
Why Do Upgrades Fail And What Can We Do About It?
Toward Dependable, Online Upgrades in Enterprise System

Tudor Dumitraş and Priya Narasimhan
Carnegie Mellon University, Pittsburgh PA 15213, USA

tudor@cmu.edu, priya@cs.cmu.edu

Abstract. Enterprise-system upgrades are unreliable and often produce downtime
or data-loss. Errors in the upgrade procedure, such as broken dependencies, con-
stitute the leading cause of upgrade failures. We propose a novel upgrade-centric
fault model, based on data from three independent sources, which focuses on the
impact of procedural errors rather than software defects. We show that current ap-
proaches for upgrading enterprise systems, such as rolling upgrades, are vulnerable
to these faults because the upgrade is not an atomic operation and it risks breaking
hidden dependencies among the distributed system-components. We also present a
mechanism for tolerating complex procedural errors during an upgrade. Our system,
called Imago, improves availability in the fault-free case, by performing an online
upgrade, and in the faulty case, by reducing the risk of failure due to breaking hidden
dependencies. Imago performs an end-to-end upgrade atomically and dependably,
by dedicating separate resources to the new version and by isolating the old version
from the upgrade procedure. Through fault injection, we show that Imago is more
reliable than online-upgrade approaches that rely on dependency-tracking and that
create system states with mixed versions.

1 Introduction
Software upgrades are unavoidable in enterprise systems. For example, business reasons
sometimes mandate switching vendors; responding to customer expectations and con-
forming with government regulations can require new functionality. Moreover, many en-
terprises can no longer afford to incur the high cost of downtime and must perform such
upgrades online, without stopping their systems. While fault-tolerance mechanisms focus
almost entirely on responding to, avoiding, or tolerating unexpected faults or security vi-
olations, system unavailability is usually the result of planned events, such as upgrades.
A 2007 survey of 50 system administrators from multiple countries (82% of whom had
more than five years of experience) concluded that, on average, 8.6% of upgrades fail,
with some administrators reporting failure rates up to 50% [1]. The survey identified bro-
ken dependencies and altered system-behavior as the leading causes of upgrade failure,
followed by bugs in the new version and incompatibility with legacy configurations. This
suggests that most upgrade failures are not due to software defects, but to faults that affect
the upgrade procedure.

For instance, in August 1996, an upgrade in the main data center of AOL—the world’s
largest Internet Service Provider at the time—was followed by a 19-hour outage. The sys-
tem behavior did not improve even after the upgrade was rolled back, because the routing
tables had been corrupted during the upgrade [2]. In November 2003, the upgrade of a cus-
tomer relationship management (CRM) system at AT&T Wireless created a ripple effect
that disabled several key systems, affecting 50,000 customers per week. The complexity
of dependencies on 15 legacy back-end systems was unmanageable, the integration could
not be tested in advance in a realistic environment, and rollback became impossible be-
cause enough of the old version had not been preserved. The negative effects lasted for
3 months with a loss of $100 M in revenue, which had dire consequences for the future
of the company [3]. In 2006, in the emergency room of a major hospital, an automated

tudor@cmu.edu
priya@cs.cmu.edu

drug dispenser went offline, after the upgrade of a separate system, preventing a patient
in critical condition from receiving the appropriate medication [4].

Existing upgrade techniques rely on tracking the complex dependencies among the
distributed system components. When the old and new versions of the system-under-
upgrade share dependencies (e.g., they rely on the same third-party component but require
different versions of its API), the upgrade procedure must avoid breaking these dependen-
cies in order to prevent unavailability or data-loss. Because dependencies cannot always
be inferred automatically, upgrade techniques rely on metadata that is partially main-
tained by teams of developers and quality-assurance engineers through a time-intensive
and error-prone manual process. Moreover, the problem of resolving the dependencies of
a component is NP-complete [5], which suggests that the size of dependency-repositories
will determine the point at which ensuring the correctness of upgrades by tracking depen-
dencies becomes computationally infeasible.

Because the benefits of dependency-tracking are reaching their limit, industry best-
practices recommend “rolling upgrades,” which upgrade-and-reboot one node at a time,
in a wave rolling through the cluster. Rolling upgrades cannot perform incompatible up-
grades (e.g., changing a component’s API). However, this approach is believed to reduce
the risks of upgrading because failures are localized and might not affect the entire dis-
tributed system [6, 7].

In this paper, we challenge this conventional wisdom by showing that atomic, end-to-
end upgrades provide more dependability and flexibility. Piecewise, gradual upgrades can
cause global system failures by breaking hidden dependencies—dependencies that cannot
be detected automatically or that are overlooked because of their complexity. Moreover,
completely eliminating software defects would not guarantee the reliability of enterprise
upgrades because faults in the upgrade procedure can lead to broken dependencies. We
make three contributions:

– We establish a rigorous, upgrade-centric fault model, with four distinct categories:
(1) simple configuration errors (e.g., typos); (2) semantic configuration errors (e.g.,
misunderstood effects of parameters); (3) broken environmental dependencies (e.g.,
library or port conflicts); and (4) data-access errors, which render the persistent data
partially-unavailable. §2

– We present Imago1 (Fig. 1), a system aiming to reduce the planned downtime, by
performing an online upgrade, and to remove the leading cause of upgrade failures—
broken dependencies [1]—by presenting an alternative to tracking dependencies. While
relying on the knowledge of the planned changes in data-formats in the new version,
Imago treats the system-under-upgrade as a black box. We avoid breaking dependen-
cies by installing the new version in a parallel universe—a logically distinct collection
of resources, realized either using different hardware or through virtualization—and
by transferring the persistent data, opportunistically, into the new version. Imago ac-
cesses the universe of the old version in a read-only manner, isolating the production
system from the upgrade operations. When the data transfer is complete, Imago per-
forms the switchover to the new version, completing the end-to-end upgrade as an
atomic operation. Imago also enables the integration of long-running data conver-
sions in an online upgrade and the live testing of the new version. §3

– We evaluate the benefits of Imago’s mechanisms (e.g., atomic upgrades, dependency
isolation) through a systematic fault-injection approach, using our upgrade-centric
fault model. Imago provides a better availability in the presence of upgrade faults
than two alternative approaches, rolling upgrade and big flip [9] (result significant at
the p = 0.01 level). §4

1 The imago is the final stage of an insect or animal that undergoes a metamorphosis, e.g., a but-
terfly after emerging from the chrysalis [8].

Parallel Universe (Unew)

HTTP

Universe of the Original System (Uold)

Differences:
• Data-formats
• APIs
• Behaviors

Application flow

Upgrade flow

I

E

Ingress interceptor

Egress interceptor

Legend
Data

Conversion
Driver

Persistent
Data

- Performance
metrics

- Updates

Compare
engine

Replies

Requests

Sh
un

t

Data
storeI E

Front-end

Fig. 1. Dependable upgrades with Imago.

Compared with the existing strate-
gies for online upgrades, Imago
trades off the need for additional
resources for an improved depend-
ability of the online upgrade. While
it cannot prevent latent configura-
tion errors, Imago eliminates the in-
ternal single-points-of-failure for up-
grade faults and the risk of break-
ing hidden dependencies by overwrit-
ing an existing system. Additionally,
Imago avoids creating system states
with mixed versions, which are diffi-
cult to test and to validate. Our results suggest that an atomic, dependency-agnostic ap-
proach, such as Imago, can improve the dependability of online software-upgrades despite
hidden dependencies.

2 Fault model for enterprise upgrades
Several classifications of upgrade faults have been proposed [10–13], but the fault cat-
egories are not disjoint, the criteria for establishing these categories remain unclear, or
the classifications are relevant only for subsets of the upgrade faults. Moreover, data on
upgrade-faults in the industry is scarce and hard to obtain due to the sensitivity of this sub-
ject. We analyze 55 upgrade faults from the best available sources, and, through statistical
cluster-analysis, we establish four categories of upgrade faults.2

We combine data from three independent sources, which use different methodologies:
a 2004 user study of system-administration tasks in an e-commerce system [12], a 2006
survey of database administrators [13], and a previously unpublished field study of bug
reports filed in 2007 for the Apache web server [14]. While the administrators targeted by
these studies focus on different problems and handle different workloads, we start from
the premise that they use similar mental models during change-management tasks, which
yield comparable faults. This hypothesis is supported by the observation that several faults
have been reported in more than one study. Furthermore, as each of the three methodolo-
gies is likely to emphasize certain kinds of faults over others, combining these dissimilar
data sets allows us to provide a better coverage of upgrade faults than previous studies.

