
Performance Comparison of PHP and JSP as Server-
Side Scripting Languages

Scott Trent Michiaki Tatsubori Toyotaro Suzumura
Akihiko Tozawa Tamiya Onodera

IBM Tokyo Research Laboratory
16-23-14 Shimotsuruma Yamato-shi, Japan 242-8502
{trent, mich, toyo, atozawa, tonodera}@jp.ibm.com

Abstract. The dynamic scripting language PHP has become enormously
popular for implementing lightweight web applications, and is widely used as a
server-side scripting language for web servers. To contrast the performance of
PHP and JSP for this purpose, we used the SPECweb2005 benchmark, which
provides three application scenarios implemented in both PHP and JSP. This
paper describes and contrasts the results of SPECweb2005 performance
benchmark testing performed on different configurations of PHP and JSP using
the popular web servers Apache and Lighttpd. Despite the execution overhead
of interpretation in PHP engines observed in micro benchmarks, the
experimental result of SPECweb2005 benchmark yields valuable performance
data for web server implementers. The efficiency of scripting language
runtimes still matters for the end-to-end performance. However, once
carefully architected and tuned, the language runtime is less of a bottleneck
than the web server performance itself.

Keywords: PHP, JSP, SPECweb, Benchmarking, Web Server.

1 Introduction

The dynamic scripting language PHP (PHP Hypertext Preprocessor) has become
enormously popular for implementing lightweight web applications, and is widely
used to access databases and other middleware. Apache module popularity surveys
performed by Security Space in October 2007 indicate that 37% of Apache servers
have PHP support enabled [11], making it the most popular Apache module by 10
percentage points. Businesses are quickly realizing the powerful combination of a
service oriented architecture environment with dynamic scripting languages like PHP
[5]. However, we believe that there are still critical performance issues involving
PHP which remain to be investigated.

This paper focuses on the use of dynamic scripting languages to implement web
server front-end interfaces. This corresponds with the way that the industry standard
web server performance benchmark SPECweb2005 utilizes PHP and JSP (JavaServer
Pages). In this case, scripts are used for the implementation of dynamic page
generation, rather than the realization of complex business logic. This contrasts with

the traditional uses of complex JSP-based business logic implementation. While
there are numerous studies on dynamic web content, this paper complements these
studies with detailed analysis focusing on PHP. For example, following the
performance study on CGI (Common Gateway Interface) based web servers for
dynamic content by Yeager & McGrath back in 1995, researchers and practitioners
have been examining the performance of more recent dynamic Web content
generation technologies [3, 13, 15, 17]. These works, however, handle application
scenarios where servlet front-ends implement relatively complex business logic.

Although Warner and Worley discuss the importance of also using PHP with
SPECweb2005 [18], to the best of the author’s knowledge, this paper is the first to
publish a detailed analysis of SPECweb2005 experimental results using both PHP and
JSP. The detailed analysis of PHP and JSP performance based on SPECweb2005
offered by this paper enables designers and implementers of web servers to
understand the relative performance and throughput of different versions and
configurations of PHP and JSP.

The rest of this paper is organized as follows. Section 2 discusses multi-tier web
server architecture and the lightweight front-end approach using PHP and JSP.
Section 3 reports on our findings regarding PHP and JSP language runtime micro
benchmark performance. Section 4 details our SPECweb2005 benchmark
methodology, environment, and test configurations. Section 5 analyzes
SPECweb2005 benchmark throughput results, CPU usage profiling, and related
performance metrics. Section 6 discusses the importance of these results. Section
7 covers related work, followed by our conclusions in Section 8.

2 Multi-tier Web Server Architecture: Lightweight Front-End
using PHP/JSP

Developers typically use PHP to implement a front-end interface to dynamic Web
content generators, which are combined with web server software and back-end
servers to provide dynamic content. The web server directly handles requests for
static content and forwards requests for dynamic content to the dynamic content
generator. The dynamic content generator, supported by back-end servers, executes
code which realizes the business logic of a web site and stores dynamic state. Back-
end servers may be implemented as a straight-forward database, or may be more
complex servers handling the business logic of the web site. The front-end
implementation may vary from heavy-weight business logic handlers to lightweight
clients composing content received from back-end servers.

This paper focuses on multi-tier web site development scenarios utilizing such
lightweight front-ends, supported by one or more layers of heavy-weight back-ends.
This assumption is reasonable when considering Service-Oriented environments
where PHP scripts are used to implement a "mash-up" of services provided elsewhere,
in addition to the case of simple web sites such as bulletin boards where PHP scripts
are just a wrapper to a database. Within the scenarios described in this paper, the
dynamic content generator provides client implementation in addition to page

composition. It connects to the back-end server through a network using either
standard protocols such as HTTP or application/middleware-specific protocols.

