
A Component Framework for Java-based

Real-Time Embedded Systems⋆

Aleš Pľsek, Frédéric Loiret, Philippe Merle, Lionel Seinturier

INRIA Lille - Nord Europe, ADAM Project-team
USTL-LIFL CNRS UMR 8022
Haute Borne, 40, avenue Halley
59650 Villeneuve d’Ascq, France

{ales.plsek | frederic.loiret | philippe.merle | lionel.seinturier}@inria.fr

Abstract. The Real-Time Specification for Java (RTSJ) [13] is becom-
ing a popular choice in the world of real-time and embedded program-
ming. However, RTSJ introduces many non-intuitive rules and restric-
tions which prevent its wide adoption. Moreover, current state-of-the-
art frameworks usually fail to alleviate the development process into
higher layers of the software development life-cycle. In this paper we
extend our philosophy that RTSJ concepts need to be considered at
early stages of software development, postulated in our prior work [2],
in a framework that provides continuum between the design and im-
plementation process. A component model designed specially for RTSJ
serves here as a cornerstone. As the first contribution of this work, we
propose a development process where RTSJ concepts are manipulated
independently of functional aspects. Second, we mitigate complexities of
RTSJ-development by automatically generating execution infrastructure
where real-time concerns are transparently managed. We thus allow de-
velopers to create systems for variously constrained real-time and embed-
ded environments. Performed benchmarks show that the overhead of the
framework is minimal in comparison to manually written object-oriented
applications, while providing more extensive functionality. Finally, the
framework is designed with the stress on dynamic adaptability of target
systems, a property we envisage as a fundamental in an upcoming era of
massively developed real-time systems.

Key words: Real-time Java, RTSJ, component framework, middleware

1 Introduction

1.1 Current Trends and Challenges

The future of distributed, real-time and embedded systems brings demand for
large-scale, heterogeneous, dynamically highly adaptive systems with variously

1 This work has been partially funded by the ANR/RNTL Flex-eWare project and
by the Interuniversity Attraction Poles Programme Belgian State, Belgian Science
Policy.

2 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

stringent QoS demands. Therefore, one of the challenges is the development
of complex systems composed from hard-, soft-, and non-real-time units. The
Java programming language and its Real-Time Java Specification [13] (RTSJ)
represent an attractive choice because of their potential to meet this challenge.
Moreover, they bring a higher-level view into the real-time and embedded world,
which is desperately needed when avoiding accidental complexities and steep-
learning curves. However, using RTSJ at the implementation level is an error-
prone process where developers have to obey non-intuitive rules and restrictions
(single parent rule [3], cross-scope communication [17], etc.).

One of the answers to these issues are component-oriented frameworks for
RTSJ, such as [10,12,14], abstracting complexities of the RTSJ development
from the developers. Nevertheless, the state-of-the-art solutions still need to
fully address adaptability issues of real-time systems, separation of real-time
and functional concerns, and suffer from the absence of a high-level process that
would introduce real-time concerns during the design phase.

1.2 Goals of the Paper

A complete process for designing of real-time and embedded applications com-
prise many complexities, specially timing and schedulability analysis, which has
to be included in a design procedure. The scope of our proposal is focused on
non-distributed applications and is placed directly afterwards these stages, when
real-time characteristics of the system are specified but the development process
of such a system lies at its very beginning.

The goal of our work is to develop a component framework alleviating the
RTSJ-related concerns during development of real-time and embedded systems.
Our motivation is to consider real-time concerns as clearly identified software
entities and clarify their manipulation through all the steps of software life cycle.
The challenge is therefore to mitigate complexities of the real-time system devel-
opment and offload the burden from users by providing a middleware layer for
management of RTSJ concerns. We therefore summarize the main contributions
that are addressed to achieve the goals:

– Development Process To propose a methodology to develop RTSJ-based sys-
tems that mitigates possible complexities and allows full-scale introduction
of code generation technics.

– Transparently Implemented Systems To provide transparent implementation
of systems with comprehensive separation of concerns and extensive support
of non-functional properties.

– Performance To achieve minimal overhead of the framework, its performance
and memory overhead should be subtle enough to address real-time and
embedded platforms. Different code-optimization levels should be introduced
to address variously constrained environments.

A Component Framework for Java-based Real-Time Embedded Systems 3

1.3 Structure of the Paper

To reflect the goals, the paper is structured as follows. Section 2 provides an
overview of RTSJ, introduces our example scenario, and presents the component-
oriented principles we integrate in our solution. Section 3 proposes a new frame-
work for developing real-time and embedded systems. In Section 4 we present
selected design and implementation aspects of our framework. Section 5 evaluates
our approach; we show benchmark results measuring the overhead of the frame-
work and discuss further contributions of our work. We present related work in
Section 6. Section 7 concludes and draws future directions of our research.

2 Background

2.1 Real-Time Java Specification

The Real-Time Java Specification [13] (RTSJ) is a comprehensive specification
for development of predictable real-time Java-based applications. Between many
constructs which mainly pose special requirements on underrunning JVM, two
new programming concepts were introduced - real-time threads (RealTimeThread,
NoHeapRealTimeThread) and special types of memory areas (ScopedMemory,
ImmortalMemory).