2.1 The four types of upgrade faults
We conduct a post-mortem analysis of each fault from the three studies in order to deter-
mine its root cause [10]—configuration error, procedural error, software defect, hardware
defect—and whether the fault has broken a hidden dependency, with repercussions for
several components of the system-under-upgrade. Errors introduced while editing config-
uration files can can be further subdivided in three categories [11]: typographical errors
(typos), structural errors (e.g. misplacing configuration directives), and semantic errors
(e.g. ignoring constraints among configuration parameters). Additionally, a small number
of configuration errors do not occur while editing configuration files (e.g., setting incor-
rect access privileges). Operators can make procedural errors by performing an incorrect
action or by violating the sequence of actions in the procedure through an omission, an
order inversion, or the addition of a spurious action.

Most configuration and procedural errors break hidden dependencies (see Table 1). In-
correct or omitted actions sometimes occur because the operators ignore, or are not aware

2 We discuss the statistical techniques in more detail in [14]. This technical report and the annotated
fault data are available at http://www.ece.cmu.edu/~tdumitra/upgrade_faults.

http://www.ece.cmu.edu/~tdumitra/upgrade_faults

Table 1. Examples of hidden dependencies (sorted by frequency).

Hidden dependency Procedure violation Impact
Service location:

– File path
– Network address Omission

Components unavailable,
latent errors

Dynamic linking:
– Library conflicts
– Defective 3rd party components

Components unavailable

Database schema:
– Application/database mismatch Omission Data unavailable
– Missing indexes Omission Performance degradation

Access privileges to file system, database
objects, or URLs:

– Excessive Wrong action Vulnerability
– Insufficient Omission
– Unavailable (from directory service) Omission

Components/data
unavailable

Constraints among configuration
parameters

Outage, degraded perfor-
mance, vulnerability

Replication degree (e.g., number of front-
end servers online)

Omission, inversion,
spurious action

Outage, degraded
performance

Amount of storage space available Omission Transactions aborted
Client access to system-under-upgrade Wrong action Incorrect functionality
Cached data (e.g., SSL certificates, DNS
lookups, kernel buffer-cache) Incorrect functionality

Listening ports Omission Components unavailable
Communication-protocol mismatch (e.g.,
middle-tier not HTTP-compliant) Components unavailable

Entropy for random-number generation Deadlock
Request scheduling Access denied unexpectedly
Disk speed Wrong action Performance degradation

of, certain dependencies among the system components (e.g., the database schema queried
by the application servers and the schema materialized in the production database). In
56% of cases, however, the operators break hidden dependencies (e.g., by introducing
shared-library conflicts) despite correctly following the mandated procedure. This illus-
trates the fact that even well-planned upgrades can fail because the complete set of de-
pendencies is not always known in advance. We emphasize that the list of hidden depen-
dencies from Table 1, obtained through a post-mortem analysis of upgrade faults, is not
exhaustive and that other hidden dependencies might exist in distributed systems, posing
a significant risk of failure for enterprise-system upgrades.

We perform statistical cluster-analysis, with five classification variables:3 (i) the root
cause of each fault; (ii) the hidden dependency that the fault breaks (where applicable);
(iii) the fault location—front-end, middle-tier, or back-end—; (iv) the original classifica-
tion, from the three studies; and (v) the cognitive level involved in the reported operator
error. There are three cognitive levels at which humans solve problems and make mis-
takes [11]: the skill-based level, used for simple, repetitive tasks, the rule-based level,
where problems are solved by pattern-matching, and the knowledge-based level, where
tasks are approached by reasoning from first principles. The high-level fault descriptions
from the three studies are sufficient for determining the values of the five classification

3 We compare faults using the Gower distance, based on the categorical values of the classification
variables. We perform agglomerative, hierarchical clustering with average linkage [15].

User study (u) Survey (s) Field study (f)
Probability density

Frequency estimate
Confidence interval []

x
Fault clusters

3

4 x[]

y y Confidence interval []

uu

s

s

ss
s

ss

ss
s

ssss s

s

sf

Type 4
pe

nd
en

cy
Database schemas

Storage-space availability
Access privileges

R t h d li

Fa
ul

t T
yp

e

2

3

u u

u uu ss s

f
ff
ff

f
ff

ff f

f f
f f

ff

Type 1

Type 2 Type 3

ro
ke

n
hi

dd
en

-d
ep Request scheduling

Cached data
Parameter constraints

Shared libraries
Listening ports

Communication protocols

Fault Frequency

1

0% 10% 20% 30% 40% 50% 60%

x[]

Configuration faults

u
u

uu
u
u

uuu
fff f

f

f fType 1

Procedural faults

Br Communication protocols
Network addresses

File paths
Replication degrees

(a) (b)

Fig. 2. Upgrade-centric fault model. Principal-component analysis (a) creates a two-dimensional
shadow of the five classification variables, The survey and the user study also provide information
about the distribution of fault-occurrence rates (b).

variables. We include all the faults reported in the three studies, except for software de-
fects, faults that did not occur during upgrades and client-side faults. If a fault is reported
in several sources, we include only one of its instances in the cluster analysis. We ex-
clude software defects4 from our taxonomy because they have been rigorously classified
before [16] and because they are orthogonal to the upgrading concerns and might be
exposed in other situations as well. Moreover, the survey from [1] suggests that most
upgrade failures are not due to software defects.

This analysis suggests that there are four natural types of faults (Fig. 2):
– Type 1 corresponds to simple configuration errors (typos or structural) and to proce-

dural errors that occur on the skill-based cognitive level. These faults break depen-
dencies on network addresses, file paths, or the replication degree.

– Type 2 corresponds to semantic configuration errors, which occur on the knowledge-
based cognitive level and which indicate a misunderstanding of the configuration di-
rectives used. These faults break dependencies on the request scheduling, cached data,
or parameter constraints.

– Type 3 corresponds to broken environmental dependencies, which are procedural
errors that occur on the rule-based cognitive level. These faults break dependencies
on shared libraries, listening ports, communication protocols, or access privileges.

– Type 4 corresponds to data-access errors, which are complex procedural or config-
uration errors that occur mostly on the rule- and knowledge-based cognitive levels.
These faults prevent the access to the system’s persistent data, breaking dependencies
on database schemas, access privileges, the replication degree, or the storage avail-
ability.

Faults that occur while editing configuration files are of type 1 or 2. Types 1–3 are located
in the front-end and in the middle tier, and, except for a few faults due to omitted actions,
they usually do not involve violating the mandated sequence of actions. Type 4 faults
occur in the back-end, and they typically consist of wrong or out-of-sequence actions
(except order inversions). Principal-component analysis (Fig. 2(a)) suggests that the four
types of faults correspond to disjoint and compact clusters. Positive values on the x-axis
indicate procedural faults, while negative values indicate faults that occur while editing

4 The fault descriptions provided in the three studies allow us to distinguish the operator errors
from the manifestations of software defects.

configuration files. The y-axis corresponds, approximately, to the hidden dependencies
broken by the upgrade faults.

We also estimate how frequently these fault types occur during an upgrade (Fig. 2(b)),
by considering the percentage of operators who induced the fault (during the user study)
or the percentage of DBAs who consider the specific fault among the three most frequent
problems that they have to address in their respective organizations (in the survey). We
cannot derive frequency information from the field-study data. The individual estimations
are imprecise, because the rate of upgrades is likely to vary among organizations and ad-
ministrators, and because of the small sample sizes (5–51 subjects) used in these studies.
We improve the precision of our estimations by combining the individual estimations for
each fault type.5 We estimate that Type 1 faults occur in 14.6% of upgrades (with a con-
fidence interval of [0%,38.0%]). Most Type 1 faults (recorded in the user study) occur
in less than 21% of upgrades. Similarly, we estimate that Type 4 faults occur in 18.7%
of upgrades (with a confidence interval of [0%,45.1%]). Because faults of types 2 and 4
are predominantly reported in the field-study, we lack sufficient information to compute a
statistically-significant fault frequency for these clusters.

