Prism: Providing Flexible and Fast Filesystem
Cloning Service for Virtual Servers

Xin Zhao', Kevin Borders?, and Atul Prakash?

1 Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043, USA
xinzhao@google.com
2 University of Michigan
2260 Hayward Street
Ann Arbor, MI 48109-2121, USA
{kborders, aprakash}@eecs.umich.edu

Abstract. This paper describes a prototype virtualized file system, Prism,
for supporting hosted servers and utility computing. Prism provides a
filesystem service that allows lightweight creation of filesystems for new
users from existing filesystems. All users’ filesystems are mutable and
yet isolated from each other. In our experiments, new filesystems can
be created from existing ones in under one-fifth of a second. Prism is
also designed to make centralized security-related services across mul-
tiple, similar filesystems more efficient. In particular, with Prism, tasks
such as virus checking over multiple filesystem clones are much more ef-
ficient than scanning each user’s filesystem independently. We describe
the design of Prism and present performance results.

1 Introduction

One application scenario of hosted services and utility computing is to be able to
provide remote users with dedicated data and computing facilities using central-
ized computing resources. This paper focuses on one aspect of the problem: pro-
viding dedicated filesystems to users on demand, as well as common filesystem-
related services, such as on centralized virus scanning on users’s filesystems in a
lightweight way.

This paper describes a prototype virtualized file system, Prism, which sup-
ports multiple filesystems, where each filesystem can be assigned to a different
user. Each user gets the illusion of having a full-fledged filesystem, which in prin-
ciple, can include system files, applications, and user files, all under the control
of the user. Prism provides an efficient filesystem cloning mechanism to create
new filesystems from existing ones. A filesystem clone is semantically similar
to a copy of the parent filesystem. Once created, it is independent of the par-
ent filesystem. Subsequent changes to either one are not reflected in the other.
Prism’s mechanism guarantees isolation of users’ filesystems, while providing

2 Xin Zhao, Kevin Borders, and Atul Prakash

very fast creation of new filesystems from existing ones. In our tests, new filesys-
tems that are created from existing ones are usable within one-fifth of a second
and provide comparable performance to native ext3 filesystem when the cloning
is complete.

Prism is also designed to make centralized security-related services across
multiple, similar filesystems more efficient. In particular, multiple filesystems
can often be scanned collectively for tasks such as virus checking much more
efficiently than scanning each user’s filesystem independently. In our prototype
setup, simulating a virus scanning task on all the files for eight cloned filesystems
was approximately three times faster than doing eight individual scans.

Prism’s mechanism for instantiating a new filesystem from an existing one
provides a feature called selective cloning. In selective cloning, a user can request
a clone of an existing filesystem, while excluding specified directories or files from
being cloned (optionally replacing them with default substitutes.) We anticipate
that this capability can be a useful feature in specialized scenarios. Consider a
user Alice who is given a virtual machine running Linux on a hosted service
provider, along with a dedicated filesystem that is provided by Prism. She wants
to install a new software application that appears useful, but she is not sure if
she should trust it and is not sure if it will be compatible with existing software.
She decides to request the Prism’s cloning service to provide her a clone of her
filesystem, but excluding sensitive files such as her home directory, contents of
/tmp and /var/log. This new filesystem can be used to provide her a testing
environment that is very close to her current environment, but less susceptible
to data theft, all within a few seconds.

Prism’s cloning abstraction is semantically similar to making a copy of the
entire filesystem, except it appears to be much faster to users. An end-user can
get a usable cloned filesystem almost instantaneously, irrespective of the size
of the cloned filesystem (either in number of files, depth, or total number of
bytes). In addition, the filesystem cloning operation will not interrupt access to
the parent filesystem.

Prism makes extensive use of copy-on-write at both file level and for blocks
within files so as to use disk space efficiently when providing filesystem services
for multiple users. The parent and cloned filesystems share data of unchanged
files, which usually occupy a large portion of files. Furthermore, when a shared
file is modified, an unchanged blocks continue to be shared.

Prism is currently in prototype stage. It has around 5000 lines of code. We
have used Prism to host filesystems for multiple virtual machines. To evaluate
Prism’s cloning performance, we cloned a standard Fedora Core 4 distribution
that consists of over 170K files and over 17K directories. The cloning operation
itself was essentially an immediate operation from the perspective of the end-
user, taking only 0.18 seconds to complete. After 0.18 seconds, both the parent
and the cloned filesystem were completely accessible to end users. In terms of
disk space, a clone took up about 1.3% of the space (77MB for the clone versus
6GB for the parent filesystem).

The Prism Cloning Mechanism 3

VMI’s VMI’s Shared base
filesystem view private space file space

|

bin

Lps_

Fig. 1: Cloning via namespace manipulation.

We also measured performance of a Prism-cloned filesystem on several work-
loads and compared it with solutions based on the ext3 filesystem. On the Con-
nectathon [1] benchmark and an Apache-build workload, the cloned filesystem’s
performance was comparable with that of an ext3-based filesystem, with only a
minor performance penalty. For scanning multiple cloned filesystems, Prism out-
performed an ext3-based solution significantly because it was able to skip over
the files that had not been modified since cloning. The performance advantage
of Prism over ext3 went up as the number of clones was increased.

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 illustrates the design of the Prism cloning. Section 4 presents
evaluation results. Section 5 concludes this paper.

2 Related Work

Prism borrows ideas from existing filesystems with snapshot and versioning ca-
pability, such as WAFL [2], CVFS [13], VersionFS [9] and Ext3cow [10], but also
introduces some differences. Like them, it makes extensive use of copy-on-write
to help reduce overheads. In versioning filesystems, the notion of providing com-
plete, dedicated filesystems for different users is usually missing. Instead, the
assumption is that all versions are under one administrative control. In contrast,
filesystem clones in Prism are all writable and isolated from each other; they are
designed be exported to different users.