JSP technology can be considered an alternative to PHP in implementing such
front-ends. While it is part of the Java Servlet framework, developers typically use
JSP to implement lightweight front-ends. Both PHP and JSP allow developers to
write HTML embedded code. In fact, although there are language inherent
differences between PHP and Java, the use of PHP scripts and JSP files can be very
similar.

The objective of the experiments detailed in this paper is to measure the
performance of lightweight front-end dynamic content generation written in PHP and
JSP with popular web servers such as Apache and Lighttpd. This web server
architecture scenario involves users who access a web server with pages written in
plain static HTML, as well as JSP and PHP scripts which mix scripting language with
HTML code. The configuration assumed within the paper is a typical one, where
web server software, such as Apache, distinguishes between pure HTML, JSP, and
PHP respectively with suffixes such as .html, .jsp, and .php. HTML code is directly
returned to the requesting end-user’s web browser, where JSP and PHP pages are
respectively parsed by the Tomcat script engine and the PHP runtime engine which
both provide pure HTML which is forwarded to the end-user on a remote system.
(A sample comparison of similar trivial JSP and PHP scripts, along with resulting
HTML code can be seen in Table 1) A common point between JSP and PHP is that
implementations which perform well have a dynamically compiled and cached byte
code. For example, the Java runtime used by the Tomcat script engine which we
used performs much better when the Just-in-Time (JIT) compiler is enabled to create
efficient cached native runtime code. Similarly, the Zend PHP runtime we used also
performs significantly better when the Alternative PHP Cache (APC) is enabled, in
which APC stores PHP byte codes compiled from the script source code in shared
memory for future reuse.

Table 1. Sample PHP and JSP scripts with resulting HTML code

PHP Script JSP Script Resulting HTML Code
<html> <body>
The date is
<?php
echo
date(DATE_RFC822);
?>
</body> </html>

<html> <body>
The date is
<%=
new
java.util.Date();
%>
<body> </html>

<html> <body>
The date is
Tue, 1 Jan 08
12:00:00
</body> </html>

3 Language Runtime Performance Micro Benchmarking

To understand the difference in performance characteristics between PHP and Java at
the language runtime level, we compared the following engines using a series of
micro benchmark tests:
− PHP 4.4.7
− PHP 5.2.3

− Java 5 with Just-In-Time (JIT) compilation (IBM J9 VM 1.5.0 Build 2.3)
− Java 5 without Just-In-Time (JIT) compilation (same as above)

The PHP language framework allows developers to extend the language with
library functions written in C. These functions, which are known as “extensions”, are
then available to be used within PHP scripts. The PHP runtime provides a variety of
extensions for string manipulation, file handling, networking, and so forth. Since our
first goal was to understand the performance of the PHP runtime itself, we conducted
our experiments without the use of extensions. We developed the following micro
benchmarks:
− A quick sort benchmark which sorts 100 integers,
− A Levenshtein benchmark which measures the similarity between two strings of 56

characters,
− A Fibonacci benchmark which calculates the 15th value in a Fibonacci series with

two arbitrary starting values.
These PHP benchmarks were implemented entirely with PHP language primitives

and avoided the use of PHP extensions. The Java versions also focused on using
language primitives rather than standard classes. We compared the total run time of
executing each test 10,000 times with each engine. We also executed each benchmark
an additional 10,000 times as a warm-up, before the measured test. This prevents
Java just-in-time compilation overhead from impacting the score in the Java tests.
We ran the experiment on an Intel Pentium 4 CPU at 3.40 GHz with 3GB RAM
Memory, with the Linux 2.6.17 kernel.

Pure Script Benchmark

0 50 100 150

Fibonacci

Levenshtein

Quick Sort

Run Time in Seconds

Java 5 without JIT 2.6 13.7 2.2

Java 5 with JIT 0.1 0.5 0.1

PHP 5.2.3 19.6 34.7 25.1

PHP 4.4.7 42.1 137.2 54.5

Fibonacci Levenshtein Quick Sort

Fig. 1. Pure Script Benchmark Performance

This test demonstrates large performance differences between each of the
measured scripting languages and implementations. The experimental results in
Figure 1 indicate that “Java 5 with JIT compilation” performs the best, followed by

“Java 5 without JIT compilation”, “PHP 5.2.3”, and “PHP 4.4.7” in all measured
cases. Java 5 with JIT demonstrated nearly three orders of magnitude better
performance due to the use of efficiently generated native code. It is also obvious that
PHP 5.2.3 has a two to three times performance improvement over PHP 4.4.7 with the
measured computations.