RealTimeThread and NoHeapRealTimeThread (NHRT) are new types of thr-
eads that have precise scheduling semantics. Moreover, NHRT can not be pre-
empted by the garbage collector, this is however compensated by a restriction
forbidding to access the heap memory. RTSJ further distinguishes three memory
regions: ScopedMemory, ImmortalMemory, and HeapMemory, where the first two
are outside the scope of action of the garbage collector to ensure predictable
memory access. Memory management is therefore bounded by a set of rules that
govern access among scopes. Another important limitation is the single parent

rule [3] defining that a memory region can have only one parenting scope.

2.2 Motivation Example

To better illustrate all the complexities of the RTSJ development, we introduce
an example scenario that will be revisited several times through the course of
this paper. The goal is to design an automation system controlling an output
statistics from a production line in a factory and report all anomalies. The
example represents a classical scenario, inspired by [8], where both real-time
and non-real-time concerns coexist in the same system.

The system consists of a production line that periodically generates measure-
ments, and of a monitoring system that evaluates them. Whenever abnormal
values of measurements appear, a worker console is notified. The last part of the
system is an auditing log where all the measurements are stored for auditing
purposes. Since the production line operates in 10ms intervals, the system must
be designed to operate under hard real-time conditions.

4 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

Fig. 1. Motivation Example

A class diagram of the system is depicted in Fig. 1. As we can see, real-time
and non-realtime concerns are mixed together. Identification of those parts of the
system that run under different real-time constrains is difficult, hence the design
of communication between them is clumsy and error-prone. As a consequence,
the developer has to face these issues at the implementation level which brings
many accidental complexities.

To avoid this, a clear separation of real-time and memory management from
the functional concerns is required. Moreover, the RTSJ concerns need to be
considered at the design phase since they influence the architecture of the system.
Therefore a proper semantics for manipulating RTSJ concerns during all the
steps of system development has to be additionally proposed.

2.3 Component Frameworks

Component frameworks simplify development of software systems. A proper
component model represents cornerstone for each component framework, its ex-
tensiveness substantially influences the capabilities of a component framework.

We have investigated several component models [7,9,11] to identify features
suitable for our framework. Based on this we extract a fundamental characteris-
tic of a state-of-the-art component model: A lightweight hierarchical component
model that stresses on modularity and extensibility. It allows the definition,
configuration, dynamic reconfiguration, and clear separation of functional and
non-functional concerns. The central role is played by interfaces, which can be ei-
ther functional or control. Whereas functional interfaces provide external access
points to components, control interfaces are in charge of non-functional proper-
ties of the component (e.g. life-cycle or binding management). Components are
sometimes divided into passive and active. Whereas passive components gener-
ally represent services, active components contain their own thread of control.
Additionally, a feature so far provided only by the Fractal component model
[11] is sharing of components which defines that a component could have several
super-components.

Component models usually provide container (also referred as membrane

or membrane paradigm in [18]) - a controlling environment encapsulating each

A Component Framework for Java-based Real-Time Embedded Systems 5

component and supporting various non-functional properties specific to a given
component. This brings better separation of functional and non-functional prop-
erties, which can be hidden in membranes, thus simplifying utilization of com-
ponents by end users.

3 Component Framework for RTSJ-based Applications

In our previous work [2], we claim that an effective development process of
RTSJ-compliant systems needs to consider RTSJ concerns at early stages of
the system design. Following this philosophy, our framework proposes a new
methodology that facilitate design and implementation of RTSJ-based systems.
We thus clarify manipulation of non-functional properties during all phases of
the system life cycle.

The cornerstone of our framework represents a component model, proposed
by our prior research, which allows us to fully separate functional and non-
functional concerns through all the steps of system development. We recapitu-
late the basic model characteristics in Section 3.1. Then, a design methodology
incorporated into our framework is introduced in Section 3.2. As an outcome of
this process we obtain a real-time system architecture that can be used for im-
plementation of the system. Here, we benefit from separation of functional and
non-functional concerns and design an implementation process that addresses
these concepts separately - whereas functional concerns are developed manually
by users, the code managing non-functional concerns is generated automatically.
We elaborate on this implementation methodology in Section 3.3.

Our hierarchical component model with sharing [2] is depicted in Fig. 2. The
abstract entity Component defines that each component has sub components
expressing hierarchy, and super components, expressing component sharing. We
derive Active and Passive components, basic building units of our model, rep-
resenting business concerns in the system. Each active component contains its
own thread of execution.

Fig. 2. A Real-Time Component Metamodel

6 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

3.1 A Real-Time Java Component Metamodel

ThreadDomain represents RealTimeThread, NoHeapRealTimeThread, and Re-

gularThread in a system. Each ThreadDomain component encapsulates all
the active components containing threads of control with the same properties
(such as thread-type or priority). MemoryArea representing ImmortalMemory,
ScopedMemory, and HeapMemory encapsulates all subcomponents that are allo-
cated in the same memory area. Therefore, we are able to explicitly model RT-
concepts at the architectural level by using ThreadDomain and MemoryArea

components. This brings us the advantage of creating the most fitting architec-
ture according to real-time requirements of the system.