Several recent filesystems, such as Flexclone [4], VMFS [16], Parallax’s filesys-
tem [17], and ZFS [7] provide writable snapshots. Prism differs in a few ways in
its design. These systems generally use block-level copy-on-write, where the file-
level semantics are not available. This would make it difficult to exclude specified
files or directories during a snapshot. In contrast, Prism is aware of filesystem
structure and uses file-level copy-on-write. It is therefore trivial to selectively
exclude directories from a snapshot or even graft part of one filesystem into the
clone of another filesystem to compose a new filesystem. As we show later, file-
level copy-on-write also permits more efficient central scanning across multiple
filesystems.

Some systems, such as UnionFS [19], Ventana [11], Alcatraz [5], IFS [14],
and Feather-weight Virtual Machine (FVM) [18], provide efficient cloning-like
capability using a metadata manipulation technique. The key idea is to deploy
a filesystem virtualization layer to manipulate the pathnames of files when a
client or VM requests to access them. As shown in Figure 1, all other VMs are

4 Xin Zhao, Kevin Borders, and Atul Prakash

VM, VM,
Guest Apps Guest Apps
| VirtualFs | | |

------ VL' Fiese

Prism Ext3 (pext3)

Fig. 2: Cloning via file sharing.

assumed to be created by cloning and sharing the base filesystem. If a user needs
to change a shared file, these systems create a new copy in the writing user’s
private space. Upon receiving a file request, the filesystem virtualization layer
first checks the user’s private space so that the private copy can override the
shared copy.

However, cloning filesystem by manipulating pathnames is not as flexible as
the mechanism used by Prism. Prism’s design makes it easy to create clones of
any user’s filesystem, even the parent filesystem is a clone itself. In contrast,
systems like FVM assume that only a base filesystem will be cloned. Furthe-
more, compared with normal filesystems, manipulating pathnames in private
and shared spaces incurs higher lookup overhead to locate the right file cor-
responding to a given pathname. Prism does not introduce another pathname
translating layer and thus achieves performance close to a filesystem without
cloning support.

3 Prism Design

3.1 Background

Prism was designed by modifying the ext3 filesystem and adding support for
cloning and exporting any part of the filesystem to a user. Currently, Prism’s
filesystems are simply exported using NFS. In principle, Prism’s filesystems could
also be made available for access using other protocols such as Samba.

In the most general usage scenario, Prism exports a user’s filesystem to the
user with full read-write privileges. It is trivial to limit the user to read-only
access to selected files that should not be updated by the user, if desired. We
have previously proposed a server-side policy engine to do that in [21].

In the rest of the paper, we assume that each user is accessing the filesystem
from a standard operating system. In our experiments, we emulated these users’
operating systems using guest virtual machines that were hosted by a centralized
server. To simplify terminology (since “user” can be an overloaded term), from
now on, we will refer to user’s operating systems as client virtual machines
(VMs), even though users can access Prism filesystems over a network from
standard operating systems as well.

The Prism Cloning Mechanism 5

As shown in Figure 2, Prism runs a modified ext3 filesystem called pext3 to
manage files for all the users. On the pext3 filesystem, Prism stores each client
VM’s files in a fileset. A Prism fileset is similar to a volume in AFS [3,8,12]. It
is a tree of files and sub-directories on the physical repository managed by the
pext3 filesystem. Prism exports a client VM’s fileset as a virtual filesystem over
NFS. In Prism, cloning a client VM’s filesystem is accomplished by cloning the
VM’s fileset on the pext3 filesystem.

Prism provides three forms of cloning: basic cloning via file sharing, asyn-
chronous cloning, and lazy cloning. We first describe the basic cloning mechanism
in which the entire directory hierarchy is cloned. Then, we describe the asyn-
chronous cloning mechanism that allows new filesystems to be usable almost
immediately without cloning the directory hierarchy in entirety. After that, we
describe lazy cloning, in which directories and files are cloned only as needed.

3.2 Synchronous Cloning Via File Sharing

FS1 FS2

X
?m noncioneable %D

\

inodel

=}
=

Fig. 3: Cloning via file sharing.

As Figure 3 shows, Prism avoids copying files that are the same in a clone
as in the parent filesystem. To clone a filesystem, Prism always starts from the
filesystem’s root directory to traverse the entire directory structure and clone the
encountered filesystem objects that are not flagged as “nonclonable”. For each
clonable directory, Prism creates a new directory at the corresponding place in
the clone. For a regular file, Prism clones it by creating a hard link to that file
in the clone. In fact, all named files can be regarded as hard links in Prism. The
name associated with a file is simply a label that refers the operating system
to the actual data. More than one name can be associated with the same data.
A hard link is essentially a directory entry that associates a file name with the
actual data. By creating a hard link to the original file’s inode, the cloned file
shares the same content with the original copy without physically duplicating
the data blocks. Copy-on-write is performed to create a new private copy if
either the clone or its parent attempts to change a shared file. All subsequent
modifications are applied to the new copy. As such, the isolation between the
parent filesystem and its clone is still preserved. This cloning procedure is similar
to the copying operation in conventional filesystems and thus very flexible. One
can easily clone any selected part of a filesystem to a specified location.

6 Xin Zhao, Kevin Borders, and Atul Prakash

FS1 FS2
\C/aib] [y]| [Cab | [y]

12 3 4

/a/b chapges in FS1
FS1 FS2

SR ETAREETE

inode’ inode

copy-on-write

Fig. 4: Copy-on-write on an inode breaks the hard link semantics of a standard filesys-
tem. If both F'S1 and FS2 are fully copied filesystems, both /a/b and /x/y should point
to the same inode even if the file content is modified.

The above solution is inadequate if support for hard links is required in users’
filesystems. Figure 4 shows an example that helps illustrate this issue. Suppose
a user clones a filesystem FS1 to a new filesystem FS2. We refer to FS1 as the
“parent” filesystem and FS2 as the “child” filesystem. In FS1, the file /a/b and
/x/y are two hard links pointing to the same file on disk. When cloning FS1 to
FS2, Prism creates two hard links in FS2 for /a/b and /x/y, respectively. Now
there are four hard links point to a same file. We cannot preserve the Prism
cloning semantics and the standard hard link semantics under such a filesystem
structure.