Secondly to determine the performance effect of PHP extensions compared with
Java class methods, we developed and tested three additional micro benchmarks:
regular expression matching, MD5 encoding, and Levenshtein comparison. For
regular expression matching, the Perl Compatible Regular Expression extension
(through the preg_match() function) was used in PHP, and the java.util.regex
package was used in Java. For MD5 encoding, the MD5 extension was used in PHP
and java.security.MessageDigest was used in Java. This experiment does not compare
exactly the same logic, but rather demonstrates that the use of PHP extensions is
competitive with Java using just-in-time compilation, as seen in Figure 2.

Script Class Library/Extension Benchmark

0.0 0.1 0.2 0.3 0.4 0.5

Levenshtein

MD5

Regular
Expression

Run Time in Seconds

Java 5 with JIT 0.459 0.068 0.010

PHP 5.2.3 0.313 0.064 0.043

PHP 4.4.7 0.343 0.071 0.058

Levenshtein MD5 Regular Expression

Fig. 2. Script Class Library/Extension Benchmark Performance

Although the pure script experiment showed three orders of magnitude difference
between the performance of various implementations of Java and PHP, the use of
PHP extensions (written in C) and compiled Java class libraries show much less
variation. In the extreme, the regular expression test showed a maximum
performance difference of about five times between Java and PHP, on the other end,
the MD5 test results were nearly equivalent between Java and PHP. Thus a inherent
performance risk of interpreted scripted languages such as PHP can be overcome with
the use of efficient library functions such as PHP extensions written in C.

4 PHP/JSP SPECweb2005 Benchmark Methodology

Although micro benchmarks are simple to implement and analyze, and are thus often
used in performance analysis, we next used the industry standard SPECweb2005
benchmark to understand the impact of different versions and configurations of PHP
and JSP in more realistic situations. The SPECweb2005 benchmark, developed by
the Standard Performance Evaluation Corporation (SPEC), is comprised of three test
scenarios based on common website usage: a banking site scenario, an e-commerce
site scenario, and a support site scenario. The banking site scenario allows for
typical encrypted account transactions with Secure Sockets Layer (SSL) libraries
where 60% of the data is generated through dynamic web pages. The e-commerce
shopping site allows a user to browse catalogs and “purchase” products using both
encrypted and unencrypted data. As shown in Table 2, experimentally about 5% of
the data in the e-commerce scenario is transmitted using SSL encryption and 70% of
the data transmitted is generated through dynamic web pages. Finally, the vendor
support site provides downloading of large unencrypted support files such as manuals
and software. As this scenario primarily allows for accessing large non-confidential
static files, there is no encryption, and only 12% of the data transmitted is generated
through dynamic web pages. Since SPECweb2005 is implemented in both PHP and
JSP, it is particularly well suited for comparing performance between the two
languages. Yet because every single officially published SPECweb2005 benchmark
result as of Summer 2008 was performed using JSP rather than PHP [12], this paper
provides a unique comparison of both implementations, which is valuable considering
the popularity of real world web servers based on PHP.

Table 2. Experimentally measured percentage of encrypted and dynamic data transfered for
each SPECweb2005 scenario

 Banking Ecommerce Support
Percentage of encrypted data 100% 4.4% 0%
Percentage of dynamic data e.g., script output 59.5% 71.6% 11.7%

A typical SPECweb2005 test bed has multiple client machines controlled by a

Prime Client to provide a load on the System Under Test (SUT) to simulate hundreds
to tens of thousands of users accessing the scenario web sites. Although multiple
software components can run on the same physical system, a high level of distribution
is desirable to provide a realistic environment. For example, an average of 22 physical
clients were used in the officially published SPECweb2005 scores [12]. To reflect
modern multi-tier web server architecture, SPECweb2005 uses one or more machines
to serve as a Back End SIMulator (BESIM), emulating the function of a “Back End”
database server.

4.1 SPECweb2005 Benchmark Environment

We used a single System Under Test machine running the web server, a BESIM
server running the Back End SIMulation engine, a prime client machine, and three

additional dedicated client machines. The computers were connected via a gigabit
Ethernet network. The System Under Test was an IBM IntelliStation M Pro with a
3.4 GHz Xeon uniprocessor running Fedora Core 7 (kernel 2.6.23), Apache 2.2.6, and
Lighttpd 1.4.18. Apache Tomcat was used as the JSP servlet container [1]. PHP
5.2.4, and Tomcat 5.5.25 were used in their respective tests. Tomcat was configured
to use an IBM implemented Java Virtual Machine: J9 VM 1.5.0 Build 2.3. The
standard distribution of SPECweb2005 was installed and configured as described in
SPEC documentation [12].