Threats to validity. Each of the three studies has certain characteristics that might skew
the results of the cluster analysis. Because the user study is concerned with the behavior of
the operators, it does not report any software defects or hardware failures. Configuration
errors submitted as bugs tend to be due to significant misunderstandings of the program
semantics, and, as a result, our field study contains an unusually-high number of faults
occurring on the knowledge cognitive level. Moreover, the results of bug searches are not
repeatable because the status of bugs changes over time; in particular, more open bugs are
likely to be marked as invalid or not fixed in the future. Finally, Crameri et al. [1], who
identify broken dependencies as the leading cause of upgrade failures, caution that their
survey is not statistically rigorous.

2.2 Tolerating upgrade faults
Several automated dependency-mining techniques have been proposed such as static and
semantic analysis [18], but these approaches cannot provide a complete coverage of de-
pendencies that only manifest dynamically, at runtime. Our upgrade-centric fault model
emphasizes the fact that different techniques are required for tolerating each of the four
types of faults. Modern software components check the syntax of their configuration files,
and they are able to detect many Type 1 faults at startup (e.g., syntax checkers catch 38%–
83% of typos [11]). Type 2 faults are harder to detect automatically; Keller et al. [11]
argue that checking the constraints among parameter values can improve the robustness
against such semantic faults. To prevent faults that fall under Type 3, modern operating
systems provide package managers that make a best-effort attempt to upgrade a software
component along with all of its dependencies [19, 20]. Oliveira et al. propose validating
the actions of database administrators using real workloads, which prevents some Type 4
faults but is difficult to implement when the administrator’s goal is to change the database
schema or the system’s observable behavior.

Industry best-practices recommend carefully planning the upgrades and minimizing
their risks by deploying the new version gradually, in successive stages [6]. For instance,
two widely-used upgrading approaches are the rolling upgrades and the big-flip [9]. The
first approach upgrades and then reboots each node, in a wave rolling through the cluster.

5 The precision of a measurement indicates if the results are repeatable, with small variations, and
the accuracy indicates if the measurement is free of bias. While in general it is not possible to
improve the accuracy of the estimation without knowing the systematic bias introduced in an
experiment, minimizing the sum of squared errors from dissimilar measurements improves the
precision of the estimation [17].

The second approach upgrades half of the nodes while the other half continues to process
requests, and then the two halves are switched. Both these approaches attempt to minimize
the downtime by performing an online upgrade. A big flip has 50% capacity loss, but it
enables the deployment of an incompatible system. Instead, a rolling upgrade imposes
very little capacity loss, but it requires the old and new versions to interact with the data
store and with each other in a compatible manner.

Commercial products for rolling upgrades provide no way of determining if the inter-
actions between mixed versions are safe and leave these concerns to the application devel-
opers [7]. However, 47 of the 55 upgrade faults analyzed break dependencies that remain
hidden from the developers or the operators performing the upgrade (see Table 1), and
some procedural or configuration errors occur despite correctly following the upgrading
procedure. This suggests that a novel approach is needed for improving the dependability
of enterprise-system upgrades.

3 Design and implementation of Imago
To provide dependable, online upgrades, we built Imago with three design goals:

– Isolation: The dependencies within the old system must be isolated from the upgrade
operations.

– Atomicity: At any time, the clients of the system-under-upgrade must access the
full functionality of either the old or the new systems, but not both. The end-to-end
upgrade must be an atomic operation.

– Fidelity: The testing environment must reproduce realistically the conditions of the
production environment.

Distributed enterprise-systems typically have one or more ingress points (I), where clients
direct their requests, and one or more egress points (E), where the persistent data is stored
(see Fig. 1). The remainder of the infrastructure (i.e., the request paths between I and E)
implements the business-logic and maintains only volatile data, such as user-sessions or
cached data-items. We install the new system in a parallel universe—a logically distinct
collection of resources, including CPUs, disks, network links, etc.—that is isolated from
the universe where the old system continues to operate. The new system may be a more
recent version of the old system, or it may be a completely different system that provides
similar or equivalent functionality. Imago updates the persistent data of the new system
through an opportunistic data-transfer mechanism. The logical isolation between the uni-
verse of the old system, Uold, and the universe of the new system, Unew, ensures that
the two parallel universes do not share resources and that the upgrade process, operating
on Unew, has no impact on the dependencies encapsulated in Uold. Our proof-of-concept
implementation provides isolation by using separate hardware resources, but similar isola-
tion properties could be achieved through virtualization. Because Imago always performs
read-only accesses on Uold, the dependencies of the old system cannot be broken and need
not be known in advance.
Assumptions. We make three assumptions. We assume that (1) the system-under-upgrade
has well-defined, static ingress and egress points; this assumption simplifies the task of
monitoring the request-flow through Uold and the switchover to Unew. We further assume
that (2) the workload is dominated by read-only requests; this assumption is needed for
guaranteeing the eventual termination of the opportunistic data-transfer. Finally, we as-
sume that the system-under-upgrade provides hooks for: (3a) flushing in-progress updates
(needed before switchover); and (3b) reading from Uold’s data-store without locking ob-
jects or obstructing the live requests in any other way (to avoid interfering with the live
workload). We do not assume any knowledge of the internal communication paths be-
tween the ingress and egress points.

These assumptions define the class of distributed systems that can be upgraded us-
ing Imago. For example, enterprise systems with three-tier architectures—composed of
a front-end tier that manages client connections, a middle tier that implements the busi-
ness logic of the application, and a back-end tier where the persistent data is stored—
satisfy these assumptions. An ingress point typically corresponds to a front-end proxy or
a load-balancer, and an egress point corresponds to a master database in the back-end.
E-commerce web sites usually have read-mostly workloads [21], satisfying the second
assumption. The two Uold hooks required in the third assumption are also common in
enterprise systems; for instance, most application servers will flush the in-progress up-
dates to their associated persistent storage before shutdown, and most modern databases
support snapshot isolation6 as an alternative to locking.

Bootstrapping Data Transfer Termination Switchover

Testing

Upgrade procedure. Imago uses a procedure with five phases: bootstrapping, data-
transfer, termination, testing, and switchover. Imago lazily transfers the persistent data
from the system in Uold to the system in Unew, converts it into the new format, monitors
the data-updates reaching Uold’s egress points and identifies the data objects that need
to be re-transferred in order to prevent data-staleness. The live workload of the system-
under-upgrade, which accesses Uold’s data store concurrently with the data-transfer pro-
cess, can continue to update the persistent data. The egress interceptor, E, monitors Uold’s
data-store activity to ensure that all of the updated or new data objects are eventually
(re)-transferred to Unew. Because Imago always performs read-only accesses on Uold, the
dependencies of the old system cannot be broken and need not be known in advance.
Moreover, E monitors the load and the performance of Uold’s data store, allowing Imago
to regulate its data-transfer rate in order to avoid interfering with the live workload and
satisfying our isolation design-goal. This upgrade procedure is described in detail in [22].

The most challenging aspect of an online upgrade is the switchover to the new ver-
sion. The data transfer will eventually terminate if the transfer rate exceeds the rate at
which Uold’s data is updated (this is easily achieved for read-mostly workloads). To com-
plete the transfer of the remaining in-progress updates, we must enforce a brief period of
quiescence for Uold. Imago can enforce quiescence using the E interceptor, by marking
all the database tables read-only, or using the I interceptors, by blocking all the incoming
write requests. The first option is straightforward: the database prevents the system in Uold
from updating the persistent state, allowing the data-transfer to terminate. This approach
is commonly used in the industry due to its simplicity [7].

If the system-under-upgrade can not tolerate the sudden loss of write-access to the
database, Imago can instruct the I interceptors to block all the requests that might update
Uold’s persistent data (read-only requests are allowed to proceed). In this case, Imago
must flush the in-progress requests to Uold’s data store in order to complete the transfer
to Unew. Imago does not monitor the business logic of Uold, but the I interceptors record
the active connections of the corresponding ingress servers to application servers in the
middle tier and invoke the flush-hooks of these application servers. When all the intercep-
tors report the completion of the flush operations, the states of the old and new systems
are synchronized, and Imago can complete the switchover by redirecting all the traffic to
Unew (this protocol is described in Fig. 3). The volatile data (e.g., the user sessions) is not
transferred to Unew and is reinitialized after switching to the new system. Until this phase
the progress of the ongoing upgrade is transparent to the clients, but after the switchover
only the new version will be available.