Composing and Binding RT-Components The restrictions introduced by
RTSJ impose several rules on the composition process. Since the component
model includes RTSJ concerns, we are able to validate a conformance to RTSJ
during the composition process. Additionally, our model allows sharing of compo-
nents. Therefore, a set of super components of a given component directly defines
its business and also its real-time role in the system. To give an example of such
rules, the ThreadDomain and MemoryArea components are exclusively composite
components, since they do not implement a functional behaviour. They specify
non-functional properties which are commonly shared by their sub-components.
Therefore, while MemoryArea components can be arbitrarily nested 1, it does not
apply for ThreadDomain. Indeed, an active component should always be nested
in a unique ThreadDomain. An another example of RTSJ constraints between
thread and memory model concerns the NoHeapRealTimeThreadwhich is not al-
lowed to be executed in the context of the Java heap memory. Within our design
space, this constraint is translated by a NHRT ThreadDomain which should not
encapsulate a Heap MemoryArea, regardless of the hierarchical level specified by
functional components.

Similarly, also the RTSJ conformance of bindings between components is
evaluated at the design time. This allows developers to mitigate complexities of
their implementation by choosing one of several communication patterns [1,5,17]
already at the design time.

All these constraints are verified during the design process, which is presented
in the following section.

3.2 Designing Real-time Applications

This section further explains how we integrate the component model into the
process of designing real-time applications. The Design Views and the Design

Methodology are proposed with motivation to fully exploit the advantages of the
component model at the design time.

1 RTSJ specification defines a hierarchical memory model for scoped memories, as
introduces in Section 2.1.

A Component Framework for Java-based Real-Time Embedded Systems 7

Design Views We define three basic views that allow designers to gradually
integrate real-time concerns into the architecture: Business View, Thread Man-

agement View, and Memory Management View. Whereas the business view con-
siders only functional aspects of the system, the two others stress on different
aspects of real-time programming - realtime threads and memory areas man-
agement. These views therefore allow designers to architect real-time concerns
independently of the business functionality. Additionally, the execution char-
acteristics of systems can be smoothly changed by designing several different
assemblies of components into ThreadDomains and MemoryAreas. This is bene-
ficial when tailoring the same functional system for different real-time conditions.

Fig. 3. RealTime Component Architecture Design Flow

Design Methodology The methodology we propose progressively incorporates
all the views into the design process. The new architecture design flow, depicted
in Fig. 3, represents a procedure gradually introducing real-time concerns into
the architecture. In three steps, we consequently employ the Business, Real-

timeThread and Memory Management views to finally obtain RTSJ compliant
architecture. The compliance with RTSJ is enforced during the design process.
This provides an immediate feedback and the designer can appropriately modify
an architecture whenever it violates RTSJ. Moreover, the verification process of
the architecture identifies the points where a glue code handling RTSJ concerns
needs to be deployed, which substantially alleviates the implementation phase.

Motivation Example Revisited To fully demonstrate the design process pro-
posed in this section, we revisit our example scenario. By using the business view,
we construct the functional architecture. Then we deploy active components into
appropriate ThreadDomain components, determining which parts of the applica-
tion will be real-time oriented - the thread management view can be used here.
After deploying all components into corresponding ThreadDomain components,
the adherence to RTSJ is verified. As a result, the compositions violating RTSJ

8 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

are identified and possible solutions proposed, for example using RTSJ-compliant
patterns [1,5,17]. In the next step, the memory management of the system has
to be designed - the memory management view can be used.

<!-- Functional Components -->

<ActiveComponent name="ProductionLine"

type="periodic " periodicity="10ms">
<interface name="iMonitor "

role="client"
signature="IMonitor " />

<content class="ProductionLineImpl"/>

</ActiveComponent>
<ActiveComponent name="MonitoringSystem"

type="sporadic ">
<interface name="iMonitor "

role="server"

signature="IMonitor " />
...

</ActiveComponent>

<PassiveComponent name="Console ">
...

</PassiveComponent >

<ActiveComponent name="Audit"
type="sporadic " />

...
</ActiveComponent>

<!-- Bindings -->
<Bind ing >

<client cname="ProductionLine"
iname="iMonitor " />

<server cname="MonitoringSystem"
iname="iMonitor " />

<BindDesc protocol ="asynchronous"

bufferSize="10" />
</Bind ing >

<!-- Non - Functional Components -->

<MemoryArea name="Imm1">

<ThreadDomain name="NHRT1">
<ActiveComp

name="ProductionLine"/>
<DomainDesc type="NHRT"

priority ="30" />

</ThreadDomain>
<ThreadDomain name="NHRT2">

<ActiveComp
name="MonitoringSystem"/>

<DomainDesc type="NHRT"

priority ="25" />
</ThreadDomain>

<AreaDesc type="immortal "

size="600KB" />
</MemoryArea>

<MemoryArea name="S1">
<PassiveComp name="Console "/>

<AreaDesc type="scope"
name="cscope " size="28KB" />

</MemoryArea>

<MemoryArea name="H1">

<ThreadDomain name="reg1">
<ActiveComp

name="Audit"/>
<DomainDesc type="Regular " />

</ThreadDomain>

<AreaDesc type="heap" />
</MemoryArea>

Fig. 4. Motivation Example: Real-time System Architecture

To finally create a complete RT System Architecture, the business view, the
thread and memory management views are merged together. The final RT Sys-
tem Architecture can be seen in Fig. 4. The lower part of the figure presents
the XML serialization of the resulting architecture. The structure of this lan-

A Component Framework for Java-based Real-Time Embedded Systems 9

guage is consistent with the metamodel sketched out in Fig. 2. It provides the
whole information needed to implement the execution infrastructure described
in Section 3.3, for example:

– the functional component ProductionLine is defined as a periodic active

component,
– the binding between MonitoringSystem and AuditLog active components

specifies an asynchronous communication and its associated message buffer

size,
– the non-functional components specify RTSJ-related attributes, such as a

memory type and size of a MemoryArea, a thread type and a priority for a
ThreadDomain.