Suppose a user writes the file /a/b in FS1. At this time, the file associated
with /a/b is being shared by FS2. In order to preserve isolation between FS1 and
FS2, Prism duplicates the shared file to a new copy (represented by inode’), and
adjusts the /a/b entry in FS1 to point to the new copy. However, /a/b and /x/y
in FS1 now point to different files. This breaks the hard link semantics that
can be preserved in a fully copied filesystem. According to the standard UNIX
hard link semantics, though hard links have different names, data changes made
through any hard link will affect the actual data and are immediately visible to
other hard links pointing to the same inode. Therefore, /x/y and /a/b should
point to the same file even after the file content is modified.

The current implementation of Prism supports hard links, but the description
of the solution is beyond the scope of this paper. Zhao’s thesis [20] contains the
details of the solution.

3.3 Asynchronous Cloning

File sharing technique significantly reduces the cloning overhead, however, the
Prism cloning mechanism can still incur nontrivial delay before the cloned filesys-
tem is ready for use. The main reason is that the Prism cloning mechanism needs
to traverse the parent filesystems and clone each encountered filesystem object

The Prism Cloning Mechanism 7

individually, which incurs nontrivial overhead. On the other hand, to achieve se-
lective cloning, Prism has to examine each filesystem object to determine whether
the object should be excluded from cloning or not.

To better understand the impact of the filesystem traversal on the cloning
performance, we conducted an experiment to clone a Fedora Core 4 system.
The filesystem contains around 170K files and 17K directories. The total size
is around 6G bytes. Prism spent approximately 58 seconds to finish the cloning
task. More than 70% of the cloning time is devoted to directory traversal. While
this latency is acceptable in some scenarios, such as an administrator wishing to
create new clones for distribution, it is not good enough for many applications
such as testing untrusted applications. From the perspective of end users, they
always hope to get a usable filesystem as quick as possible. Aiming at this goal, we
developed an asynchronous cloning mechanism for Prism. For easy comparison,
we call the cloning mechanism described in previous subsection synchronous
cloning, because it blocks any requests to the cloned filesystem until the cloning
procedure is completed.

The asynchronous cloning mechanism provides the same cloning semantics
as the synchronous cloning mechanism, but is able to return a usable parent
and cloned filesystem almost immediately (less than 1 second in all experiments
we have conducted). It presents an illusion that the entire directory hierarchy
is completely replicated, as in synchronous cloning, but the replication actually
occurs in the background using a kernel thread. The background thread traverses
the parent filesystem starting from the root to clone the directory tree, but also
aggressively processes a file if it is accessed by the parent or the clone prior
to the completion of the filesystem cloning. Eventually, the final state of the
directory hierarchies in the fully cloned system is identical to that produced by
synchronous cloning.

When a user requests to clone a filesystem, the asynchronous cloning mecha-
nism usually replies to the user that the cloned filesystem is ready for use within
a few seconds. A user will reasonably start to access either the clone or the par-
ent filesystem. The asynchronous cloning mechanism must be carefully designed
to present the same semantics to users as a fully copied filesystem. In particular,
we must properly address the following two situations:

1. A user in the cloned filesystem may access a file that has not been cloned.
Prism should quickly respond to the user, rather than blocking the user until
the cloning thread eventually encounters and clones the file. As described
earlier, the cloning thread works in the background to recursively traverse
the parent filesystem and clone each encountered filesystem object. However,
for a large filesystem, it can take a few minutes before the cloning thread
encounters the requested file, which can be too long for the user to wait.

2. A user in the parent filesystem can modify a file that has not been cloned.
Under such condition, Prism must ensure that the file is cloned before being
modified. According to the cloning semantics, a clone should be identical to
the parent filesystem’s snapshot taken at the beginning of cloning procedure.
Any modification to the parent filesystem afterwards should be transparent

8 Xin Zhao, Kevin Borders, and Atul Prakash

to the clone. However, if a file in the parent filesystem is modified before

being cloned, the modified content will be exposed to the clone. Therefore,

the asynchronous cloning mechanism must ensure that a file in the parent

filesystem is cloned prior to modification.

Next, we describe how Prism handles the requests that are issued in the
cloned or parent filesystem before the cloning procedure is finished.

Handling Requests In The Cloned Filesystem When a user in the cloned
filesystem issues a request to a file that has not been cloned, Prism aggressively
clones the file on demand before processing the user’s request. This avoids block-
ing the user too long.

The Prism on-demand cloning mechanism is based on two observations:

1. Before a process can access a file, Prism first looks up the file
2. Before looking up a directory for a file, Prism must call the permission
function to check that the requesting process has sufficient rights to access
the directory
Based on these two observations, Prism implements the on-demand cloning
mechanism by extending the standard permission checking function.

First, we develop a core function, pext3_expand_dir (), that expands a direc-
tory at a time. Note that we use the term “expand” instead of “clone”, because
this function does not recursively go down a directory to clone all filesystem
objects. Given a source directory, the pext3_expand_dir function only clones
the filesystem objects that are directly under this directory. The function clones
regular files as described in Section 3.2. However, for each subdirectory under
the source directory, the function only creates an empty subdirectory at the
corresponding location in the clone. In other words, this function only expands
one level of directory hierarchy, and will not go deeper into subdirectories. The
function flags each subdirectory as “UNEXPANDED” and associates it with
the inode number of the corresponding source directory. To record this infor-
mation, we add two fields, i_expanding_flags and i_srcino, to each pext3
inode. For a regular file, these two fields are not used. For a directory, however,
these two fields indicate whether the directory is expanded or not. If all filesys-
tem objects directly under a directory are cloned, the directory will be flagged
as “EXPANDED?”. Note that a directory being flagged as “EXPANDED” does
not mean that all its subdirectories are expanded. Normally, after running the
pext3_expand_dir() on a specified directory, this directory is flagged as “EX-
PANDED”, but all its subdirectories are still empty and flagged as “UNEX-
PANDED”.

