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Abstract. Distributed continuous live stream analysis applications are
increasingly common. Video-based surveillance, emergency response, dis-
aster recovery, and critical infrastructure protection are all examples of
such applications. They are characterized by a variety of high- and low-
bandwidth streams as well as a need for analyzing both live and archived
streams. We present a system called Persistent Temporal Streams (PTS)
that supports a higher-level, domain-targeted programming abstraction
for such applications. PTS provides a simple but expressive stream ab-
straction encompassing transport, manipulation and storage of stream-
ing data. In this paper, we present a system architecture for imple-
menting PTS. We provide an experimental evaluation which shows the
system-level primitives can be implemented in a lightweight and high-
performance manner, and an application-based evaluation designed to
show that a representative high-bandwidth stream analysis application
can be implemented relatively simply and with good performance.

1 Introduction

Continuous live data streams are ubiquitous and their analysis is a central com-
ponent of many applications. Network monitoring, surveillance, robotics, inven-
tory tracking, traffic or weather analysis, disaster response and many other ap-
plication domains fall under this umbrella. All of these applications have one
common trait: live streaming data is analyzed continuously, and the results are
used in some sort of feedback loop to direct further analysis and perform exter-
nal side-effects such as triggering alerts, producing continuous data summaries
for human monitoring or manipulating the environment. We call this class of
applications live stream analysis applications, because streams are analyzed and
consumed “live,” as the data is produced. Many such applications also require
access to historical data – data that was streamed in the past and is now archived.

While such applications are becoming ubiquitous, programming support is
relatively immature. Our broad goal is the development of a unified distributed
programming abstraction for accessing live and historical stream data, suitable
in scenarios requiring significant signal processing on heavyweight streams such
as audio and video. Existing solutions for constructing such applications tend
to fit into two broad categories: 1) “stream database” or “stream processing
engine”-style systems or 2) general-purpose distributed programming systems.
The former category has centrally managed and controlled execution, while the
latter does not impose a particular computational model on applications, only
modeling data interactions. The latter support loosely coupled systems of inde-
pendent communicating components with no centralized control. To the best of
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our knowledge, no prior system has provided a unified abstraction for both trans-
port and storage of live streams as a simple distributed programming primitive.
In this paper we propose Persistent Temporal Streams (PTS), a novel distributed
system that provides simple and efficient programming idioms for dealing with
distributed stream data. At the heart of PTS is the temporal stream abstraction,
providing a uniform interface for both time-based retrieval of current streaming
data and data persistence.

PTS fits between very high-level and heavyweight solutions like full databases
with query languages and lower-level non-stream oriented distributed commu-
nications facilities typically used for distributed applications (MPI, RMI, etc.)
plus separate storage facilities. Our approach represents a middle-ground in a
vast design space. At one extreme are high-level heavy-weight solutions that
incorporate full databases with query processing capabilities. At the other ex-
treme are lower-level non-stream oriented distributed communication facilities
for constructing distributed applications that require a separate treatment of
persistent data. This middle-ground for continuous streaming data is roughly
analogous to solutions such as Distributed Data Structures [1], BerkeleyDB [2]
and Boxwood [3] for non-streaming data. The temporal stream provides first-
class recognition of time, which is a critical distinguishing aspect of continuous
live streams over other types of data; the tailoring of the abstraction to the
problem domain makes live stream analysis applications more straightforward
to build, as does eliminating a programmer-visible artificial distinction between
past streamed data and current “live” data.

This paper’s contributions are the following:

– A persistent temporal stream abstraction targeted for live stream analysis
applications (Section 2)

– An architecture for stream persistence and an analysis of the potential design
space of persistent temporal streams (Sections 2.1 & 2.2)

– A system design and implementation of PTS, a distributed runtime realizing
the persistent temporal stream abstraction (Section 3)

– A system-level experimental evaluation of PTS and an application-based
evaluation using a video-based surveillance system [4] (Section 4)

We conclude with related work (Section 5) and a summation (Section 6).

2 Persistent Temporal Streams

Temporal streams are a key feature of live stream analysis applications – as a
concrete example, think of a video feed: the stream is unbounded and produced at
a finite rate, and the video frames are temporally ordered. Each frame represents
some sampled interval of time based on the frame rate. Event streams and other
aperiodic streams may not have fixed output rates, but trigger based on certain
environmental conditions, like a temperature sensor sending an alert when a
threshold is reached. In both cases, data items are associated with specific time
information. All “live” streams have a natural relationship with time (wall-clock
time). Broadly, our model of temporal streams is a time-indexed sequence of
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discrete data items; each item has a timestamp and spans a time interval ending
with the timestamp of the next item.