4.2 Testing Methodology

In addition to following the guidelines laid down in the SPECweb2005 documentation
[12] we developed a testing tool which could be configured to automatically run
multiple tests, iterating such variables as the script engine language (PHP, JSP), the
web server (Apache, Lighttpd), the number of simultaneous sessions, and the
SPECweb2005 scenario (banking, ecommerce, and support), and other tuning factors.
We varied the number of simultaneous sessions from 250 to 3000 by increments of
250. To ensure valid results, the SPECweb2005 test harness will abort individual tests
when the web server response threshold is exceeded. We used 3000 simultaneous
connections as our maximum because beyond this, with our configuration, it is rare
for a test to run successfully to completion. To avoid genetic skewing of data, this
paper only displays data for tests that ran successfully without repeated retries. Load
levels that may not run to completion are extremely unlikely to result in a suitable
Quality of Service (QoS) level to qualify as a valid SPECweb2005 test run.

To assure a fair comparison, before each individual test is initiated, our testing tool
restarted the SPECweb2005 client components, all middleware such as Tomcat, and
web server, and otherwise ensured that the environment on each system in this
distributed environment was in a consistent and receptive state. An officially
published SPECweb2005 benchmark score is a single value which based on three 30-
minute test runs from each of the three scenarios shows the performance improvement
over SPEC’s reference machine. This can be used to compare the relative
performance of web serving hardware platforms from different vendors. Since our
goal was to analyze in detail how the use of different scripting languages and web
servers affects performance, we used internal metrics such as the number of
good/tolerable/failed requests served as reported from the SPECweb2005 test harness
for each test. To improve test coverage in the time available, we used 10-minute test
runs rather than the official 30-minute run, and only ran each test once rather than
three times. Although our test runs are not suitable for reporting as an official score,
they are very useful for identifying trends seen as over tens of tests, and variation seen
with identical test runs was small as demonstrated in Figure 3. The vmstat
command was also used to monitor such performance statistics as memory usage,
swapping activity, and CPU utilization [6]. No swapping activity was observed during
our reported tests. In separate test runs, we used the oprofile tool to identify process,
module, and function CPU utilization.

Fig. 3. Repeated test runs demonstrate similar results
We measured each of the SPECweb2005 scenarios with the following five

configurations of scripting language and web server with the goal of contrasting JSP
with PHP, and Apache with Lighttpd:
− JSP with Apache via mod_jk connector
− JSP with Lighttpd via mod_proxy module
− PHP with Apache via FCGI protocol
− PHP with Lighttpd via FCGI protocol
− PHP with Apache via in-process mod_php

While as the four potential combinations of two scripting languages and two web
servers are obvious, the methods for connecting scripting languages and web servers
are rather arcane. We chose connectors and connection methods based on
availability and general practice. mod_jk is a commonly used connector between
Apache and Tomcat using the Apache JServ Protocol (AJP). FCGI (Fast Common
Gate Way Interface) is a protocol developed by Open Market to improve the
performance and usability of the CGI model for web server to back-end (e.g.,
scripting language engine) communication which is commonly used with the Lighttpd
web server. In our test, the Lighttpd mod_proxy module serves as a general purpose
connector between Tomcat and the Lighttpd web server. mod_php is a dynamically
loadable module for Apache which enables PHP script processing within the web
server process via direct function calls rather than interprocess communication as
used by the other methods. With Apache, mod_php is more common than FCGI for
PHP script processing.

4.3 Tuning Considerations

Significant tuning effort was expended to ensure that performance was not limited by
obvious configuration limitations or trivial system resource limitations. We removed
unused daemons, services, and web server modules to reduce computational noise [8].
When initial tests suffered from thrashing under high loads, we added more physical

memory, and paid attention to memory related tuning [6]. We considered guidelines
used by published SPECweb2005 results [12], and techniques described in Linux,
Apache, PHP, and Tomcat reference books and primary websites [2, 4, 6, 7, 8, 9, 14].
Although the Lighttpd web server is designed as a minimally threaded asynchronous
event-handling program, with Apache we used the single-threaded/multi-process
“prefork” model, since it considered more reliable and is more commonly used than
the multi-threaded “worker” model. The significant tuning parameters that we found
beneficial in our environment include the following.

Table 3. Significant Tuning Parameters

Tuning Modification Benefit
/etc/security/limits.conf

nofile 65536
Allow more files/sockets to be simultaneously

opened by specific user.
sysctl fs.file-

max=1000000
Allow more files/sockets to be open

simultaneously.
Apache

KeepAliveTimeout 2 on
SUT

Reduce time an httpd process spends waiting for
client response.

Apache
KeepAliveTimeout 28800
on BESIM

Enable BESIM to use persistent http connections
to reduce connection restart overhead.