Next, as shown in Figure 5, Prism combines the core pext3_expand_dir()
function with the standard permission function to perform asynchronous cloning.
Given a directory, Prism first determines whether the directory is expanded
or not by checking the directory’s i_expanding_flags field. If the directory
is expanded, Prism jumps to the original permission function. If the directory
is not expanded, Prism calls the pext3_expand_dir() function to expand the
directory, and then calls the original permission function.

The Prism Cloning Mechanism 9

Prism instrumented
permission function T

./’

is the dir expanded?

No

Users iithe cloned
pext3_expand_dir() | Yes filesysten) access files
(on-demand cloning)

the bacLéground
cloning thread

\ original permission
\ checking function

Fig. 5: Prism on-demand cloning

With the Prism asynchronous cloning mechanism, a parent filesystem object
is cloned by one of the two threads shown in Figure 5. The first thread is the
background cloning thread that recursively traverses the parent filesystem and
clones each encountered filesystem object. The second thread is an on-demand
cloning thread that aggressively clones the filesystem objects that are requested
by users in the clone.

We first discuss how the background cloning thread works. Upon receiving a
request to clone a filesystem, Prism first creates the root directory in the clone.
Next, Prism flags the directory as “UNEXPANDED” and associates it with the
parent filesystem’s root inode. Then, Prism would start the background cloning
thread to clone the rest of the filesystem and then returns, presenting the user an
illusion that the cloning task is completed immediately. The background cloning
thread works as a directory walker that recursively traverses the entire cloned
filesystem starting from the root directory. The background cloning thread looks
up a file with an arbitrary filename in each encountered directory. The lookup
operation is only used to trigger the permission checking function, which in turn
expands the directory if it is not expanded. Thus, along with the background
cloning procedure recursively traversing the cloned filesystem, the Prism permis-
sion checking procedure will be invoked to expand all encountered directories,
which clones the parent filesystem in the background.

The on-demand cloning thread works in a similar way to aggressively clone
the filesystem objects that are requested by users in the clone. When a user in the
cloned filesystem accesses a file, Prism must look up the file before processing
the request. This will trigger the permission checking function to expand all
directories from the root to the parent directory of the file to be accessed.

To rapidly respond to end users’ requests, Prism allow administrators to
lower the priority of the background cloning thread with Linux command nice.
As such, the background cloning thread will not contend with interactive sessions
for disk bandwidth. Accordingly, the background cloning time could increase.

We use an example to illustrate the on-demand cloning procedure. Suppose
a user accesses a file /a/b/c, but only the root directory / has been expanded.

10 Xin Zhao, Kevin Borders, and Atul Prakash

Prism first looks up the directory “/” for the entry “/a”. The permission check-
ing function is invoked to check the access permission of directory “/”. Because
the “/” directory has been expanded, Prism simply jumps to the normal per-
mission checking procedure. Next, Prism looks up the directory “/a” for the
entry “/a/b”. The permission function is invoked again to check the permission
of “/a”. At this time, the directory “/a” is not expanded yet and flagged as
“UNEXPANDED”. Prism then calls the pext3_expand_dir () function to ex-
pand the directory “/a”. The directory entry “/a/b” is created but flagged as
"UNEXPANDED”. By repeating the above procedure, Prism expands the direc-
tories from “/” to “/a/b/”. Eventually, when Prism looks up the file “/a/b/c”, it
has been cloned on demand. Note that the user process can run in parallel with
the background cloning thread. With the common permission checking function,
Prism seamlessly adjusts the cloning order and aggressively clone the directories
needed for the file request, which achieves the on-demand cloning.

Handling Requests In The Parent Filesystem With the asynchronous
cloning mechanism, a user can get a command prompt before the parent filesys-
tem is completely cloned. Accordingly, a user can write a file in the parent
filesystem before the file is cloned. If the pext3 filesystem were to allow such
an operation, it breaks the cloning semantics — the modification in the parent
becomes visible to the clone.

One way to preserve the consistency of the parent filesystem is to clone
from a snapshot of the parent filesystem. Many filesystems such as WAFL [2]
and ZFS [7] provide the snapshot feature. We can adapt an existing mecha-
nism to take a snapshot of the parent filesystem before starting the cloning
procedure. This approach, however, requires substantial changes to disk and
filesystem structure. As an alternative, Prism preserves the parent filesystem’s
consistency by detecting and aggressively resolving the consistency issues during
background cloning.

Before starting the cloning procedure, Prism flushes the parent filesystem’s
dirty pages to disk, which eliminates the inconsistency caused by the buffered
data. This procedure normally takes less than 1 second. During the period of
cloning, Prism monitors the operations on the parent filesystem. If a process
attempts to write a file in the parent filesystem that has not been cloned, Prism
blocks the process, aggressively clones the file, and then resumes the process to
write the file.

An important step in the above procedure is to tell whether the file to be
changed is cloned or not. This step must be efficient, because it is critical to the
filesystem performance. A naive approach to determine a file’s cloning status is
to maintain the list of files that have been cloned. By looking up the list, one
can determine a file’s cloning status. However, it would be slow to look up the
file list if the filesystem is large and has a lot of files.

Another way to determine a file’s cloning status would be to associate a flag
with each parent file indicating whether the file has been cloned or not. However,
this solution would require that Prism initialize the cloning status of each file in

The Prism Cloning Mechanism 11

the parent filesystem before the cloning procedure is started. Otherwise, there
would be no easy way to tell whether a specific file is cloned by current or
previous cloning procedures. However, the initialization procedure would have
taken substantial time for a large parent filesystem, significantly offsetting the
benefit of the asynchronous cloning mechanism.

Prism addresses the above problem with three timestamps:

— The global logical timestamp. Prism maintains a global logical timestamp
to record the occurrence time of cloning events. The logical timestamp is a
32-bit unsigned integer and is initialized to zero. This logical timestamp is
incremented at the beginning of each cloning task.