In PTS, a temporal stream is represented by a channel, which is a distributed
data structure encompassing an interface for both transport and manipulation
of streaming data; each channel holds a time-indexed sequence of discrete data
items (such as video frames) and analysis code retrieves data items by specifying
time intervals of interest. Applications interact with channels by means of “get”
and “put” operations. The basic stream operations are 1) put(i, t) – put data
item i on the stream with timestamp t (typically the current time); and 2)
get(l, h) – get all items falling within the interval [l, h). A variety of expressive
time variables [5] (such as now) are also provided to formulate intervals such as
“the most recent 10 seconds of video data”, and a wide range producer/consumer
patterns can be expressed using these time variables. The system maintains a
window of current stream data, automatically garbage collecting older items –
for example, an application could specify that channel c1 should keep 30 seconds
worth of data, and items older than that may be reclaimed.

The benefit of this model is that it provides a higher-level stream abstraction,
which fits at the intersection of an application’s manipulation of data and stream
transport. Since the stream abstraction has a familiar get/put-based interface as
a data structure, it is simple to use. Finally, by providing first-class recognition
of time, it provides a more natural way to write analysis code that deals with
continuous streams – similar to tuple models in streaming database work, and
higher level than general-purpose distributed programming mechanisms appro-
priate for high-volume data transfer. Rather than managing and buffering an
ephemeral, linear flow of data, the application can access stream data in terms
of higher-level time information. Since many live stream analysis applications
also need to store and retrieve historical data for trend analysis, a persistence
mechanism that fits within the temporal stream model is a useful feature. For
instance, a surveillance system might store historical video streams for some
predetermined archival period in a degraded form (e.g. lower resolution).

Integrating persistence into the temporal stream abstraction avoids an arti-
ficial distinction between data that is currently available in streams (a window
of recent data) and data that was streamed in the past but is now archived.
This change elevates the temporal stream abstraction from a communication
abstraction to a general-purpose data abstraction, uniformly modeling stream
data interactions. Although the same abstraction is used for live and stored data,
information about the source of data should still be made available to the pro-
grammer since the difference in access time and data quality or representation
can be significant. From a programming perspective, eliminating unnecessary
non-uniformity is desirable as it can make applications simpler to construct and
less brittle in the face of change.

The issues surrounding the incorporation of persistence into the stream pro-
gramming model are the core of this paper. In the following subsections, we
present an architecture for accomplishing this goal. The architecture explores
and answers several important questions related to incorporating persistence in
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a seamless manner into a distributed programming model for a wide range of
streaming applications:

– How is persistence integrated into the programming model API?
– How are data items mapped to persistent forms?
– What factors affect the choice of storage backends for persistent stream data?
– How do we account for information lifecycle management (ILM) issues (e.g.

redundancy, free space management, hierarchical secondary storage)?

2.1 An integrated architecture for live and archived streams

Our high-level persistence interface is directly enabled by extending the time-
oriented channel interface – a channel can now be marked by an application as
persistent (at creation time or later). Persistent channels empower the applica-
tion programmer in the following ways: 1) items are automatically committed
to persistent storage with related time-stamp information, and 2) time intervals
for retrieval of items may now reference both live and persistent items. Figure
1 depicts a get operation with an interval spanning live and stored data. Other
high level interface decisions are described below.

Get interface: The application may optionally constrain a retrieval operation to
adjust for the difference in latency of access and potential data format differences
of stored versus live items. The options are as follows: 1) ANY – any items, live
or stored; 2) LIVE – only live items, 3) STORED – only stored items; 4) ANYSPLIT
– return live items and load stored items from disk in the background, caching
them in a temporary in-memory cache for a subsequent get.

Per-stream data representation: An application can also control how items
are mapped to a persistent form. Some may wish to degrade the quality of items,
reduce the number of items or otherwise change their format. An application can
provide a pickling handler, which is responsible for mapping items to their per-
sistent representation (defaulting to the identity function). For example, a video
channel’s handler may JPEG compress video frames or reduce the image resolu-
tion. In addition to one-to-one item mappings, the pickling handler can take N
items and produce a single item to store: for example, an event channel’s handler
may transform thirty small events into some sort of digest. When N items are
mapped to one item, the original timestamp information is retained, so the same
get request will operate similarly on live and stored data. That is to say, if two
items are mapped to a single stored item, it will span the combined time interval
of the original items. As a direct extension of this functionality, an application
may provide multiple handlers with varying levels of disk usage versus processing
time and the runtime can automatically switch based on system-level cues.