Apache ServerLimit
1200

Specify enough httpd processes so that
connection availability is not a bottleneck, yet not so
many that httpd process memory usage causes
thrashing.

Apache
MaxRequestsPerChild 0

Avoid overhead of having httpd processes
restarted after receiving a certain number of
requests.

sysctl
net.core.so.maxconn=10000

Increase the connection queue size to prevent
denied connections.

vm.swappiness = 50 Improve caching throughput.
max*threads in

tomcat5/server.xml = 15000
Improve the response time provided by JSP.

APC extension compiled
into PHP

Improve PHP processing time. (Comparable to
using JIT in Java.)

tmpfs filesystem used for
/tmp

Improved performance for access to temporary
files in /tmp.

Lighttpd max-procs=16,
max-connections=8192,
max-fds=16484, max-
worker = 2

Ensure that lighttpd has sufficient sockets and
FCGI processes to avoid bottlenecks.

Non-error logging
minimalized

Avoid unnecessary overhead.

Debug modes disabled Avoid unnecessary overhead.

5 PHP/JSP Performance Benchmark Results

5.1 Overall Performance

Figure 4 shows the maximum performance for each configuration and scenario, as
determined by the maximum number of simultaneous sessions (e.g., users) which can
be supported with acceptable Quality Of Service as defined by SPEC. The results
were largely consistent between test scenarios, showing that JSP tended to perform
better than PHP (yet PHP with Lighttpd performs nearly as well as the JSP test cases),
and Lighttpd tends to perform better than Apache (yet, JSP with Apache performs
nearly as well as Lighttpd). Although the Ecommerce test scenario stands as it
handles as much as 50% more simultaneous sessions than the other scenarios, since
the load per session is not normalized between test scenarios, one must conclude that
a single user SPECweb2005 Ecommerce scenario session load is less than that of
either a Banking or Ecommerce scenario user session load. However, the fact that
the high performing JSP/Apache, JSP/Lighttpd, and FCGI PHP/Lighttpd
configurations had a higher percentage performance increase in the Ecommerce
scenario than Apache using either mod_php or FCGI PHP does emphasize the
superiority of these configurations.

SPECWEB2005 Performance Peak

0

500

1000

1500

2000

2500

Banking Ecommerce Support

Test Scenario

S
im

u
lt
an

e
o
u
s

S
e
ss

io
n
s

JSP - Apache

JSP - Lighttpd

FCGI PHP - Lighttpd

MODPHP - Apache

FCGI PHP - Apache

Fig. 4. SPECweb2005 Performance Peak

5.2 Throughput Results

Figures 5-7 show the number of tolerable (or better) requests fulfilled for each of the
configurations. At low loads, throughput performance is not gated by SUT
resources, but rather simply by the amount of load placed by the SPECweb2005 test
harness, hence at low loads all configurations demonstrate nearly the same throughput.
JSP with both servers demonstrated the highest peak throughput in all tests, and
generally performed better than PHP under high loads.

Although the performance of PHP in performing fine grain tasks such as executing
trivial function calls and simple instructions has been shown to be hundreds of times
slower than C, PHP does relatively better at coarse grain activities such as calling
complex external libraries to perform actions such as DB access [10]. Ramana and
Prabhakar [10] use micro benchmarks to demonstrate that file I/O on PHP is more
efficient than, for instance, calculating Fibonacci numbers in PHP. (These results are
also consistent with the micro benchmarks we used in Section 3 of this paper.) Thus
we theorize that although all scenarios in SPECweb2005 contain a significant number
of fine grain tasks, the high level of file I/O performed in the SPECweb2005 Support
scenario allowed PHP to narrow the performance gap with JSP under high loads in
this case, as seen in Figure 7. This result implies that micro benchmarks of read
performance for large static files would be comparable between PHP and JSP.

Fig. 5. SPECweb2005 Banking Scenario (Tolerable or better) Requests Completed

Fig. 6. SPECweb2005 Ecommerce Scenario (Tolerable or Better) Requests
Completed

Fig. 7. SPECweb2005 Support Scenario (Tolerable or Better) Requests Completed

Figures 8-12 show detailed results of the Ecommerce scenario for each of our five
configurations with test loads from 250 to 3000 simultaneous sessions. Similar
results are observed with the Banking and Support scenarios, which are omitted to
save space. Data on the number and quality of requests serviced at each point is
gathered and shown in these graphs. A “Good Response” is one that is returned to
the user within 2-3 seconds (depending on the scenario), a “Tolerable Response” is
one that is returned within 4-5 seconds (depending on the scenario), a “Failed
Response” is one that returns after that, and a “Validation Error” is a response which
is incorrect irregardless of how fast or slow it is. As observed earlier, performance
under low loads is the same with each configuration, since the limiting factor is
simply the load provided by the SPECweb test suite. As load increases, the expected

shifting of request categorization from Good to Tolerable to Failed is observable with
all configurations. This shifting can be directly predicted by the increase in average
response time reported by the SPECweb2005 test harness. The JSP Lighttpd
configuration demonstrated the best performance, but the JSP/Apache and PHP
(mod_php) Apache configurations continued to service 10-15% of their requests with
good Quality of Service even under extremely high loads, where the other
configurations did not. This indicates a wider standard deviation among request
response time, implying a potentially “unfair” (e.g., not FIFO) scheduling algorithm
with configurations that continue to return a percentage of “Good Responses” under
very high load.