6 This mechanism relies on the multi-versioning of database tables to query a snapshot of the
database that only reflects committed transactions and is not involved in subsequent updates.

The driver executes:
⊳ Join the group of ingress interceptors

1 JOIN (IGrp)
2 Wait until the data-transfer is nearly completed
3 BCAST (flush)
4 while ∃I ∈ IGrp : I has not delivered flush-done
5 do DELIVER (msg)
6 if msg = self -disconnect
7 then JOIN (IGrp)
8 elseif msg ∈ {self -join, interceptor-join}
9 then BCAST (flush)

⊳ Received flush-done from all live interceptors
10 Complete data-transfer
11 Send all requests to Unew
12 BCAST (shutdown)

Each ingress interceptor I executes:
⊳ Join the group of ingress interceptors

1 JOIN (IGrp)
2 DELIVER (msg)
3 if msg = flush
4 then Block incoming write requests
5 for ∀host ∈ {middle-tier connections}
6 do

⊳ Flush in-progress requests
7 FLUSH (host)
8 BCAST (flush-done)
9 while (TRUE)

10 do DELIVER (msg)
11 if msg = self -disconnect
12 then JOIN (IGrp)
13 elseif msg ∈ {flush,driver-join}
14 then BCAST (flush-done)
15 elseif msg = shutdown
16 then Shut down I

Fig. 3. Pseudocode of the switchover protocol.

Imago also supports a series of iterative testing phases before the switchover. Imago
checkpoints the state of the system in Unew and then performs offline testing—using pre-
recorded or synthetically-generated traces that check the coverage of all of the expected
features and behaviors—and online testing—using the live requests recorded at I. In the
second case, the testing environment is nearly identical to the production environment,
which satisfies our fidelity design-goal. Quiescence is not enforced during the testing
phase, and the system in Uold resumes normal operation while E continues to monitor the
persistent-state updates. At the end of this phase, Imago rolls the state of the system in
Unew back to the previous checkpoint, and the data transfer resumes in order to account
for any updates that might have been missed while testing. A detailed discussion of the
testing phase is beyond the scope of this paper.

After adequate testing, the upgrade can be rolled back, by simply discarding the Unew
universe, or committed, by making Unew the production system, satisfying our atomic-
ity design-goal. Imago treats the system-under-upgrade as a black box. Because we do
not rely on any knowledge of the internal communication paths between the ingress and
egress points of Uold and because all of the changes required by the upgrade are made
into Unew, Imago does not break any hidden dependencies in Uold.

Implementation. Imago has four components (see Fig. 1): the upgrade driver, which
transfers data items from the data store of Uold to that of Unew and coordinates the up-
grade protocol, the compare-engine, which checks the outputs of Uold and Unew during
the testing phase, and the I and E interceptors. The upgrade driver is a process that ex-
ecutes on hardware located outside of the Uold and Unew universes, while I and E are
associated with the ingress and egress points of Uold. We implement the E interceptor by
monitoring the query log of the database. The I interceptor uses library interposition to
redefine five system calls used by the front-end web servers: accept() and close(),
which mark the life span of a client connection, connect(), which opens a connec-
tion to the middle tier, and read() and writev(), which reveal the content of the
requests and replies, respectively. These five system calls are sufficient for implementing
the functionality of the I interceptor. We maintain a memory pool inside the interceptor,
and the redefined read() and writev() system-calls copy the content of the requests
and replies into buffers from this memory pool. The buffers are subsequently processed
by separate threads in order to minimize the performance overhead.

In order to complete the data transfer, the upgrade driver invokes the switchover pro-
tocol from Fig. 3. We use reliable group-communication primitives to determine when

all the interceptors are ready to switch: JOIN allows a process to join the group of inter-
ceptors and to receive notifications when processes join or disconnect from the group;
BCAST reliably sends a message to the entire group; and DELIVER delivers messages in
the same order at all the processes in the group. These primitives are provided by the
Spread package [23]. The switchover protocol also relies on a FLUSH operation, which
flushes the in-progress requests from a middle-tier server. Each I interceptor invokes the
FLUSH operation on the application servers that it has communicated with.

Table 2. Structure of Imago’s code.
Lines of code Size in memory

Upgrade driver 2,038
216 kBEgress interceptor 290

}
Ingress interceptor 2,056

228 kBSwitchover library 1,464

}
Compare engine 571 48 kB
Common libraries 591 44 kB
Application bindings 1,113 108 kB
Total 8,123 —

We have implemented the FLUSH
operation for the Apache and JBoss
servers. For Apache, we restart the
server with the graceful swirch, al-
lowing the current connections to com-
plete. For JBoss, we change the times-
tamp of the web-application archive
(the application.war file), which
triggers a redeployment of the appli-
cation. Both these mechanisms cause
the application servers to evict all the
relevant data from their caches and to send the in-progress requests to the back-end. This
switchover protocol provides strong consistency, and it tolerates crashes and restarts of
the driver or the interceptors. All the modules of Imago are implemented in C++ (see
Table 2). The application bindings contain all the application-specific routines (e.g., data
conversion) and constitute 14% of the code. Most of this application-specific code would
also be necessary to implement and offline upgrade.

4 Experimental evaluation
We evaluate the dependability of enterprise-system upgrades performed using Imago.
Specifically, we seek answers to the following questions:

– What overhead does Imago impose during a successful upgrade? §4.1
– Does Imago improve the availability in the presence of upgrade faults? §4.2
– How do types 1–4 of upgrade faults affect the reliability of the upgrade? §4.3

Upgrade scenario. We use Imago to perform an upgrade of RUBiS (the Rice University
Bidding System) [24], an open-source online bidding system, modeled after eBay. RUBiS
has been studied extensively, and several of its misconfiguration- and failure-modes have
been previously reported [12, 13]. RUBiS has multiple implementations (e.g., using PHP,
EJB, Java Servlets) that provide the same functionality and that use the same data schema.
We study an upgrade scenario whose goal is to upgrade RUBiS from the version using En-
terprise Java Beans (EJB) to the version implemented in PHP. The system-under-upgrade
is a three-tier infrastructure, comprising a front-end with two Apache web servers, a mid-
dle tier with four Apache servers that execute the business logic of RUBiS, and a MySQL
database in the back-end. More specifically, the upgrade aims to replace the JBoss servers
in the middle tier with four Apache servers where we deploy the PHP scripts that im-
plement RUBiS’s functionality. The RUBiS database contains 8.5 million data objects,
including 1 million items for sale and 5 million bids. We use two standard workloads,
based on the TPC-W specification [21], which are typical for e-commerce web sites. The
performance bottleneck in this system is the amount of physical memory in the front-end
web servers, which limits the system’s capacity to 100 simultaneous clients. We conduct
our experiments in a cluster with 10 machines (Pentium 4 at 2.4 GHz, 512 MB RAM),
connected by a 100 Mbps LAN.

StopStart

Middle tier2

Middle tier1 Stop
JBoss

Start
Apache

Stop
JBossApache

Front-end1

Middle tier2

Reconfigure Reconfigure
Database

TestTest

Front-end2

Reconfigure Reconfigure
Database

TestTest

Middle tier4

Middle tier3 Stop
JBoss

Start
Apache

Stop
JB

Start
JBossApache

(a) Rolling upgrade

Old version

Middle tier2

Middle tier1

Upgrade

Upgrade

New version

Front-end1

Middle tier2

Reconfigure Reconfigure
D t b

Test

Front-end2

Reconfigure Reconfigure
Test

Database

Middle tier4

Middle tier3 Upgrade

UpgradeUpgrade

(b) Big-flip upgrade

Fig. 4. Current approaches for online upgrades in RUBiS.