3.3 Implementing Real-time Applications

The design analysis described in the previous section yields in the real-time

system architecture which is both RTSJ compliant and fully specifies the system
together with its RTSJ related characteristics. Hence, it can be used as input
for an implementation process where a high percentage of tasks is accomplished
automatically. Indeed, we adopt a generative-programming approach where the
non-functional code (e.g. the RTSJ-specific code) is generated.

This approach allows developers to fully focus on implementation of func-
tional properties of systems and entrust the management of non-functional con-
cepts into the competence of the framework. Thus we eliminate accidental com-
plexities of the implementation process. The separation of concerns is also adopted
at the implementation level where functional and non-functional aspects are kept
in clearly identified software entities.

We therefore introduce a new implementation process incorporating code
generation technics, depicted in Fig. 5.

Fig. 5. Execution Infrastructure Generation Flow

Implementing Functional Concerns of Applications As the first step of
the implementation flow, see Fig. 5 step 1, functional logic of the system is being
developed. The development process thus follows our approach where developers
implement only component content classes.

10 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

Infrastructure Generation Process As the second step of our development
process, we generate an execution infrastructure of the system, in Fig. 5 step
2. We exploit an already designed RT System Architecture in order to generate
a glue code managing non-functional properties of the system. The generation
process implements several tasks, they are listed below, their implementation is
described in further details in Section 4.

– RTSJ-related Glue Code

• Realtime Threads and MemoryArea management Real-time Thread and
Memory Areas management is the primary task of the generated code.
Automatical initialization and management of these aspects in confor-
mance to RTSJ thus substantially alleviates the implementation process
for the developers.

• Cross-Scope Communication Since the RT system architecture already
specifies which cross-scope communication patterns will be used, their
implementation can be moved under the responsibility of the code gen-
eration process.

• Initialization Procedures The generated code has to be responsible also
for bootstrapping procedures which will be triggered during the launch
of the system. This is important since RTSJ itself introduces a high level
of complexity into the bootstrapping process.

– Framework Glue Code

• Active Component Management For active components, the framework
manages their lifecycle - generating code that activates their functional-
ity.

• Communication Concepts Automatical support for synchronous/asyn-
chronous communication mechanisms is important aspect offloading many
burdens from developers.

• Additional Functionality Additionally, many other non-functional prop-
erties can be injected by the framework, e.g. a support for introspection
and reconfiguration of the system.

Final Composition Process Finally, by composing results of the functional
component implementation and the infrastructure generation process we achieve
a comprehensive and RTSJ-compliant source code of the system. Here, each
functional component is wrapped by a layer managing its execution under real-
time conditions. This approach respects our motivation for clear separation of
functional and real-time concerns.

4 Framework Implementation Issues

The key design decision characterizing the framework is to employ component-
oriented approach also during the implementation process of developed systems.
Our motivation is therefore to preserve components at the implementation layer.
Apart from well-know advantages of this concept, e.g. reusability of the code,

A Component Framework for Java-based Real-Time Embedded Systems 11

this approach brings better transparency and separation of concerns. Specially
separation of concerns is important here, since we need to implement functional
and real-time concerns of the system but deploy them in separate entities.

Following these goals, we introduce non-functional components that are present
at runtime. These components represent ThreadDomain and MemoryArea compo-
nents, architected at the design time, and manage RTSJ-concerns of the system.
This contributes to a full separation of functional and non-functional code. More-
over, this approach is further expanded by the membrane paradigm, introduced
in Section 2.3, defining that each component is encapsulated by a membrane
layer that manages its non-functional properties. RTSJ management is thus de-
ployed at two places - in non-functional components, providing a coarse-grain
approach, and in the membrane of each functional component, providing a fine-
grain approach to management of RTSJ concerns for the specific functional logic.

Therefore, in Section 4.1 we first present the membranes and how they are
employed in our solution to support RTSJ concerns of components. We also
introduce non-functional components here. Consequently in Section 4.2, we ex-
plain detail implementation of membranes. Finally, Section 4.3 describes the
infrastructure generation process generating membranes of components and in-
troduces various levels of optimization heuristics which reduce overhead of the
framework.

4.1 Component Framework Implementation

Component-Oriented Membrane Membrane paradigm, originally introduced
in [18], defines that each component is wrapped by a controlling environment
called membrane. Its task is to support various non-functional properties of the
component. The control membrane of a component is implemented as an assem-
bly of so-called control components. Additionally, special control components
called interceptors can be deployed on component interfaces to arbitrate com-
munication between the component and its environment, they are also integrated
in the membrane. Since membranes can be parameterized, the framework allows
developers to deploy for each component its unequally designed membrane that
directly fits its needs.

RTSJ-oriented Membrane We employ the concept of membranes to develop
our own set of controllers and interceptors which are specially designed to man-
age RTSJ-concerns in the system. We provide the following extensions of the
control layer:

– Active Interceptors encapsulate active components. They implement a
run-to-completion execution model2 for each incoming invocation from their
server interfaces and are configured by the properties defined by the enclosing
ThreadDomain component.

2 This execution model precludes preemption for active components.

12 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

– Memory Interceptors implement cross-scope communication and are de-
ployed on each binding between different MemoryAreas. Their implementa-
tion depends on the design procedure choosing one of many RTSJ memory
patterns [1,5,17].