SPECWEB2005 Ecommerce - Apache - JSP

0

20000

40000

60000

80000

100000

120000

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Simultaneous Sessions

R
e
qu

e
st

s

 Good_Requests Tolerable_Requests Failed_Requests Validation_Errors

Fig. 8. SPECweb2005 Ecommerce Performance with JSP and Apache

SPECWEB2005 Ecommerce - Lighttpd - JSP

0

20000

40000

60000

80000

100000

120000

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Simultaneous Sessions

R
e
qu

e
st

s

 Good_Requests Tolerable_Requests Failed_Requests Validation_Errors

Fig. 9. SPECweb2005 Ecommerce Performance with JSP and Lighttpd

SPECWEB2005 Ecommerce - Apache - FCGI PHP

0

20000

40000

60000

80000

100000

120000

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Simultaneous Sessions

R
e
qu

e
st

s

 Good_Requests Tolerable_Requests Failed_Requests Validation_Errors

Fig. 10. SPECweb2005 Ecommerce Performance with PHP and Apache (via FCGI)

SPECWEB2005 Ecommerce - Lighttpd - PHP

0

20000

40000

60000

80000

100000

120000

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Simultaneous Sessions

R
e
qu

e
st

s

 Good_Requests Tolerable_Requests Failed_Requests Validation_Errors

Fig. 11. SPECweb2005 Ecommerce Performance with PHP and Lighttpd (via FCGI)

SPECWEB2005 Ecommerce - Apache - PHP (mod_php)

0

20000

40000

60000

80000

100000

120000

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Simultaneous Sessions

R
e
qu

e
st

s

 Good_Requests Tolerable_Requests Failed_Requests Validation_Errors

Fig. 12. SPECweb2005 Ecommerce Performance with mod_php and Apache

5.3 CPU Usage

Not surprisingly, using oprofile to profile CPU usage for each test scenario at the
maximum throughput level shows that the ratio of CPU time spent in script engine vs.
web server depends on both the test scenario and the web server configuration, as
seen in Figures 13-15. This implies that improvements to either the language
runtime, or the web server will result in performance increase. In Figure 14 we
observe that encryption accounted for a large amount of web server CPU time when
used (e.g., in the Banking scenario), and of course that scenarios with a higher
percentage of dynamic data created by scripting engines tended to use more time in
the script engine. The high percentage of SSL computation time spent in the Lighttpd
as compared with Apache was puzzling until we identified that SSL connection
negotiation data is not shared among multiple Lighttpd processes as it is with Apache.
Data from vmstat show that the kernel accounted for 34-44% and user time
accounted for 36-59% of CPU time. The seemingly high levels of system time are
reasonable considering the disk and network I/O involved in running the SPECweb
benchmark. At the function level, the memcpy() function call was observed as
being a significant consumer of CPU in every configuration, implying that additional
application of the zero-copy principal may be warranted [19].