We compare Imago with two alternative approaches, rolling upgrades and big flip
(see Section 2.2). These procedures are illustrated in Fig. 4. In both cases, the front-end
and back-end remain shared between the old and new versions. Rolling upgrades run for
a while in a mode with mixed versions, with a combination of PHP (Apache) and EJB
(JBoss) nodes in the middle tier, while the big flip avoids this situation but uses only half
of the middle-tier servers. With the former approach an upgraded node is tested online
(Fig. 4(a)), while the latter approach performs offline tests on the upgraded nodes and re-
integrates them in the online system only after the flip has occurred (Fig. 4(b)). In contrast,
Imago duplicates the entire architecture, transferring all of the 8.5 million RUBiS data-
items to Unew, in order to avoid breaking dependencies during the upgrade.
Methodology. We estimate Imago’s effectiveness in performing an online upgrade, in
the absence of upgrade-faults, by comparing the client-side latency of RUBiS before, and
during, the upgrade. We assess the impact of broken dependencies by injecting upgrade
faults, according to the fault model presented in Section 2, and by measuring the effect of
these faults on the system’s expected availability. Specifically, we estimate the system’s
yield [9], which is a fine-grained measure of availability with a consistent significance for
windows of peak and off-peak load:

Yield(f ault) =
Requestscompleted(f ault)

Requestsissued

We select 12 faults (three for each fault type) from the data analyzed in Section 2, prior-
itizing faults that have been confirmed independently, in different sources or in separate
experiments from the same source. We repeat each fault-injection procedure three times
and we report the average impact, in terms of response time and yield-loss, on the system.
Because this manual procedure limits us to injecting a small number of faults, we validate
the results using statistical-significance tests, and we complement these experiments with
an automated injection of Type 1 faults.

From a client’s perspective, the upgrade faults might cause a full outage, a partial
outage (characterized by a higher response time or a reduced throughput), a delayed out-
age (due to latent errors) or they might have no effect at all. A full outage (Yield = 0)
is recorded when the upgrade-fault immediately causes the throughput of RUBiS to drop
to zero. Latent errors remain undetected until they are eventually exposed by external
factors (e.g., a peak load) or by system-configuration changes. To be conservative in our
evaluation, we consider that (i) the effect of a latent error is the same as the effect of a full
outage (Yield = 0); (ii) an upgrade can be stopped as soon as a problem is identified; and
(iii) all errors (e.g., HTTP-level or application-level errors) are detected. An upgrading
mechanism is able to mask a dependency-fault when the fault is detected before reinte-
grating the affected node in the online system. To avoid additional approximations, we

10
0

10
1

10
2

10
3

10
4

RU
Bi

S
re

sp
on

se
 tim

e [
ms

]

RUBiS and Imago (non adaptive)
RUBiS and Imago (adaptive)
RUBiS alone

30 35 40 45 50
0

100

200

300

400

Time [min]Im
ag

o t
ra

ns
fer

 [it
em

s/s
]

(a) Imago overhead.

100

µs
]

1183

60

80

ns
e T

im
e [

µ

40

Bi
S

Re
sp

on

0

20

RU
B

(b) Overhead breakdown.

Fig. 5. Upgrade overhead on a live RUBiS system.

do not attempt to estimate the durations of outages caused by the broken dependencies.
As the yield calculations do not include the time needed to mitigate the failures, the val-
ues reported estimate the initial impact of a fault but not the effects of extended outages.
While the result that Imago provides better availability under upgrade faults is statisti-
cally significant, the quantitative improvements depend on the system architecture and
on the specific faults injected, and they might not be reproducible for a different system-
under-upgrade. The goal of our fault-injection experiments is to determine the qualitative
reasons for unavailability during online upgrades, and to emphasize the opportunities for
improving the current state-of-the-art.

4.1 Performance overhead without faults
The latency of querying the content of a data item from Uold and inserting it in Unew
dominates the performance of the data-transfer; less than 0.4% out of the 5 ms needed,
on average, to transfer one item are spent executing Imago’s code. Fig. 5(a) shows the
impact of the data transfer on RUBiS’s end-to-end latency (measured at the client-side).
If requests arrive while a data-transfer is in progress, the response times increase by three
orders of magnitude (note the log scale in the top panel of Fig. 5(a)). These high laten-
cies correspond to a sharp drop in the transfer rate as the Uold database tries to adjust
to the new load. However, Imago can use the information collected by the E interceptor
to self-regulate in order to avoid overloading the production system. We have found that
the incoming query rate for Uold’s database provides sufficient warning: if Imago uses a
simple adaptation policy, which pauses the data transfer when the RUBiS clients issue
more than 5 queries/s, the end-to-end latency is indistinguishable from the case when
clients do not compete with Imago for Uold’s resources (Fig. 5(a)). After resuming the
data transfer, Imago must take into account the data items added by RUBiS’s workload.
These new items will be transferred during subsequent periods of client inactivity. Under
a scenario with 1000 concurrent clients, when the site is severely overloaded, Imago must
make progress, opportunistically, for 2 minutes per hour in order to catch up eventually
and complete the data transfer.

Fig. 5(b) compares the overheads introduced by different Imago components (the error
bars indicate the 90% confidence intervals for the RUBiS response time). The I intercep-
tors impose a fixed overhead of 4 ms per request; this additional processing time does not
depend on the requests received by the RUBiS front-ends. When Imago performs a data
conversion (implemented by modifying the RUBiS code, in order to perform a database-
schema change during the upgrade), the median RUBiS latency is not affected but the
maximum latency increases significantly. This is due to the fact that the simple adaptation
policy described above is not tuned for the data-conversion scenario.

Table 3. Description of upgrade-faults injected.

Name /
Instances [source] Location Fault-Injection Procedure Local Manifestation

wrong_apache

2 [12] Front-end Restarted wrong version of
Apache on one front-end.

Server does not forward re-
quests to the middle tier.

config_nochange

1 [12] Front-end Did not reconfigure front-end
after middle-tier upgrade.

Server does not forward re-
quests to the middle tier.Ty

pe
1

config_staticpath

2 [12, 14] Front-end Mis-configured path to static
web pages on one front-end.

Server does not forward re-
quests to the middle tier.

config_samename

1 [12] Front-end Configured identical names
for the application servers.

Server communicates with
a single middle-tier node.

apache_satisfy

1 [14] Middle tier Used Satisfy directive incor-
rectly.

Clients gain access to re-
stricted location.Ty

pe
2

apache_largefile

2 [14] Middle tier Used mmap() and sendfile()

with network file-system.
No negative effect (could
not replicate the bug).

apache_lib

1 [14] Middle tier Shared-library conflict. Cannot start application
server.

Ty
pe

3

apache_port_f

1 [14] Front-end Listening port already in use
by another application.

Cannot start front-end web
server.

apache_port_m

1 [14] Middle tier Listening port already in use
by another application.

Cannot start application
sever.

wrong_privileges

2 [12, 13] Back-end Wrong privileges for RUBiS
database user.

Database inaccessible to
the application servers.

Ty
pe

4

wrong_shutdown

2 [12, 13] Back-end Unnecessarily shut down the
database.

Database inaccessible to
the application servers.

db_schema

4 [13] Back-end Changed DB schema (re-
named bids table).

Database partially inacces-
sible to application servers.

The rolling upgrade does not impose any overhead, because sequentially rebooting all
the middle-tier nodes does not affect the system’s latency or throughput. The big flip im-
poses a similar run-time overhead as Imago because half of the system is unavailable dur-
ing the upgrade. With Imago, the upgrade completes after≈13h, which is the time needed
for transferring all the persistent data plus the time when access to Uold was yielded to
the live workload. This duration is comparable to the time required to perform an offline
upgrade: in practice, typical Oracle and SAP migrations require planned downtimes of
tens of hours to several days [25].

Before switching to Unew, Imago enforces quiescence by either marking the database
tables read-only, or by rejecting write requests at the I interceptors and flushing the
in-progress updates to the persistent storage. When the middle-tier nodes are running
Apache/PHP servers, the flush operation takes 39 s on average, including the synchroniza-
tion required by the protocol from Fig. 3. In contrast, flushing JBoss application servers
requires only 4.4 s on average, because in this case we do not need to restart the entire
server. The switchover mechanism does not cause a full outage, as the clients can invoke
the read-only functionality of RUBiS (e.g., searching for items on sale) while Imago is
flushing the in-progress requests. Moreover, assuming that the inter-arrival times follow
an exponential distribution and the workload mix includes 15% write requests (as speci-
fied by TPC-W [21]), we can estimate the maximum request rate that the clients may issue
without being denied access. If the switchover is performed during a time window when
the live request rate does not exceed 0.5 requests/min, the clients are unlikely (p=0.05) to
be affected by the flush operations.