— The clonestart timestamp. Prism maintains a clonestart timestamp for
each filesystem to be cloned. The clonestart timestamp is normally equal
to zero. When Prism starts to clone a filesystem, it sets the parent filesys-
tem’s clonestart timestamp to the current value of the global logical times-
tamp. When the entire cloning task is finished, Prism resets the filesystem’s
clonestart timestamp back to zero.

— The lastclone timestamp. Prism maintains a timestamp, called lastclone
timestamp, for each filesystem object to record the last time when the object
is cloned. The lastclone timestamp is stored in a 4-byte field, lastclone,
in the directory entry of the filesystem object. Every time a filesystem object
is cloned, Prism updates its lastclone timestamp to the current value of
the parent filesystem’s clonestart timestamp.

Prism is able to determine whether an original file has been cloned or not
by comparing the parent filesystem’s clonestart timestamp with the file’s
lastclone timestamp:

— clonestart will never be smaller than lastclone when the filesystem is being
cloned. If a filesystem is not being cloned, its clonestart timestamp is 0.
Prism can serve any operations to the parent filesystem under such condition.

— If clonestart == lastclone, the original file has been cloned by current
cloning procedure.

— If clonestart > lastclone, the original file has not been cloned yet.

If a file in the parent filesystem is to be written, Prism first determines
whether the file has been cloned or not with the above mechanism. If the file has
been cloned, Prism can apply the modification to the file immediately without
breaking the consistency of the clone. Otherwise, Prism must first resolve the
consistency conflict before applying changes to the parent file. To do so, Prism
blocks the writing process, aggressively clones the file, and then unblocks the
writing process and serves the write request.

Cloning Open Files Prism is designed to deliver a clear cloning semantics —
the clone is identical to the parent filesystem’s snapshot taken at the beginning
of the cloning procedure. After a cloning procedure starts, all file modifications
made to the parent filesystem are isolated from the cloned filesystems.

The current Prism implementation assumes that there are no open files in
the parent filesystem when a cloning command is issued. Based on this assump-

12 Xin Zhao, Kevin Borders, and Atul Prakash

tion, Prism monitors the open requests to detect write operations in the parent
filesystem. If a process requests to open a file for writing after the cloning proce-
dure begins, Prism will regard the open request as a file modification operation.
To preserve cloning semantics, Prism blocks the writing process, aggressively
clones the target file to the clone, then unblocks the writing process.

The above assumption could be too strong in real world scenarios. A file in
the parent filesystem could be opened before the cloning procedure is started.
Our current prototype does not address this scenario, but it can be addressed by
aggressively cloning all open files before starting the background cloning thread.
Upon receiving a clone command, Prism would first suspend the parent filesys-
tem, clone the open files, and then reactivate the parent filesystem. Alternatively,
we could have intercepted write operations and cloned at that point. We plan
to evaluate these alternatives in the future.

Overall, asychronous cloning has the advantage that both the parent filesys-
tem and the cloned filesystem are usable immediately even before the cloning
task is finished. However, the access performance can be lower than normal if one
attempts to access a file that is not cloned. Normally, the latency caused by file
accesses during cloning should be small in practice because the set of files that
are accessed during cloning is usually small compared to the whole filesystem.

3.4 Lazy Cloning

Prism provides another asynchronous cloning mode called lazy cloning. The lazy
cloning mode is similar to the standard asychronous cloning mode, except that
Prism does not start a background thread to clone the entire parent filesystem.
All files are cloned on demand. In other words, it only clones a file when it is
accessed.

The major advantage of this mode is that it only consumes little system
disk and CPU resource. Prism does not need to pay any cost to clone the files
that are never accessed. This is particularly useful for scenarios that only need
a ephemeral filesystem. Software testing is a good example. Users often tend
to destroy the clone after they test a untrusted application. It is often unnec-
essary to clone the entire filesystem for such an ephemeral system. The lazy
cloning mode is also useful for evaluating the performance impact of the asy-
chronous cloning mechanism on the cloned filesystem. It gives a worst-case bound
of cloning penalty incurred by access to a cloned filesystem, because each ac-
cessed file is cloned on-the-fly.

However, we do not choose this cloning mode as the default Prism cloning
mode. As discussed earlier, if a cloning job is complete, both the parent and
cloned filesystems can be accessed as a normal filesystem without incurring ad-
ditional cloning overhead. In contrast, before the parent filesystem is fully cloned,
modifications to the parent filesystem can potentially cause consistency conflicts.
When such conflicts are detected, Prism has to temporarily block the modifica-
tion operations until the conflicts are resolved on-the-fly. The resolving latency
would negatively impact end users’ experience. To minimize the ”impact win-

The Prism Cloning Mechanism 13

dow”, one may want to finish the cloning as soon as possible. Therefore, we
choose the standard asynchronous cloning as the default cloning mode in Prism.

3.5 The Prism Copy-on-write Mechanism

In Prism, copy-on-write (CoW) must be performed if a VM writes a shared
file. The CoW operation can be implemented as file copying. However, that
can incur unncessary overhead, making operations like “chmod” inefficient. As
an alternative, Prism employs a block-level CoW mechanism that is similar to
Ext3Cow [10]. In Prism, each file is regarded as an inode associated with data
blocks. Prism allows a file’s inode and blocks to be shared separately. When
performing CoW on a file to be changed, Prism only replicates the modified
part, and still shares the unmodified part between the old and new copies. To
track the reference counts of blocks, Prism deploys a reference count table for
each block device. Each table entry is a one-byte reference count corresponding
to a 4KB data block (default block size in pext3). A data block’s reference count
records how many files share the data block. If a block is shared by more than
255 files, it will be duplicated to a new block to avoid reference count overflow.
We use the Linux journalling layer (JBD) to protect the block reference count
table from being corrupted even if the system crashes in the middle of reference
count updating.