CPU Usage: Overview

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
pa

c
h
e

J
S
P

L
ig

h
tt

pd
J
S

P

L
ig

h
tt

pd
P
H

P

A
pa

c
h
e

P
H

P
m

o
d_

ph
p

A
pa

c
h
e

P
H

P
F
C

G
I

A
pa

c
h
e

J
S
P

L
ig

h
tt

pd
J
S

P

L
ig

h
tt

pd
P
H

P

A
pa

c
h
e

P
H

P
m

o
d_

ph
p

A
pa

c
h
e

P
H

P
F
C

G
I

A
pa

c
h
e

J
S
P

L
ig

h
tt

pd
J
S

P

L
ig

h
tt

pd
P
H

P

A
pa

c
h
e

P
H

P
m

o
d_

ph
p

A
pa

c
h
e

P
H

P
F
C

G
I

Banking Ecommerce Support

web server script engine oprofile other

Fig. 13. High-Level View of CPU Usage for Each SPECweb Scenario

Detailed View of CPU Time Used within Web Servering Processes

0%

20%

40%

60%

80%

100%

Percentage of Web Server Process CPU Time

Other 13.6 2.3 5.3 11.2 10.8 19 4.6 4.2 12.7 19.1 21.7 8.7 8.4 15 18.1

Scripting 0 0 0 19.4 0 0 0 0 30.1 0 0 0 0 26.6 0

Logging 1.3 0.4 0.4 0.9 0.8 2.1 0.9 0.8 1.3 2.3 2.5 2.1 1.6 1.6 1.2

IPC 1.9 0.7 0.7 0.1 1.1 3.9 1.6 1.7 0.1 2 3.5 2.7 2.4 0.2 2.3

libc 13.8 14.5 13.5 16.9 18.9 15.5 18.1 23.6 19.1 18.5 15.9 20.7 26.9 18.6 17.3

Networking 4.9 4.3 4.7 5.1 3.8 8.7 10.7 9.7 6.4 5.9 12.4 23.2 20.1 12 12.4

Encryption 38.1 68.2 66 29.2 41 12.5 40.7 38.6 9.3 13.3 0.5 0 0 0.3 0.5

Apache Lighttpd Lighttpd Apache Apache Apache Lighttpd Lighttpd Apache Apache Apache Lighttpd Lighttpd Apache Apache

Banking Ecommerce Support

Fig. 14. Detailed View of CPU Time Used within Web Serving Processes

Detailed View of CPU Time Used within Scripting Engine

0%

20%

40%

60%

80%

100%

Percentage of Scripting Engine CPU Time

Other 2.4 2.7 4.8 0 4.5 1.6 1.6 2.2 0 4.4 0.5 2 4 0 3.9

Disk IO 1.3 0.9 1.4 0 1.5 0.5 0.4 0.7 0 0.8 0.8 0.7 0.9 0 1

GC 38.8 29.3 0 0 0 22.8 14.6 0 0 0 20.5 14.4 0 0 0

libc 1.1 1.4 23.7 0 21.8 1 1.1 24 0 23.7 1.4 1.2 24.8 0 22.1

Networking 3.4 3.4 4.4 0 2.7 3.3 3.6 3.5 0 4.6 7.5 7.5 7.5 0 6.2

DynamicInstruction 13.7 17.6 5 7.7 5 14.4 14.9 4.8 6.6 3.7 15.6 14.1 3 5.3 3.3

ScriptEngine-Base 39.3 44.7 60.7 92.3 64.5 56.4 63.8 64.8 93.4 62.8 53.7 60.1 59.8 94.7 63.5

Apache LighttpdLighttpdApache Apache Apache LighttpdLighttpdApache Apache ApacheLighttpdLighttpdApache Apache

Banking Ecommerce Support

Fig. 15. Detailed View of CPU Time Used within Scripting Engine

 6 Discussion

One of the first questions which comes to mind when reviewing the performance
benchmark results is, “Why does JSP tend to perform better then PHP under high
loads?” One major reason is the Java Just in Time (JIT) Compiler. Although JIT
has been compared with PHP APC, APC is merely a bytecode cache which reduces
the need for re-interpretation of source code, whereas JIT enables the execution of
highly optimized local machine instructions. This is reflected in Figure 14, where
Java with JIT shows the least time spent in the runtime engine. Another factor is
that JSP realizes parallelization through the threading model, whereas the commonly
used Apache worker/mod_php approach adopted in this testing realizes parallelization
through the use of multiple processes. Thus under high CPU loads, one would
expect less scheduling and context switch overhead with the threading model used
with the JSP implementation.

Another seemingly anomalous point is that PHP used with Lighttpd outperformed
JSP under high loads in the Support scenario, implying that PHP can handle I/O better
than JSP. Initially, one would expect different performance characteristics of a
program such as the PHP runtime which is written in low level C, and that of the Java
based JSP environment. The difference in web server architectures also plays a
factor, where the asynchronous event-handling approach used in Lighttpd appears
preferable to Apache’s multi-process “prefork” approach. The use of in-process
language processing appears successful when reasonably lightweight, as is the case
with mod_php. Likewise, external language processing as with Tomcat seems to be
successful by avoiding replication of a heavy-weight JVM for each process. The
external language processing approach via FCGI also appears highly successful with
Lighttpd. The internal mod_php approach offers the advantage that data read from
disk is immediately available to Apache, since the PHP engine runs in the same
address space as the Apache daemon. However, the JVM used with JSP as well as
PHP accessed via FCGI runs in a separate process and thus incurs domain socket
communication overhead to transmit file data from one process to another, as well as
potential inefficiencies from process context switching and coordination.

