods using Eclipse.

6 Related work

Our approach for causality is based on the idea of causality based on vector
clocks introduced by Mattern [19] (that itself extended Lamport’s approach on
logical time introduced in the landmark pape [17]). These results were later
integrated into actual middleware for reliable distributed systems based on group
communication,e.g., see the Horus framework [28]. The benefits and limitations
of using causal communications, in particular, the resulting overhead that is
added to all communication, has been actively discussed [8,7,24]. Our approach
extends similar current approaches, e.g., the support for causality in JGroups [3]
We have provided concrete evidence that expression of causal communication at
the language level is useful in the presence of real-world debugging scenarios in
current middleware.

Debugging of control-flow based relationships between execution events has
been one of the main domains of application of causality and logical clocks,
see e.g., [23,14,13,10,25]. Hseush et al. [14] and Ponamgi et al. [23] have pre-
sented Data Path Expressions (DPE), a control-flow based debugging language
for concurrent applications. Our sequence construct combined with the pointcut
language provide similar flexibility as their theoretical language, additionally we
provide a fully distributed solution with no central monitoring component.

More recently Sen et al. [25] proposed an algorithm for decentralized moni-
toring used to check violations of safety properties in distributed systems. Mon-
itoring expressions in their approach are written in past time linear logic. Their
proposal presents knowledge vectors (inspired by vector clocks) and propose the
Diana tool and actors as an implementation support. Our approach provides

Debugging and testing middleware ... 19

richer expressivity because of our general notion of transition guards and allows
group relationships to be expressed.

Other approaches have addressed the implementation and formalization of
distributed models for debugging (e.g., see [10,21]). However, either they do not
consider the causality concept and ordering of events (e.g., De Rosa et al. [10])
or, they restrict the concept of causality to the concept of distributed control
flow (e.g., Mega and Kon [21] as well as Li’s work on monitoring of component-
based systems [18]) These approaches can only express a small subset of the
relationships we consider. Finally, control flow relationships for the debugging
using aspects have been considered only for the sequential case, notably by Chern
and De Volder [9].

7 Conclusion

In this paper, we have argued for the use of programming abstractions as ex-
pressive support for the debugging and testing of distributed middleware, in
particular for the definition of sophisticated relationships between distributed
events and the recognition of event sequences in the presence of non-deterministic
executions. We have presented a corresponding aspect-based language and im-
plementation support that introduces causal event sequences into AWED, an
aspect system for the dynamic manipulation of distributed systems. We have
validated our approach in the context of Java-based middleware, in particular
for the debugging and unit testing of a JBoss Cache and Apache’s ActiveMQ.
This evaluation has shown that our implementation has reasonable overhead and
that our approach significantly improves on the use of debuggers, such as Eclipse,
that are based on the manual coordination of per-host debugging sessions.

This work paves the way for several leads of future work. On a conceptual
level, more flexible abstractions to define relationships that mix events that
partially are causally ordered and partially are not are of foremost interest.
Furthermore, exploring the use of our abstractions in other application domains,
such as grid infrastructures, should be explored.

References

1. James H. Anderson. Lamport on mutual exclusion: 27 years of planting seeds. In
PODC °01: Proceedings of the twentieth annual ACM symposium on Principles of
distributed computing, pages 3—12, New York, NY, USA, 2001. ACM Press.

2. Awed home page. http://www.emn.fr/x-info/awed, 2008.

3. Bela Ban. JGroups, reliable multicast comm. http://www.jgroups.org/, 2002.

4. L. D. Benavides Navarro, M. Studholt, et al. Explicitly distributed AOP using
AWED. In Proceedings of the 5th ACM Int. Conf. on Aspect-Oriented Software
Development (AOSD’06). ACM Press, mar 2006.

5. L. D. Benavides Navarro, M. Siidholt, W. Vanderperren, B. De Fraine, and
D. Suvée. Explicitly distributed AOP using AWED. Research Report 5882, INRIA,
mar 2006.