Non-Functional Components An additional construct for manipulation of
RTSJ-concerns at the implementation layer represent non-functional compo-

nents. These components correspond to ThreadDomain and MemoryArea com-
ponents, created at the design time, and provide thus a coarse-grain approach
to management of RTSJ-concerns in the system. More preciously, membranes of
non-functional components contain real-time controllers and interceptors, which
superimpose non-functional concerns over their subcomponents. Thus we man-
age RTSJ concepts of groups of functional components with identical RTSJ
properties.

4.2 Membrane Architecture Analysis

The control components incorporated in membrane can be divided into two
groups. First, the controllers which are specific to the non-functional needs of
the component - e.g. asynchronous communication controller, RTSJ-related con-
trollers. These components have to be present in the membrane since they im-
plement non-functional logic directly influencing components’ execution. The
second group of controllers represent units which are optional and are not di-
rectly required by the component’s functional code, e.g. Binding or Lifecycle con-
trollers. Access to membrane functionality is provided through control-interfaces,
which are hidden at the functional level to avoid confusion with functional im-
plementation.

Motivation Example Revisited To illustrate the membrane architecture, we
revisit our motivation example from Section 2.2, Fig. 6 shows a membrane of the
MonitoringSystem component. In the picture we can see an active Monitoring-
System component encapsulated by its membrane, this composition is then de-
ployed in a non-functional component NHRT2, an instance of a ThreadDomain en-
tity representing a NoHeapRealtimeThread. Inside the MonitoringSystem mem-
brane, various controllers and interceptors are present. ActiveInterceptor im-
plements execution model of an active component; Asynchronous Skeleton im-
plements asynchronous communication. Both of them represent non-functional
interceptors specific to the MonitoringSystem component. Contrarily, Lifecycle

and Binding Controllers are present to implement introspection and reconfig-
uration of the system, and represent optional part of the membrane that is
independent of functional architecture of the component. Finally, the NRHT2
component contains a ThreadDomain controller that implements logic for man-
agement of NoHeapRealtimeThread subcomponents.

A Component Framework for Java-based Real-Time Embedded Systems 13

Fig. 6. Membrane Architecture, Illustration Example

Runtime Adaptability Already the basic set of controllers - Binding Con-
troller, Content Controller, and Lifecycle controller, supports introspection and
dynamic adaptation of the system. Whereas regular-Java components in our
framework can be flawlessly reconfigured, however, adaptation of real-time code
brings additional challenges and complexities. Since every manipulation of RTSJ
concepts is bounded by their specification rules, the reconfiguration process has
to adhere to these restrictions as well. Investigation and research of these control-
ling mechanisms is however out of the scope of this paper. We therefore settle for
basic support of the adaptability issue and plan to fully tackle this challenging
topic in our future work.

4.3 Soleil - Execution Infrastructure Generator

For the infrastructure generation process we employ Soleil, an extension of Juliac

- a Fractal [11]3 toolchain backend which generates Java source code correspond-
ing to the real-time architecture specified by the designer, including membrane
source code, a framework glue code and a bootstrapping code. Moreover, the tool
offers different generation modes corresponding to various levels of functionality,
optimization and code compactness:

1. SOLEIL This default mode generates a full componentization of the execution
infrastructure. The RTSJ interceptors and the reconfigurability management
code are therefore implemented as non-functional components, within the
membranes. The structure of the latter is also reified at runtime, as well as
the ThreadDomain and MemoryArea composite components. This generation
mode provides the complete introspection and reconfiguration capabilities of
the component framework at functional and at membrane level.

3 Available at http://fractal.ow2.org/

14 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

2. MERGE-ALL In this generation mode the implementation of functional compo-
nent code and its associated membrane are merged into a single Java class.
Therefore, it generates one class per each functional component defined by
the developer. Since the number of Java objects in the resulting infrastruc-
ture is considerably decreased, this mode achieves also memory footprint
reduction. In comparison with the SOLEIL mode, it corresponds to a first
optimization level where several indirections introduced by the membrane
architecture are replaced by direct method calls. As component membrane
structures are not preserved at the runtime, the MERGE-ALL mode do not
provides reconfiguration capabilities at membrane level. However, these ca-
pabilities are provided at the functional level.
The source-to-source optimizations performed by the generation process are
based on Spoon [16], a Java program processor, which allows fine-grained
source code transformations.

3. ULTRA-MERGE The most optimized mode achieves that the whole resulting
source code fits into one unique class. Moreover, the generated code does
not preserve the reconfiguration capabilities anymore. The resulting infras-
tructure is therefore purely static. It exclusively embeddes the functional
implementations merged to the code which takes into account the compo-
nent activations, the asynchronous communications, and the RTSJ dedicated
code.

5 Evaluation

To show the quality of our framework, we evaluate it from several different per-
spectives. First, we conduct benchmark tests to measure performance of the
framework. Then we evaluate the development process introduced by our so-
lution from the code generation perspective. Finally, we summarize the con-
tributions of the framework to the field of real-time and embedded systems
development.