4.2 Availability under upgrade-faults
Table 3 describes the upgrade-faults injected and their immediate, local manifestation.
We were unable to replicate the effects of one fault (apache_largefile, which was
reported as bugs 42751 and 43232 in the field study) in our experimental test-bed. We
inject the remaining 11 faults in the front-end (5 faults), middle tier (4 faults) and the
back-end (3 faults) during the online upgrade of RUBiS. In a rolling upgrade, a node is
reintegrated after the local upgrade, and resulting errors might be propagated to the client.
The big flip can mask the upgrade-faults in the offline half but not in the shared database.
Imago masks all the faults that can be detected (i.e., those that do not cause latent errors).

Fig.6 shows the impacts that Types 1–4 of upgrade faults have on the system-under-
upgrade. Certain dependency-faults lead to an increase in the system’s response time. For
instance, the apache_port_f fault doubles the connection load on the remaining front-
end server, which leads to an increased queuing time for the client requests and a 8.3%
increase in response-time when the fault occurs. This outcome is expected during a big-
flip, but not during a rolling upgrade (see Fig. 4). This fault does not affect the system’s
throughput or yield because all of the requests are eventually processed and no errors are
reported to the clients.

The config_nochange and wrong_apache faults prevent one front-end server from
connecting to the new application servers in the middle tier. The front-end server affected
continues to run and to receive half of the client requests, but it generates HTTP errors
(Yield = 0.5). Application errors do not manifest themselves as noticeable degradations of
the throughput, in terms of the rate of valid HTTP replies, measured at either the client-
side or the server-side. These application errors can be detected only by examining the
actual payload of the front-end’s replies to the client’s requests. For instance, db_schema
causes intermittent application errors that come from all four middle-tier nodes. As this
fault occurs in the back-end, both the rolling upgrade and the big flip are affected. Imago
masks this fault because it does not perform any configuration actions on Uold. Similarly,
Imago is the only mechanism that masks the remaining Type 4, wrong_privileges and
wrong_shutdown. The apache_satisfy fault leads to a potential security vulnerabil-
ity, but does not affect the yield or the response time. This fault can be detected, by issuing
requests for the restricted location, unlike the config_staticpath fault, which causes
the front-end to serve static web pages from a location that might be removed in the future.
Because this fault does not have any observable impact during the rolling upgrade or the
big flip, we consider that it produces a latent error. Imago masks config_staticpath
because the obsolete location does not exist in Unew, and the fault becomes detectable.
The config_samename fault prevents one front-end server from forwarding requests to
one middle-tier node, but the three application servers remaining can successfully handle
the RUBiS workload, which is not computationally-intensive. This fault produces a latent
error that might be exposed by future changes in the workload or the system architecture
and is the only fault that Imago is not able to mask.

Type 1 Type 2 Type 3 Type 4

N
um

be
r

of
 fa

ul
ts

0

1

2

3

(a) Rolling Upgrade.

Type 1 Type 2 Type 3 Type 4

0

1

2

3

(b) Big Flip.

Type 1 Type 2 Type 3 Type 4

Latent error
Security vulnerability
Increased latency
Degraded throughput
Full outage

0

1

2

3

(c) Imago.

Fig. 6. Impact of upgrade faults.

The rolling upgrade masks 2 faults, which occur in the middle tier and do not degrade
the response time or the yield, but have a visible manifestation (the application server
fails to start). The big flip masks 6 faults that are detected before the switch of the halves.
Imago masks 10 out of the 11 injected faults, including the ones masked by the big flip,
and excluding the latent error. A paired, one-tailed t-test7 indicates that, under upgrade
faults, Imago provides a better yield than the rolling upgrade (significant at the p = 0.01
level) and than the big flip (significant at the p = 0.05 level).

4.3 Upgrade reliability
We observe in Fig.6 that broken environmental dependencies (Type 3) have only a small
impact on enterprise-system upgrades, because their manifestations (e.g., a server’s failure
to start) are easy to detect and compensate for in any upgrading mechanism. Rolling
upgrades create system states with mixed versions, where hidden dependencies can be
broken. Contrary to the conventional wisdom, these faults can have a global impact on the
system-under-upgrade, inducing outages, throughput- or latency-degradations, security
vulnerabilities or latent errors.

Compared with a big flip, Imago improves the availability because (i) it removes the
single points of failure for upgrade faults and (ii) it performs a clean installation of the
new system. For instance, the config_staticpath fault induces a latent error during
the big flip because the upgrade overwrites an existing system. The database represents a
single point of failure for the big flip, and any Type 4 fault leads to an upgrade failure for
this approach. Such faults do not always cause a full outage; for instance, the db_schema
fault introduces a throughput degradation (with application errors). However, although in
this case the application error-rate is relatively low (9% of all replies), the real impact is
much more severe: while clients can browse the entire site, they cannot bid on any items.
In contrast, Imago eliminates the single-points-of-failure for upgrade faults by avoiding an
in-place upgrade and by isolating the system version in Uold from the upgrade operations.

Imago is vulnerable to latent configuration errors such as config_samename, which
escapes detection. This failure is not the result of breaking a shared dependency, but cor-
responds to an incorrect invariant of the new system, established during a fresh install.
This emphasizes the fact that any upgrading approach, even Imago, will succeed only if
an effective mechanism for testing the upgraded system is available.

Because our qualitative evaluation does not suggest how often the upgrade faults pro-
duce latent errors, we inject Type 1 faults automatically, using ConfErr [11]. ConfErr
explores the space of likely configuration errors by injecting one-letter omissions, inser-
tions, substitutions, case alterations and transpositions that can be created by an operator
who mistakenly presses keys in close proximity to the mutated character. We randomly
inject 10 typographical and structural faults into the configuration files of Apache web
servers from the front-end and the middle tier, focusing on faults that are likely to occur
during the upgrade (i.e., faults affecting the configuration directives of mod_proxy and
mod_proxy_balancer on the front-end and of mod_php on the middle tier). Apache’s
syntactic analyzer prevents the server from starting for 5 front-end and 9 middle-tier
faults. Apache starts with a corrupted address or port of the application server after 2
front-end faults and with mis-configured access privileges to the RUBiS URLs after 1
middle-tier fault. The remaining three faults, injected in the front-end, are benign be-
cause they change a parameter (the route from a BalancerMember directive) that must
be unique but that has no constraints on other configuration settings. These faults might
have introduced latent errors if the random mutation had produced identical routes for two

7 The t-test takes into account the pairwise differences between the yield of two upgrading ap-
proaches and computes the probability p that the null hypothesis—that Imago doesn’t improve
the yield—is true [17].

application servers; however, the automated fault-injection did not produce any latent er-
rors. This suggests that latent errors are uncommon and that broken dependencies, which
are tolerated by Imago, represent the predominant impact of Type 1 faults.
5 Lessons learned
Offline upgrades of critical enterprise-systems (e.g., banking infrastructures) provide the
opportunity for performing extensive tests for accepting or rejecting the outcome of the
upgrade. Online upgrades do not have this opportunity; when there are mixed versions,
system states are often short-lived and cannot be tested adequately, while the system-
under-upgrade must recover quickly from any upgrade faults. Unlike the existing strate-
gies for online upgrade, which rely on tracking dependencies, Imago trades off spatial
overhead (i.e., additional hardware and storage space) for an increased dependability of
the online upgrade. Imago was designed for upgrading enterprise systems with traditional
three-tier architectures. The current implementation cannot be readily applied to certain
kinds of distributed systems, such as peer-to-peer systems, which violate the first as-
sumption by accommodating large numbers of dynamically added ingress-points, or data-
intensive computing (e.g., MapReduce), which distribute their persistent data throughout
the infrastructure and do not have a well-defined egress point. However, the availabil-
ity improvements derive from the three properties (isolation, atomicity and fidelity) that
Imago provides. Specifically, the isolation between the old and new versions reduces the
risk of breaking hidden dependencies, which is the leading cause of upgrade failure [1],
while performing the end-to-end upgrade as an atomic operation increases the upgrade re-
liability by avoiding system states with mixed versions. Imago improves the upgrade de-
pendability because it implements dependency-agnostic upgrades. In the future, we plan
to investigate mechanisms for implementing the isolation, atomicity and fidelity proper-
ties in other distributed-system architectures, and for reducing Imago’s spatial overhead
through virtualization.