3.6 Discussion

Prism uses hard links to achieve file sharing between the parent and cloned
filesystem. Each hard link of a file will increase the file’s reference count by one.
In existing Unix-like systems, the maximum value of a reference count is 255.
Therefore, if a same file is cloned for many times, the file’s reference count can
overflow. One solution is to make a physical copy when a file’s reference count is
about to overflow. This solution has not been implemented due to the time limit.
While this solution incurs additional data copying overhead, we do not expect
that it will substantially impact the Prism performance, because the reference
count overflow issue is rare in a real world system. In addition, hard links are only
entries in directory files. These entries are stored in each VM’s own directory
tree and will not affect other VMs’ filesystem operation. Therefore, the increase
of the number of hard links will not impact a VM’s filesystem performance.

Prism’s file shairng mechanism may incur security concerns. For example, one
VM may attempt to modify a shared data block to disrupt other VMs. However,
in Prism, a guest VM can only modify a file by issuing file system requests, which
are subject to the Prism security checking. If a data block is shared by two or
more VMs, copy-on-write operation will be performed to ensure the isolation
between VMs.

14 Xin Zhao, Kevin Borders, and Atul Prakash

Hardware
CPU 3.00GHz Pentium IV
Memory 512MB(Dom0) 512MB(DomU)
Disk Maxtor 7200RPM EIDE
Software
VMM Xen 3.0.2
Domain0 OS Linux 2.6.16-xen0
DomainU OS Linux 2.6.16-xenU
Linux Distribution Fedora Core 4
Apache version 2.0.58
Connectathon version 1.18
Tar version 1.15.1
GNU gce version 4.0.2
GNU 1d version 2.15.94.0.2.2
GNU Autoconf version 2.59
GNU automake version 1.9.5

Table 1: Experimental platform

4 Evaluation

Table 1 describes our evaluation platform. To facilitate a quick restoration of
the operating system state to a consistent point for all experiments, we ran all
the experiments in a DomainU Xen virtual machine, running a Fedora Core 4
distribution of Linux. The results reported are averages from multiple runs of
the experiments. Generally, we found the results to be very consistent across the
runs, with low standard deviation as compared to the average values.

4.1 Synchronous and Asynchronous Cloning Latency

We first evaluated the performance of the Prism synchronous and asynchronous
cloning mechanisms. For the parent filesystem, we used a filesystem consisting of
a Fedora Core 4 system with standard software packages, including around 170K
files and over 17K directories. We cloned the filesystem with both mechanisms
32 times and reported the average time elapsed to clone the filesystem.

We first compared the cost of full copying versus synchronous cloning. The
full copying of the filesystem took around 10.5 minutes (630 seconds), while syn-
chronous cloning took 58.7 seconds. This clearly demonstrated that the Prism’s
file sharing technique significantly reduces the cloning overhead.

We then measured the time used by the Prism’s asynchronous cloning mech-
anism to clone the filesystem. With the asynchronous cloning mechanism, the
cloning activity largely occurred in the background. Prism instantly presented
the users with an accessible filesystem clone. The observed latency was 0.18 sec-
onds. The time spent by the background thread to clone the filesystem is about
the same as that used by the synchronous cloning mechanism. This experiment
shows that the asynchronous cloning mechanism significantly reduces the latency

The Prism Cloning Mechanism 15

before the cloned filesystem is ready for use. This helps improve users’ experi-
ence in filesystem cloning and makes it more practical to perform tasks such
as testing untrusted applications in VM clones. While the asynchronous cloning
mechanism hides the cloning latency from end users, it does not reduce the
cloning overhead. The total time used to clone the filesystem in the background
was approximately the same as that of the synchronous cloning mechanism.

We also measured the disk space used by clones after each round of the
cloning operation. The experiments showed that the used disk space consis-
tently increased by 77MB each clone. This disk space is used to store a separate
directory tree structure for each clone. The size of the fully copied filesystem is
around 6GB. The clone size is around 1.3% of the disk space used by the fully
copied filesystem before any modification to the clone. We expect that the disk
space used by the clone will increase over time but will still be smaller than a
fully copied filesystem, because the files that are never written can still be shared
without duplication.

4.2 Performance on the Apache Workload

The asynchronous cloning mechanism presents end users a usable filesystem
before the cloning procedure is finished. When a user in the cloned filesystem
accesses a file that has not been cloned, Prism has to aggressively clone the file
before processing the user’s file request. Therefore, the asynchronously cloned
filesystem could be slower than a fully cloned filesystem before the background
cloning procedure is finished.

We used an Apache build task as a representative of typical workloads on
a normal development machine to evaluate the performance impact of asyn-
chronous cloning. In our experiment, Apache 2.0.58 was used as the benchmark
object. The Apache archive includes 2339 files scattered in 188 directories. The
total size of the archive is 6.13MB before being decompressed. After being de-
compressed, the total size of the Apache directory is 32.9MB. The benchmark
first unpacks the archive of Apache 2.0.58 into a source directory. Next, it runs
configure to build the source code dependency, which involves lots of small data
read and file lookup operations. During the third phase, it builds the Apache
binaries from the source files, which is a CPU intensive task, but also generates
a lot of object files and temporary files. Finally, it removes all Apache files in-
cluding the Apache source tree, generated configuration files, object files, and
Apache executable binaries.

In practice, it is hard to consistently reproduce the dynamics when the bench-
mark and background cloning procedure run concurrently. The benchmark result
can vary with different execution orders and time patterns. For this reason, we
used the “lazy” cloning mode described in Section 3.4 — Prism only clones files
on-demand and does not run the background thread to clone the unvisited files.
As such, all files that are accessed by the benchmark will be cloned at run-
time and all cloning penalties related to the benchmark are included into the
benchmark result. This provides a stable evaluation on the performance penalty
caused by the on-demand cloning mechanism. As another comparison point, to

16 Xin Zhao, Kevin Borders, and Atul Prakash

get the best-case performance for Prism, we also ran the benchmark on a fully
cloned filesystem, which excludes the cloning overhead from the benchmark re-
sults. We compared the ext3, lazily-cloned, and fully-cloned pext3 filesystems on
the Apache workload.