5.1 Overhead of the Framework

The main goal of this benchmark is to show that our framework does not intro-
duce any non-determinism and to measure the performance/memory-consumption
overhead of the framework. As one of the means of evaluation, we compare dif-
ferently optimized applications developed in our framework against a manually
written object-oriented application.
Benchmark Scenario The benchmark is performed on the motivation case-
study presented in Fig. 4. We measure the execution time of a complete iteration
starting from the ProductionLine component. Its execution behavior consists of
a production of a state message that is sent to the MonitoringSystem component
using an asynchronous communication. The latter is a sporadic active component

that is triggered by an arrival notification of the message from its incoming
server interface. The scenario of this transaction finally ends after invocation

A Component Framework for Java-based Real-Time Embedded Systems 15

of a synchronous method provided by the passive Console component and an
asynchronous message transmission to the active AuditLog component.

Evaluation Platform The testing environment consists of a Pentium 4 mono-
processor (512KB Cache) at 2.66 GHz with 1GB of SDRAM, with the Sun 2.1
Real-Time Java Virtual Machine (a J2SE 5.0 platform compliant with RTSJ),
and running the Linux 2.6.24 kernel patched by Rt-Preempt. The latter con-
verts the kernel into a fully preemptible one with high resolution clock support,
which brings hard realtime capabilities4.

Benchmarking Method The measurements are based on steady state obser-

vations - in order to eliminate the transitory effects of cold starts we collect
measurements after the system has started and renders a steady execution. For
each test, we perform 10 000 observations from which we compute performance
results. Our first goal is to show that the framework does not introduce any non-
determinism into the developed systems, we therefore evaluate a ”worst-case”
execution time and an average jitter. Afterwards, we evaluate the overhead of
the framework by performance comparison between an application developed
in the framework (impacting the generated code) and an implementation de-
veloped manually through object-oriented approach. Therefore, in the results
presented bellow, we compare four different implementations of the evaluation
scenario. First, denoted as OO, is the manually developed object-oriented appli-
cation. Then, denoted as SOLEIL, MERGE ALL, and ULTRA MERGE, are applications
developed in our framework constructed with different levels of optimization
heuristics. We refer the reader to Section 4.3 for detail description of the opti-
mization levels.

Results Discussion The results of the benchmarks are presented in Fig. 7,
where the graph (a) presents the execution time distribution of the 10,000 obser-
vations processed. Fig. 7(b) sums up these results and gives their corresponding
jitters. Fig. 7(c) presents the memory footprints observed at runtime.

Non-Determinism As the first result, we can see that our approach does not
introduce any non-determinism in comparison to the object-oriented one, as the
execution time curves of OO and SOLEIL are similar. Moreover, the jitter is
very subtle for all tests. This is caused by the execution platform which ensures
that real-time threads are not preempted by GC, and provides a low latency
support for full-preemption mechanisms within the kernel.

Performance Time The median execution time for the SOLEIL test is 4.7%
higher than for the OO one. This corresponds to the overhead induced by our
approach based on component-oriented membranes. However, the performance
of the ULTRA MERGE is comparable to the manually implemented OO - it
is even slightly better since ULTRA MERGE’ implementation is more compact.

Memory Footprint Considering the memory footprint, SOLEIL consumes 280KB
more memory than OO. The price paid for generated membranes providing RTSJ
interception mechanisms, introspection and reconfigurability. MERGE ALL, a
test introducing the first level of optimizations, gives a more precise idea of the

4 The Linux Rt-Preempt patch is available at
www.kernel.org/pub/linux/kernel/projects/rt/

16 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

(a) Execution Time Distribution

Median Jitter
(µs) (µs)

OO 31,9 0,457
Soleil 33,5 0,453

Merge All 33,3 0,387
Ultra Merge 31,1 0,384

(b) Execution Time Median and Jitter

(c) Memory Footprint

Fig. 7. Benchmark Results

injected code which provides these non-functional capabilities at runtime: 4.7KB.
The memory overhead purely corresponds to the algorithms and data structures
used by our component framework. Finally, the ULTRA MERGE is the most
lightweight - even in comparison to OO.
Bottom Line The bottom line is that our approach does not introduce any
non-determinism. Moreover, the overhead of the framework is minimal when
considering MERGE ALL, but with the same functionality as our non-optimized
code. Finally, we demonstrate a fitness for embedded platforms by achieving a
memory footprint reduction (ULTRA MERGE) that provides better results than
the OO-approach.

5.2 RTSJ Code Generation Perspective

We further confront our generation process against the set of code generation
requirements identified in [6]. The authors highlight importance of separation of
concerns, stress on compactness of generated code, and demand clear distinction
between generated and manually written code. All these requirements are met
by our generation process since both generated and manually written code are
deployed in clearly identified components. Moreover, an additional requirement
demands a clear separation between functional and non-functional semantics.
This is however supported directly in our component metamodel (ThreadDomain
and MemoryArea components) and thus we inherently meet this requirement.

5.3 Summary of our Contribution

We further summarize the main contributions of our work, they can be divided
into two categories:

– RTSJ-based Systems Development

A Component Framework for Java-based Real-Time Embedded Systems 17

• Component Model The proposed component model allows designers
to explicitly express an architecture combining real-time and business
concerns.

• Designing Real-time Applications The component model further al-
lows a separation of real-time concerns and to design them independently
of the rest of the system. By combining different Thread and Memory
Management compositions we can smoothly tailor a system for variously
hard real-time conditions without necessity to modify the functional ar-
chitecture. The verification process moreover ensures that compositions
violating RTSJ will be refused.