Moreover, upgrades that aim to integrate several enterprise systems (e.g., following
commercial mergers and acquisitions) require complex data conversions for changing the
data schema or the data store, and such data conversions are often tested and deployed
in different environments [13], which increases the risk of upgrade failure. Imago is able
to integrate complex data-conversions in an online upgrade and to test the new version
online, in an environment nearly identical to the deployment system. While an in-depth
discussion of these topics is outside the scope of this paper, we note that there are two
major design choices for software-upgrade mechanisms: (i) whether the upgrade will be
performed in-place, replacing the existing system, and (ii) whether the upgrade mech-
anisms will allow mixed versions, which interact and synchronize their states until the
old version is retired. Table 4 compares these choices. Mixed versions save storage space
because the upgrade is concerned with only the parts of the data schema that change be-
tween versions. However, mixed versions present the risk of breaking hidden dependen-
cies; e.g., if the new version includes a software defect that corrupts the persistent data,
this corruption will be propagated back into the old version, replacing the master copy.
Mixed, interacting versions also require an indirection layer, for dispatching requests to
the appropriate version [26], which might introduce run-time overhead and will likely
impose downtime when it is first installed. A system without mixed versions performs
the upgrade in a single direction, from the old version to the new one. However, for in-
place upgrades, the overhead due to data conversions can have a negative impact on the
live workload. When, instead, an upgrade uses separate resources for the new version, the
computationally-intensive processing can be performed downstream, on the target nodes
(as in the case of Imago). As we have shown in Section 4, in-place upgrades introduce a
high risk of breaking hidden dependencies, which degrades the expected availability.

The most significant disadvantage of out-of-place upgrades is the spatial overhead im-
posed. However, the cost of new hardware decreases while unavailability becomes more

Table 4. Design choices for online upgrades in enterprise systems.

In-Place Out-of-Place

M
ix

ed
Ve

rs
io

ns – Risk propagating corrupted data
– Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

– Incur run-time overhead for data conversions
– Risk breaking hidden dependencies

– Risk propagating corrupted data
– Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

– Incur spatial overhead

A
to

m
ic – Incur run-time overhead for data conversions

– Risk breaking hidden dependencies
– Incur spatial overhead

– Incur spatial overhead

expensive [9], and enterprises sometimes take advantage of a software upgrade to renew
their hardware as well [25, 27]. Moreover, Imago requires additional resources only for
implementing and testing the online upgrade, and storage and compute cycles could be
leased, for the duration of the upgrade, from existing cloud-computing infrastructures
(e.g., the Amazon Web Services). This suggests that Imago is the first step toward an
upgrades-as-a-service model, making complex upgrades practical for a wide range of
enterprise systems.
6 Related Work
In our previous work [22], we have outlined the upgrade procedure on which Imago is
based. Here, we review the research related to our contributions in this paper.

6.1 Upgrade Fault-Models
Oppenheimer et al. [10] study 100+ post-mortem reports of user-visible failures from
three large-scale Internet services. They classify failures by location8 (front-end, back-
end and network) and by the root cause of the failure8 (operator error, software fault,
hardware fault). Most failures reported occurred during change-management tasks, such
as scaling or replacing nodes and deploying or upgrading software. Nagaraja et al. [12]
report the results of a user study9 with 21 operators and observe seven classes of faults:9
global misconfiguration, local misconfiguration, start of wrong software version, unneces-
sary restart of software component, incorrect restart, unnecessary hardware replacement,
wrong choice of hardware component. Oliveira et al. [13] present a survey of 51 database
administrators,9 who report eight classes of faults:9 deployment, performance, general-
structure, DBMS, access-privilege, space, general-maintenance, and hardware. Keller et
al. [11] study configuration errors and classify them according to their relationship with
the format of the configuration file9 (typographical, structural or semantic) and to the cog-
nitive level where they occur9 (skill, rule or knowledge). These models do not constitute
a rigorous taxonomy of upgrade faults. Some classifications are too coarse-grained [10]
or relevant for only a subset of the upgrade faults [11]. In many cases, the fault categories
are not disjoint and the criteria for establishing these categories are not clearly stated.

6.2 Online Upgrades
The problem of dynamic software update (DSU), i.e., modifying a running program on-
the-fly, has been studied for over 30 years. Perhaps the most advanced DSU techniques
are implemented in the Ginseng system, of Neamtiu et al. [28], which uses static analysis
to ensure the safety and timeliness of updates (e.g., establishing constraints to prevent old
code from accessing new data) and supports all the changes required for updating sev-
eral practical systems. When upgrading distributed systems with replicated components

8 We use this subdivision as a classification variable in our upgrade fault-model (Section 2).
9 We use this data to develop our upgrade fault-model (Section 2).

(e.g., multiple application servers in the middle tier), practitioners often prefer rolling
upgrades [9], because of their simplicity. DSU techniques are difficult to use in practice-
because they require programmers to annotate (e.g., indicating suitable locations for per-
forming the update) or to modify the source code of the old and new versions. Moreover,
active code (i.e., functions on the call stack of the running program) cannot be replaced,
and updating multi-threaded programs remains a challenging task [29]. Like Imago, DSU
techniques require state conversion between program versions [28], but Imago never pro-
duces mixed versions and does not have to establish correctness conditions for the interac-
tions among these versions. Imago performs the entire end-to-end upgrade as one atomic
action.

6.3 Dependable Upgrades
To improve the dependability of single-node upgrades, modern operating systems include
package-management tools, which track the dependencies among system components in
depth, to prevent broken dependencies. Instead of tracking the dependencies of each pack-
age, Crameri et al. [1] suggest that the risk of upgrade failure can be reduced by testing
new or updated packages in a wide variety of user environments and by staging the de-
ployment of upgrades to increasingly dissimilar environments. Imago is closest in spirit to
the previous upgrading approaches that avoid dependency tracking by isolating the new
version from the old one. Lowell et al. [30] propose upgrading operating systems in a
separate, lightweight virtual-machine and describe the Microvisor virtual-machine mon-
itor, which allows a full, “devirtualized” access to the physical hardware during normal
operation. The online applications are migrated to a separate virtual machine during the
upgrade. To facilitate this application-migration process, Potter et al. [31] propose Au-
toPod, which virtualizes the OS’s system calls, allowing applications to migrate among
location-independent “pods”. These approaches do not provide support for application
upgrades. While providing better isolation properties than other in-place upgrades, the
approaches based on virtual machines induce run-time overhead, which might break de-
pendencies on performance levels (e.g., applications that disable write-access when the
response time increases).

Multi-node upgrades are vulnerable to Types 1–4 of upgrade faults. Nagaraja et al. [12]
propose a technique for detecting operator errors by performing upgrades or configuration
changes in a “validation slice,” isolated from the production system. The upgraded com-
ponents are tested using the live workload or pre-recorded traces. This approach requires
component-specific inbound- and outbound-proxies for recording and replaying the re-
quests and replies received by each component-under-upgrade. If changes span more than
one node, multiple components (excluding the database) can be validated at the same time.
Oliveira et al. [13] extend this approach by performing change operations on an up-to-date
replica of the production database. Because these approaches operate at component gran-
ularity, they require knowledge of the system’s architecture and queuing paths, and some
errors remain latent if the components are tested in isolation [12]. Moreover, implement-
ing the inbound- and outbound-proxies requires an understanding of each component’s
behavior, e.g., the communication protocols used and its non-determinism. For instance,
routing requests to a different application server in the validation slice would produce
equivalent results, but processing database transactions in a different order would com-
promise the replication. To enforce a common order of execution, database requests must
be serialized in order to prevent transaction concurrency, for both the production database
and the validation slice [13]. Aside from inducing a performance penalty during the up-
grade, this intrusive technique prevents testing the upgrade’s impact on the concurrency-
control mechanisms of the database, which limits the usefulness of the validation results.
Compared with these approaches, Imago does not change the way requests are processed
in the production system and only requires knowledge of the ingress and egress points.