Note that the benchmark needs to use some system tools and libraries such
as tar, gunzip, and gcc. In our experiments, the benchmark process used the
tools on the cloned filesystem. We guaranteed that by using “chroot” [6] to the
cloned filesystem before running the benchmark. As a result, all input and output
files needed for the benchmark are accessed from the cloned filesystem. To avoid
warm cache effects caused by previous runs, we always ran the experiments right
after the filesystem was mounted.

Apache Build Benchmark
300

DExt3
250 -+ BPEXxt3 Fully Cloned -
OPEXt3 Lazily Cloned

N

o

=]
[

i

o

=]
I

Elapse Time (Seconds)
=
(o))
o
[

o
=]
I

o
I

Unpack Configure Build Remove Total

Fig. 6: Performance of Apache build workload. “Ext3” stands for standard Ext3 filesys-
tem; “PExt3” stands for the Prism Ext3 filesystem

In Figure 6, each bar group shows a phase of the Apache build benchmark,
while the “Total” group represents the total time consumed in the four phases of
the benchmark. Overall, the Apache build benchmark running on a lazily cloned
filesystem was 4.6% slower than on a full copied filesystem. With a fully cloned
filesystem, the performance difference with ext3 was negligible. These results
demonstrate that the performance impact of the Prism asynchronous cloning
mechanism is not significant. Moreover, once the background cloning procedure
is finished, the cloned filesystem can be accessed at the same speed as a fully
cloned filesystem.

4.3 Connectathon Test Suite

We used the Connectathon test suite [1] to evaluate operational correctness and
performance of the pext3 system. The Connectathon test suite is a standard
benchmark widely used by many filesystem projects such as Frangipani [15] and
Ext3cow [10] to verify the correctness of filesystems and their interoperability
with variety of operating systems.

We modified the Connectathon parameters to invoke more filesystem opera-
tions than the default setting. As such, we can better exercise the system and get

The Prism Cloning Mechanism 17

more accurate performance results. In the experiment, we allocated a dedicated
disk partition and used the pext3 and ext3 filesystems to manage this disk par-
tition, respectively. For each setting, we ran the “basic” series of Connectathon
benchmark for 10 times. The “basic” series of Connectathon test includes nine
steps. Each part tests a separate system call. In order, the nine steps are: (1)
create 12400 files 62 directories 5 levels deep, (2) remove these files, (3) 20000
getewd and stat calls, (4) 80000 chmods and stats, (5) create and write 1000
files. The size of each file is 1IMB. Next, we read the 1000 files into 8K buffers
sequentially. (6) create 400 files in a directory and read the directory entries for
81000 times using readdir, (7) create 200 files, rename and stat these files for
4000 times, (8) create 200 files, and perform symlinks and readlinks for 8000
times, and, lastly, (9) perform 15000 statfs calls.

The average time elapsed to run the benchmark on the pext3 and ext3 filesys-
tems were measured and compared. The reported results are the average value
from ten rounds of benchmark and reflect 95% confidence interval. To avoid
warm cache effects caused by previous runs, we rebooted the test VM before
each round of benchmark, and conducted the experiments right after the system
is started.

O ext3
W pext3

09 Dext3 M pext3
08 ext pext

0.7
0.6
0.5
04

Elapsed Time (s
cuBLBRE8RSES

Elapsed Time (s

02 |
0.1

create remove lookup chmod readdir rename symlink write read

(a) (b)

Fig. 7: Connectathon benchmark results. Each block group shows the latency of a step
of the Connectathon benchmark

The performance comparison is illustrated in Figure 7. Overall, the micro-
benchmark results indicate that the pext3 filesystem delivers performance com-
parable to the ext3 filesystem on operations create, lookup, chmod, readdir,
rename, write, and read. The performance differences between pext3 and ext3
on these operations are at most 6.23%.

Pext3 performs 16.67% and 11.27% slower than ext3 on the remove and
symlink operations, respectively. For the ext3 filesystem, a remove operation
mainly involves the updates on metadata including directory entries and block
bitmaps, which are very efficient. The pext3 filesystem, however, uses the refer-

18 Xin Zhao, Kevin Borders, and Atul Prakash

Central scan of muitiple filesystem clones

—e— ext3 /

1400 +—
—=— pext3 (group by clone, dup detection) /

Elapse Time (seconds

oB58888

1 2 3 4 5 6 7 8
Nurmber of filesystem clones

Fig. 8: Performance of central scanning 8 clones of a filesystem. “ext3” stands for fully
copied filesystems. “pext3 (group by clone dup detection)” stands for cloned filesystem.

ence count table to track the usage status of data blocks. When removing a file,
the filesystem driver must update the reference count (see Section 3.5) for each
data blocks used by the file, incurring additional overhead. While the overhead
of updating the reference count table is not substantial in term of the absolute
value, it can be more pronounced for the filesystem operations that only incur
very low overhead. The same reason also explains the performance difference for
the symlink operations.

4.4 Central Scan of Multiple Clones

Because of the way Prism does cloning (clones via file sharing), it is very easy
for applications to identify files that are shared across filesystems. This allows
faster versions of centralized applications that scan multiple filesystems (e.g.,
virus scanning or comparing two filesystems for changes) to be designed. The
enhanced central applications can detect the files shared by multiple filesys-
tems and scan them only once. We developed a central virus scanner that can
check multiple filesystems (clones) for viruses. To see if Prism provides such
performance advantages to the central scanner, we cloned the parent system 8
times. We then sequentially scanned n cloned systems and compared the perfor-
mance with scanning n copied filesystems. Both the fully copied filesystem and
the cloned filesystem have 170K files and 17K directories. The Prism central
scanning tool maintained a list of scanned files’ inodes (retrieved via the Linux
stat () call) in a hash table. If it encounters the same inode again from another
filesystem, it does not re-scan the file content.