• Implementing Real-time Applications Considering an implementa-
tion of each component, the designed architecture considerably simplifies
this task. Functional and real-time concerns are strictly separated and
a guidance for possible implementations of those interfaces that cross
different concerns is proposed.

– Framework Implementation

• Separation of Concerns The separation of concerns is consistently
respected through all the steps of development lifecycle. Membrane ex-
tensions and non-functional components are preserved also at the imple-
mentation layer to manage real-time concerns of the system.

• Code Generation The code generation approach we integrate in our
framework respects the set of requirements [6] that are key for the fitness
of generated code from the RTSJ perspective.

• Performance Our evaluations show that we deliver predictable appli-
cations and the overhead of the framework is considerably reduced by
the optimizations heuristics we implement (MERGE ALL optimization
level). Moreover, we achieve an effective footprint reduction suitable for
embedded systems (ULTRA MERGE optimization level). Despite the
wide functionality we provide through out the applications development
and execution life-cycle, performance results are comparable with the
object-oriented approach.

• Dynamic Adaptation of Real-time Systems Although the dynamic
adaptation of Java-based real-time systems is a novel and complex topic,
we tackle this challenge by introducing a basic support for runtime adap-
tation of systems developed in our framework. We consider this feature
as a potent starting point for our future research.

6 Related Work

Recently significant increase of interest in RT Java is reflected by an intensive
research in the area. However, focus is laid on implementation layer issues, e.g.
RTSJ compliant patterns [1,5,17], rather than on RTSJ frameworks where only
a few projects are involved. Apart from these few frameworks, other projects are
recently emerging with features similar to our work.

18 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

Compadres [14], one of the most recent projects, proposes a component
framework for distributed real-time embedded systems. A hierarchical compo-
nent model where each component is allocated either in a scoped or immortal
memory is designed. However, the model supports only event-oriented interac-
tions between components. On the contrary to our approach, components can
be allocated only in scoped or immortal memories, therefore communication
with regular non-real-time parts of applications can not be expressed. Since the
coexistence of real-time and non-real-time elements of an application is often
considered as one of the biggest advantages of RTSJ, we believe that it should
be addressed also by its component model. Compadres also proposes a design
process of real-time applications. However, a solution introducing systematically
the real-time concerns into the functional architecture is not proposed, thus the
complexities of designing real-time systems are not mitigated.

Work introduced in [12] also defines a hierarchical component model for Real-
Time Java. Here, components can be either active or passive. Similarly to our
work, active components with their own thread of control represent real-time
threads. However, the real-time memory management concerns can not be ex-
pressed independently of the functional architecture, systems are thus developed
already with real-time concerns which not only lay additional burdens on design-
ers but also hinders later adaptability.

The project Golden Gate [10] introduces real-time components that encap-
sulate the functional code to support the RTSJ memory management. However,
the work is focused only on the memory management aspects of RTSJ, the usage
of real-time threads together with their limitations is not addressed.

The work published in [4] presents a new programming model for RTSJ based
on aspect-oriented approach. Similarly to our approach, the real-time concerns
are completely separated from applications base code. Although, as we have
shown in [18], aspect- and component-oriented approaches are complementary,
but the component-oriented approach offers more higher-level perspective of sys-
tem development and brings a more transparent way of managing non-functional
properties with only slightly bigger overhead.

The DiSCo project [15] addresses future space missions where key challenges
are hard real-time constraints for applications running in embedded environ-
ment, partitioning between applications having different levels of criticality, and
distributed computing. Therefore, similarly to our goals, the project addresses
applications containing units that face variously hard real-time constraints. Here,
an interesting convergence of both solutions can be revealed. The DiSCo Space-
Oriented Middleware introduces a component model where each component pro-
vides a wide set of component controllers - a feature extensively supported by
our solution.

The work introduced in [6] investigates fitness criteria of RTSJ in model-
driven engineering process that includes automated code generation. The authors
identify a basic set of requirements on code generation process. From this point of
view, we can consider our generation tool as an implementation fully compatible

A Component Framework for Java-based Real-Time Embedded Systems 19

to the ideas proposed in this work. We further confront our approach with these
requirements in Section 5.2.

7 Conclusion and Future Work

This paper presents a component framework designed for development of real-
time and embedded systems with the Real-Time Specification for Java (RTSJ).
Our goal is to alleviate the development process by providing means to ma-
nipulate real-time concerns in a disciplined way during the development and
execution life cycle of the system. Furthermore, we shield the developers from
the complexities of the RTSJ-specific code implementation by separation of con-
cerns and automatical generation of the execution infrastructure.

Therefore, we employ a component model comprising the RTSJ-related as-
pects that allows us to clearly define real-time concepts as software entities and
to manipulate them through all the steps of the system development. Conse-
quently, we define a methodology that gradually introduces real-time concerns
into the system architecture, thus mitigating complexities of this process. Fi-
nally, we alleviate the implementation phase by providing a process generating
automatically a middleware layer that manages real-time and non-functional
properties of the system.

Our evaluation study shows that we deliver predictable systems and the
overhead of the framework is considerably reduced by the optimization heuristics
we implement. Moreover, we achieve an effective footprint reduction making the
output systems suitable for the embedded domain.

As for the future work, our primary goal is to extend our framework to sup-
port design and infrastructure generation for additional non-functional proper-
ties, e.g. distribution support. Furthermore, we design our framework with stress
on adaptability of real-time and embedded systems, thus the framework provides
a basic support for dynamic adaptability of all system components. However, to
comprehensively address this issue, adaptation of real-time components needs to
be managed, we therefore plan to fully tackle this challenging topic in our future
work.