20

10.

11.

12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

D. Benavides, R. Douence, M. Siidholt

L. D. Benavides Navarro, M. Siidholt, W. Vanderperren, and B. Verheecke. Modu-
larization of distributed web services using awed. In Proc. of the 8th Int. Conf. on
Distributed Objects and Applications, pages 1449-1466. Springer Verlag, oct 2006.
Ken Birman. A response to cheriton and skeen’s criticism of causal and totally
ordered communication. SIGOPS Oper. Syst. Rev., 28(1):11-21, 1994.

David R. Cheriton and Dale Skeen. Understanding the limitations of causally and
totally ordered communication. In SOSP, pages 44-57, 1993.

Rick Chern and Kris De Volder. Debugging with control-flow breakpoints. In
AOSD ’07: Proceedings of the 6th international conference on Aspect-oriented soft-
ware development, pages 96-106, New York, NY, USA, 2007. ACM.

Michael De Rosa, Seth Copen Goldstein, Peter Lee, Jason D. Campbell, Pad-
manabhan Pillai, and Todd C. Mowry. Distributed watchpoints: Debugging large
multi-robot systems. International Journal of Robotics Research, 2007.

R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-Devillechaise, and
M. Siidholt. An expressive aspect language for system applications with arachne.
In Proc. of AOSD’05. ACM Press, mar 2005.

Eclipse Foundation. Remote debugging in Eclipse. http://www.eclipse.org, 2008.
J. Fowler and W. Zwaenepoel. Causal distributed breakpoints. In Proceedings of
the 10th International Conference on Distributed Computing Systems (ICDCS),
pages 134-141, Washington, DC, 1990. IEEE.

Wenwey Hseush and Gail E. Kaiser. Modeling concurrency in parallel debugging.
In PPOPP, pages 11-20, 1990.

JBoss Cache home page. http://labs. jboss.com/jbosscache, 2008.

JGroups home page. http://www. jgroups.org, 2008.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558-565, 1978.

Jun Li. Monitoring and characterization of component-based systems with global
causality capture. In 23th Int. Conf. on Distributed Computing Systems, Provi-
dence, RI, may 2003. IEEE.

Friedman Mattern. Virtual time and global states of distributed systems. In
Proceedings of the international Workshop on Parallel and distributed Algorithms,
Chateau de Bonas, France, October 1988.

Giuliano Mega and Fabio Kon. Debugging distributed object applications with the
Eclipse platform. In eclipse ’04: Proceedings of the 2004 OOPSLA workshop on
eclipse technology eXchange, pages 42-46, New York, NY, USA, 2004. ACM.
Giuliano Mega and Fabio Kon. An Eclipse-based tool for symbolic debugging of
distributed object systems. In On the Move to Meaningful Internet Systems 2007:
CooplS, DOA, ODBASE, GADA, and IS, pages 648-666. Springer Berlin, 2007.
M. Nishizawa, S. Shiba, and M. Tatsubori. Remote pointcut - a language construct
for distributed AOP. In Proc. of AOSD’04. ACM Press, 2004.

M. Krish Ponamgi, Wenwey Hseush, and Gail E. Kaiser. Debugging multithreaded
programs with MPD. IEEE Software, 6(3):37-43, may 1991.

R. Schwarz and F. Mattern. Detecting causal relationships in distributed compu-
tations: in search of the holy grail. Distrib. Comput., 7(3):149-174, 1994.
Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Efficient decentralized
monitoring of safety in distributed systems. In ICSE, pages 418-427. IEEE, 2004.
Allinea Software. Distributed debugging tool. http://www.allinea.com/, 2008.
The Apache software foundation. Apache ActiveMQ is an open source message
broker. http://activemq.apache.org/, 2008.

Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus: a flexible
group communication system. Commun. ACM, 39(4):76-83, 1996.