Figure 8 shows the central scanning performance on both pext3 and ext3
filesystems. For n = 1, ext3 outperformed pext3 because every file had to be
scanned in both systems. For small n, a cloned system is not expected to perform
as well as a fully-copied system because it may have less spatial locality on the
disk. Moreover, when scanning a Prism cloned filesystem, the central scanner

The Prism Cloning Mechanism 19

needs to build up the hash table, which incurs additional overhead. For larger
values of n, scanning cloned systems outperformed scanning copied systems by a
significant factor. For pext3, there is still some increase in time with n because
the directory structure still has to be traversed n times, but the slope is around
10 times lower.

5 Conclusion

This paper describes the design of a virtualized file system for supporting hosted
servers and utility computing. Prism provides a file-level cloning mechanism that
can clone any selected part of a VM’s filesystem to a specified location. Prism
is implemented by modifying ext3 with about 5000 lines of code. Prism uses an
asynchronous cloning technique that establishes most of the file sharing in the
background and also aggressively on demand. This technique allows both systems
(parent and clone) to be usable almost immediately, irrespective of the size of the
cloned filesystem. On the server side, Prism permits fast centralized scanning.
Any files that have not been modified among parent and child filesystems have
identical inode numbers and need to be only scanned once.

We implemented and evaluated the Prism cloning mechanism. The Prism
cloning mechanism was able to clone a filesystem with around 170K files and
17K directories within 58.7 seconds, and return to the user an usable file system
clone within 0.18 seconds. In contrast, copying the same file system takes more
than 10 minutes. We also evaluated the performance of Prism’s cloned file sys-
tems. On the Connectathon benchmark and the Apache build workload, a Prism
cloned file system’s performance is close to that of a standard ext3 file system.
For applications that require scanning or comparing multiple cloned filesystems,
Prism was found to be significantly faster.

References

1. Connectathon. Introduction to the Connectathon NFS Testsuite, 2007.
http: //www. connectathon.org/nfstests.html.

2. Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file
server appliance. In WTEC’9/: Proceedings of the USENIX Winter 1994 Technical
Conference on USENIX Winter 1994 Technical Conference, pages 19-19, Berkeley,
CA, USA, 1994. USENIX Association.

3. John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Scale and performance
in a distributed file system. ACM Transactions on Computer Systems (TOCS),
6(1):51-81, 1988.

4. Miroslav Klivansky. A thorough introduction to flexclone™volumes. Technical
Report TR3347, Network Appliance Inc., October 2004.

5. Zhenkai Liang, V. N. Venkatakrishnan, and R. Sekar. Isolated Program Execu-
tion: An Application Transparent Approach for Executing Untrusted Programs.
In ACSAC ’03: Proceedings of the 19th Annual Computer Security Applications
Conference, pages 182—-191, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Xin Zhao, Kevin Borders, and Atul Prakash

R. McGrath and Free Software Foundation. Chroot 5.2.1 - run command or inter-
active shell with special root directory, May, 2005. The Linux Manual Pages.
Sun Microsystems. Solaris ZFS - The Most Advanced File System on the Planet.
2007. hitp://www.sun.com/software/solaris/ds/zfs.jsp.

James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H. Howard,
David S. Rosenthal, and F. Donelson Smith. Andrew: a distributed personal com-
puting environment. Communications of the ACM, 29(3):184-201, 1986.

K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and E. Zadok. A Versatile and
User-Oriented Versioning File System. In Proceedings of the Third USENIX Con-
ference on File and Storage Technologies (FAST 2004), pages 115-128, San Fran-
cisco, CA, 2004.

Z. Peterson and R. Burns. Ext3cow: A time-shifting file system for regulatory
compliance. ACM Transcations on Storage, 1(2):190-212, 2005.

Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Virtualization aware file systems:
Getting beyond the limitations of virtual disks. In NSDI ’06: Proceedings of the
8rd Symposium of Networked Systems Design and Implementation, pages 353-366,
May 2006.

Mahadev Satyanarayanan. Scalable, secure, and highly available distributed file
access. Computer, 23(5):9-18, 20-21, 1990.

Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gregory R. Ganger.
Metadata efficiency in versioning file systems. In FAST ’03: Proceedings of the 2nd
USENIX Conference on File and Storage Technologies, pages 43-58, Berkeley, CA,
USA, 2003. USENIX Association.

Weiqing Sun, Zhenkai Liang, V. N. Venkatakrishnan, and R. Sekar. One-Way
Isolation: An Effective Approach for Realizing Safe Execution Environments. In
NDSS ’05: Proceedings of the Network and Distributed System Security Symposium,
2005.

Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani:
a scalable distributed file system. ACM SIGOPS Operating Systems Review,
31(5):224-237, 1997.

VMware. VMware VMF'S: High-performance cluster file system for storage virtu-
alization, Oct 2006. http://www.vmware.com/pdf/vmfs_datasheet.pdf.

Andrew Warfield, Russ Ross, Kier Fraser, Christian Limpach, and Steven Hand.
Parallax: Managing storage for a million machines. In Proceedings of the 10th
USENIX Workshop on Hot Topics in Operating Systems (HotOS X), Santa Fe,
NM, June 2005.

Yang Yu, Fanglu Guo, Susanta Nanda, Lap chung Lam, and Tzi cker Chiueh. A
feather-weight virtual machine for windows applications. In VEFE ’06: Proceedings
of the second international conference on Virtual execution environments, pages
24-34, New York, NY, USA, 2006. ACM Press.

E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright. On incremental file
system development. ACM Transactions on Storage (TOS), 2(3), August 2006.
Accepted for publication.

Xin Zhao. Improving the storage manageability, flexibility,
and security in virtual machine systems, 2007. Ph.D the-
sis, EECS Department, University of Michigan, Ann Arbor
http://portal.acm.org/citation.cfm?id=1368534€coll=GUIDE&dl=GUIDE.

Xin Zhao, Kevin Borders, and Atul Prakash. Towards protecting sensitive files in
a compromised system. In SISW ’05: Proceedings of the Third IEEE International
Security in Storage Workshop, pages 21-28, Washington, DC, USA, 2005. IEEE
Computer Society.