The other components of the system-under-upgrade and the internal queuing paths are
treated as a black box. Unlike the previous approaches, Imago targets end-to-end upgrades
of distributed systems, and it addresses the problem of coordinating the switchover to the
new version. Moreover, Imago’s design facilitates upgrades that require long-running,
computationally-intensive conversions to a new data format.

6.4 Dependability Benchmarking for Upgrade Mechanisms
Evaluations of most of the previous upgrade mechanisms focus on the types of changes
supported and on the overhead imposed, rather than on the upgrade dependability. Be-
cause of this reason, while the costs of upgrading techniques (e.g., atomic upgrades,
isolation between the old and new versions) can be assessed in a straightforward man-
ner, their benefits are not well understood. User studies [12], fault injection [12, 13] and
simulation [1] have been used to assess the effectiveness of previous approaches in re-
ducing the number of upgrade failures. We rely on our upgrade-centric fault model to
perform systematic fault-injection experiments, with an improved coverage of upgrade
faults. We inject faults manually, in order to determine the impact of each fault type on
the three upgrading approaches compared, and we also use an existing fault-injection tool
for automatically injecting Type 1 faults. Similar fault-injection tools can be developed
for upgrade faults of Types 2–4, in order to evaluate the dependability of future upgrade
mechanisms.

7 Conclusions
We propose a new fault model for upgrades in enterprise systems, with four types of
faults. The impact of Type 3 faults (broken environmental dependencies) seems to be
easy to detect using existing techniques. Faults of Type 1, 2, and 4 frequently break hidden
dependencies in the system-under-upgrade. Existing mechanisms for online upgrade are
vulnerable to these faults because even localized failures might have a global impact on
the system. We present the design and implementation of Imago, a system for upgrading
three-tier, enterprise systems online, despite hidden dependencies. Imago performs the
end-to-end upgrade as an atomic operation and does not rely on dependency-tracking, but
it requires additional hardware and storage space. The upgrade duration is comparable to
that of an offline upgrade, and Imago can switch over to the new version without data
loss and, during off-peak windows, without disallowing any client requests. Manual and
automated fault-injection experiments suggest that Imago improves the dependability of
the system-under-upgrade by eliminating the single points of failure for upgrade faults.
Acknowledgments. We thank Dan Siewiorek, Greg Ganger, Bruce Maggs, and Asit Dan
for their feedback during the early stages of this research. We also thank Lorenzo Keller
for providing assistance with the use of ConfErr.

References

1. Crameri, O., et al.: Staged deployment in Mirage, an integrated software upgrade testing and
distribution system. In: Symposium on Operating Systems Principles, Stevenson, WA (Oct
2007) 221–236

2. Neumann, P., et al.: America Offline. The Risks Digest 18(30–31) (Aug 8–9 1996) http:
//catless.ncl.ac.uk/Risks/18.30.html.

3. Koch, C.: AT&T Wireless self-destructs. CIO Magazine (Apr 2004) http://www.cio.
com/archive/041504/wireless.html.

4. Wears, R.L., Cook, R.I., Perry, S.J.: Automation, interaction, complexity, and failure : A case
study. Reliability Engineering and System Safety 91(12) (Dec 2006) 1494–1501

5. Di Cosmo, R.: Report on formal management of software dependencies. Technical report,
INRIA (Sep 2005) (EDOS Project Deliverable WP2-D2.1).

6. Office of Government Commerce: Service Transition. Information Technology Infrastructure
Library (ITIL). (2007)

http://catless.ncl.ac.uk/Risks/18.30.html
http://catless.ncl.ac.uk/Risks/18.30.html
http://www.cio.com/archive/041504/wireless.html
http://www.cio.com/archive/041504/wireless.html

7. Oracle Corporation: Database rolling upgrade using Data Guard SQL Apply. Maximum Avail-
ability Architecture White Paper (Dec 2008)

8. : Oxford English Dictionary. 2nd edn. Oxford University Press (1989) http://www.oed.
com.

9. Brewer, E.A.: Lessons from giant-scale services. IEEE Internet Computing 5(4) (2001) 46–55
10. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do Internet services fail, and what can

be done about it? In: USENIX Symposium on Internet Technologies and Systems, Seattle, WA
(Mar 2003)

11. Keller, L., Upadhyaya, P., Candea, G.: ConfErr: A tool for assessing resilience to human config-
uration errors. In: International Conference on Dependable Systems and Networks, Anchorage,
AK (Jun 2008)

12. Nagaraja, K., et al.: Understanding and dealing with operator mistakes in Internet services. In:
USENIX Symposium on Operating Systems Design and Implementation, San Francisco, CA
(Dec 2004) 61–76

13. Oliveira, F., et al.: Understanding and validating database system administration. USENIX
Annual Technical Conference (Jun 2006)

14. Dumitraş, T., Kavulya, S., Narasimhan, P.: A fault model for upgrades in distributed systems.
Technical Report CMU-PDL-08-115, Carnegie Mellon University (2008)

15. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analysis.
Wiley Series in Probability and Mathematical Statistics. Wiley (1990)

16. Sullivan, M., Chillarege, R.: Software defects and their impact on system availability-a study
of field failures in operating systems. In: Fault-Tolerant Computing Symposium. (1991) 2–9

17. Chatfield, C.: Statistics for Technology: A Course in Applied Statistics. 3rd edn. Chapman &
Hall/CRC (1983)

18. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated detection of refactorings in
evolving components. In: European Conference on Object-Oriented Programming, Nantes,
France (Jul 2006) 404–428

19. Anderson, R.: The end of DLL Hell. MSDN Magazine (Jan 2000)
20. Di Cosmo, R., Zacchiroli, S., Trezentos, P.: Package upgrades in FOSS distributions: details

and challenges. In: Workshop on Hot Topics in Software Upgrades. (Oct 2008)
21. Menascé, D.: TPC-W: A benchmark for e-commerce. IEEE Internet Computing 6(3) (May/Jun

2002) 83–87
22. Dumitraş, T., Tan, J., Gho, Z., Narasimhan, P.: No more HotDependencies: Toward

dependency-agnostic upgrades in distributed systems. In: Workshop on Hot Topics in System
Dependability, Edinburgh, Scotland (Jun 2007)

23. Amir, Y., Danilov, C., Stanton, J.: A low latency, loss tolerant architecture and protocol for
wide area group communication. In: International Conference on Dependable Systems and
Networks, New York, NY (June 2000) 327–336

24. Amza, C., et al.: Specification and implementation of dynamic web site benchmarks. In: IEEE
Workshop on Workload Characterization, Austin, TX (Nov 2002) 3–13 http://rubis.
objectweb.org/.

25. Downing, A., Oracle Corporation. Personal communication (2008)
26. Boyapati, C., et al.: Lazy modular upgrades in persistent object stores. In: Object-Oriented

Programing, Systems, Languages and Applications, Anaheim, CA (Oct 2003) 403–417
27. Zolti, I., Accenture. Personal communication (2006)
28. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating for C. In:

ACM Conference on Programming Language Design and Implementation, Ottawa, Canada
(Jun 2006) 72–83

29. Neamtiu, I., Hicks, M.: Safe and timely dynamic updates for multi-threaded programs. In:
ACM Conference on Programming Language Design and Implementation, Dublin, Ireland (Jun
2009)

30. Lowell, D., Saito, Y., Samberg, E.: Devirtualizable virtual machines enabling general, single-
node, online maintenance. In: International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Boston, MA (Oct 2004) 211–223

31. Potter, S., Nieh, J.: Reducing downtime due to system maintenance and upgrades. In: Large
Installation System Administration Conference, San Diego, CA (Dec 2005) 47–62

http://www.oed.com
http://www.oed.com
http://rubis.objectweb.org/
http://rubis.objectweb.org/

	Why Do Upgrades Fail And What Can We Do About It? [0.5] Toward Dependable, Online Upgrades in Enterprise System [-0.5]
	Tudor Dumitras and Priya Narasimhan [-0.5]