7 Related Work

Titchkosky and associates established that serving dynamic web content can reduce
throughput by 8 times as compared with static web content [13], providing our team
with encouragement to identify methods to reduce the negative performance impact of
using scripted language dynamic web content. Ramana and Prabhakar analyzed the
performance differences between PHP and compiled languages such as C, pointing
out the relative performance downside of PHP [10], which corresponds with our tests
on pure-script implemented benchmarks vs. scripts using standard class library or
PHP extensions implemented in C language. The upside of our benchmarking is that
we found the use of C-language PHP extensions for computationally intensive
functions to enable PHP scripts to perform comparably with Java. Cecchet and
colleagues analyze various middleware architectures based on technology such as

Apache, PHP, Tomcat, MySQL, and JOnAS [3, 17], which helped guide our
methodology. Warner and Worley describe the importance of using technology such
as PHP rather than just JSP for real-world benchmarking with SPECweb2005 [18].
We have contributed to this line of reasoning as we were motivated to write this paper
since we have not seen data from an industry standard web server benchmark that
provides a detailed comparison of the performance PHP and JSP as a web server
dynamic scripting language.

8 Conclusion

When implementing a web server system which will never experience high load, or in
which performance, throughput, and reliability under high load is not an issue, then
the use of any of the analyzed languages or web servers will achieve similar
performance results. If outstanding performance and throughput is the primary goal,
then the use of JSP over PHP is advisable. However, if a 5-10% difference in
throughput and performance is acceptable, then the implementer of a web system can
achieve similar results using either PHP or JSP. In which case, other requirements
such as developer language familiarity and programming efficiency, maintainability,
security, reliability, middleware compatibility, etc. would be the deciding factors. It
is also reassuring to developers of both language runtimes and web servers, that
enhancements to either can offer performance improvements to the community.

Acknowledgements
We are appreciative of the many useful discussions with Graeme Johnson and
Andrew Low, from the IBM Ottawa Software Lab, which have provided valuable
direction. Mathematical guidance from Mei Kobayashi, and perceptive feedback
from the Systems Department, both at the IBM Tokyo Research Laboratory resulted
in a more consistent and rigorous analysis. We are also deeply indebted to the
feedback and comments regarding PHP and SPECweb2005 testing which we received
from the PHP team at IBM Hursley.

References

1. Apache Software Foundation. http://tomcat.apache.org (2008)
2. Bergsten, H.: Java Server Pages, O’Reilly, ISBN 0-596-00563-5 (2003)
3. Cecchet, E. Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: “Performance

Comparison of Middleware Architectures for Generating Dynamic Web Content”, 4th
ACM/IFIP/USENIX International Middleware Conference (2003)

4. Chopra, V., Galbraith, B. et al: Professional Apache Tomcat, ISBN 0-764-5372-5 (2003)
5. IBM. http://www-03.ibm.com/press/us/en/pressrelease/19822.wss (2006)
6. Johnson, S., Huizenga, G., Pulavarty, B.: Performance Tuning for Linux Servers: IBM Press,

ISBN 0-131-44753-X (2005)
7. Lecky-Thompson, E., Eide-Goodman, H., Nowicki, S., Cove, A.: Professional PHP5, Wrox

Press, ISBN 0-764-57282-2 (2005)

8. Petrini, F., Kerbyson, D., Pakin, S.: “The case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q”, Proceedings of
IEEE/ACM SC2004 (2004)

9. PHP Group. http://www.php.net (2008)
10. Ramana, U., Prabhakar, T.: “Some Experiments with the Performance of LAMP

Architecture”, Proceedings of the 2005 Fifth International Conference on Computer and
Information Technology (2005)

11. Security Space. http://securityspace.com (2007)
12. Standard Performance Evaluation Corporation. http://www.spec.org (2008)
13. Titchkosky, L., Arlitt, M., Williamson, C.: “A Performance Comparison of Dynamic Web

Technologies”, 11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems (2003)

14. Wainwright, P.: Professional Apache 2.0, ISBN 1-861-00822-1 (2002)
15. Wu, A. W., Wang, H., Wilkins, D.: “Performance Comparison of Alternative Solutions For

Web-To-Database Applications”, Proceedings of the Southern Conference on Computing
(2000)

16. Garcia, D. F., Garcia, J.: “TPC-W E-Commerce Benchmark Evaluation”, IEEE Computer
36(2): 52-48 (2003)

17. Amza, C. et. al: “Specification and implementation of dynamic Web site benchmarks”,
Proceedings of the 5th IEEE Workshop on Workload Characterization (2002)

18.Warner, S., Worley J.: “SPECweb2005 in the Real World: Using Internet Information
Server (IIS) and PHP”, 2008 SPEC Benchmark Workshop (2008)

19.Stancevic, D.: Zero Copy I: User-Mode Perspective, Linux Journal, Volume 3, Issue 105
(2003)