References

1. A. Corsaro, C. Santoro. The Analysis and Evaluation of Design Patterns for Dis-
tributed Real-Time Java Software. 16th IEEE International Conference on Emerg-
ing Technologies and Factory Automation, 2005.

2. A. Plďż˝ek, P. Merle, L. Seinturier. A Real-Time Java Component Model. In
Proceedings of the 11thInternational Symposium on Object/Component/Service-
oriented Real-Time Distributed Computing (ISORC’08), pages 281–288, Orlando,
Florida, USA, May 2008. IEEE Computer Society.

3. A. Wellings. Concurrent and Real-Time Programming in Java. John Wiley and
Sons, 2004.

20 A. Pľsek, F. Loiret, P. Merle, L. Seinturier

4. C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T. Zhao. Scoped Types
and Aspects for Real-time Java Memory Management. Real-Time Syst., 37(1):1–
44, 2007.

5. E. G. Benowitz and A. F. Niessner. A Patterns Catalog for RTSJ Software Designs.
Lecture Notes in Computer Science, 2889:497–507, 2003.

6. M. Bordin and T. Vardanega. Real-time Java from an Automated Code Generation
Perspective. In JTRES ’07: Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems, pages 63–72, New York, NY, USA,
2007. ACM.

7. T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model. In SERA ’06: Proc. of the 4th International Con-
ference on Software Engineering Research, Management and Applications, pages
40–48, USA, 2006. IEEE Computer Society.

8. C. Gough, A. Hall, H. Masters, A. Stevens. Real-Time
Java: Writing and Deploying RT-Java Applications, 2007.
http://www.ibm.com/developerworks/java/library/j-rtj5/.

9. M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas. An Efficient Component
Model for the Construction of Adaptive Middleware. Lecture Notes in Computer
Science, 2218:160, 2001.

10. D. Dvorak, G. Bollella, T. Canham, V. Carson, V. Champlin, B. Giovannoni,
M. Indictor, K. Meyer, A. Murray, and K. Reinholtz. Project Golden Gate: Towards
Real-Time Java in Space Missions. In ISORC, pages 15–22, 2004.

11. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.B. Stefani. The Fractal Com-
ponent Model and its Support in Java. Software: Practice and Experience, 36:1257
– 1284, 2006.

12. J. Etienne, J. Cordry, and S. Bouzefrane. Applying the CBSE Paradigm in the
Real-Time Specification for Java. In JTRES ’06: Proceedings of the 4th interna-
tional workshop on Java technologies for real-time and embedded systems, pages
218–226, USA, 2006. ACM.

13. G. Bollela, J. Gosling, B. Brosgol, P. Dibble, S. Furr, M. Turnbull . The Real-Time
Specification for Java. Addison-Wesley, 2000.

14. J. Hu, S. Gorappa, J. A. Colmenares, and R. Klefstad. Compadres: A Lightweight
Component Middleware Framework for Composing Distributed, Real-Time, Em-
bedded Systems with Real-Time Java. In Proc. ACM/IFIP/USENIX 8th Int’l
Middleware Conference (Middleware 2007), Vol. 4834:41–59, 2007.

15. M. Prochazka, S. Fowell, L. Planche. DisCo Space-Oriented Middleware: Archi-
tecture of a Distributed Runtime Environment for Complex Spacecraft On-Board
Applications. In 4th European Congress on Embedded Real-Time Software (ERTS
2008), Toulouse, France, 2008.

16. R. Pawlak, C. Noguera, and N. Petitprez. Spoon: Program Analysis and Transfor-
mation in Java. Technical report rr-5901, INRIA, 2006.

17. F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek. Real-Time Java Scoped Mem-
ory: Design Patterns and Semantics. In Seventh IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC’04), pages 101–110,
2004.

18. L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. A Component Model
Engineered with Components and Aspects. In Proceedings of the 9th International
SIGSOFT Symposium on Component-Based Software Engineering (CBSE’06), vol-
ume 4063 of Lecture Notes in Computer Science, pages 139–153, Vasteras, Sweden,
June 2006. Springer.

http://www.ibm.com/developerworks/java/library/j-rtj5/

	A Component Framework for Java-based Real-Time Embedded Systems
	Aleš Plšek, Frédéric Loiret, Philippe Merle, Lionel Seinturier
	Introduction
	Current Trends and Challenges
	Goals of the Paper
	Structure of the Paper

	Background
	Real-Time Java Specification
	Motivation Example
	Component Frameworks

	Component Framework for RTSJ-based Applications
	A Real-Time Java Component Metamodel
	Composing and Binding RT-Components

	Designing Real-time Applications
	Design Views
	Design Methodology
	Motivation Example Revisited

	Implementing Real-time Applications
	Implementing Functional Concerns of Applications
	Infrastructure Generation Process
	Final Composition Process

	Framework Implementation Issues
	Component Framework Implementation
	Component-Oriented Membrane
	RTSJ-oriented Membrane
	Non-Functional Components

	Membrane Architecture Analysis
	Motivation Example Revisited
	Runtime Adaptability

	Soleil - Execution Infrastructure Generator

	Evaluation
	Overhead of the Framework
	RTSJ Code Generation Perspective
	Summary of our Contribution

	Related Work
	Conclusion and Future Work