Per-item persistence control: In addition to per-stream control via pickling
handlers, per-item control is possible: a data producer may mark an item placed
into a channel with the NOPERSIST flag. This will cause the persistence mecha-
nism to ignore it, so the item will disappear for good when it is garbage collected
from the live stream.

All-in-all, the programmer visible interface to a channel is essentially un-
changed – put(i, t) and get(l, h) still operate as before, but the potential span
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of items available in a channel now includes historical data rather than just a
window of current live data. Put takes an optional NOPERSIST flag and get takes
an optional ANY, LIVE, STORED or ANYSPLIT modifier (ANY is the default).

n
o
w

Live Data (60 sec.)

Get Interval   

Stored Data

...

Fig. 1. Get operation spanning stored and live data

2.2 Storage requirements & design choices

At the high level, the stream persistence interface is natural and intuitive; all
an application needs to know is that data items are mapped to persistent forms
using a known transformation and stored along with timestamp information. Un-
derneath this abstraction, however, the data must be stored to “stable” storage
somehow, and the potential design space is large. The streams could be stored to
a local filesystem, a distributed filesystem, a DBMS, a distributed virtual block
device, an object store, or some other storage abstraction (Boxwood [3]’s persis-
tent B-link tree abstraction is potentially quite well-suited), and there are many
orthogonal design choices associated with each. In this subsection, we discuss
several PTS design properties.

Redundancy/Availability: Some properties of the underlying storage mech-
anism manifest themselves as higher-level concerns. For example, an application
may desire some form of redundancy so a stored stream does not become inac-
cessible due to disk or host failure. This could be accomplished in a variety of
ways such as using a redundant, distributed storage mechanism as a backend,
using primary copy replication, or making use of shared disks (e.g. via a SAN).

Free space management: Another storage-level property exposed at a higher-
level is the management of free space. For high-bandwidth data streams, like
video, an application will often want to use local storage as a ring-buffer so the
oldest stored data will be overwritten when storage is full. Support for some
policies may already be provided by a storage backend, however. For example,
the GPFS [6] distributed filesystem provides internal support for rich information
lifecycle policies based on filesystem metadata – a policy could specify that old
data can be reclaimed or moved to lower performance storage.

External applications: One may also want a persistent stream stored in a
particular backend for reasons external to the application: for example, a user
may want sensor readings inserted into a table in a relational database for offline
analysis by another application or a third party.

Suitability for workload: The access patterns created by storing streaming
data are atypical workloads for some potential backends. Stored items are never
updated and are read rarely (relative to the number stored). From a storage per-
spective, the data is essentially append-only, which affords simple and efficient
consistency management strategies. Ideally, the backend should not block con-
current reads of older data while appending newer data. The system must also
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support ranged queries since data is accessed by specifying intervals. When multi-
ple streams are involved, the typical access patterns of storing many append-only
streams simultaneously do not interact well with most general-purpose filesystem
layouts [7]. Hyperion [7] addresses the problem of writing and querying multi-
ple streams of captured high-data rate network traffic with a custom filesystem
called StreamFS. The authors also present a “log file rotation” strategy for im-
proving stream data layout on typical Unix filesystems.

To deal with diversity in requirements, we provide pluggable storage back-
ends. Given the design tradeoffs discussed above, our initial prototype supports
three backends: 1) a local filesystem backend (called fs1), 2) a distributed filesys-
tem backend using GPFS (called gpfs1), and 3) a MySQL backend. Since we
want to be able to handle multiple high bandwidth streams, we think Hyperion’s
StreamFS [7] (or a slightly modified version) is best-suited to our target domain
when using local disks. StreamFS is not publicly available, so we implemented
our own filesystem-based backend called fs1 as a first-order approximation using
the “log file rotation” approach presented in the Hyperion paper. We would also
like to provide a distributed storage solution with advanced ILM functionality, so
we leverage the distributed filesystem GPFS for this purpose. A MySQL backend
is provided for scenarios where streams need to be stored in a relational database
(e.g. for analysis by other applications). In general, we do not believe MySQL is
a good general backend choice because it imposes a relatively large overhead on
the storage process and was not designed for this particular workload.

3 System Design & Implementation

In this section we describe the concrete system architecture of PTS and salient
implementation details. First, we provide general high-level system details (Sec-
tion 3.1), followed by channel implementation details independent of whether a
channel is persistent or not (Section 3.2). Section 3.3 summarizes the implemen-
tation of the stream persistence architecture. Figure 2 shows the structure of the
PTS system software stack.

3.1 System Structure

The system is structured as a distributed runtime and the core of the system
is a set of cooperating peers using the PTS library – peers are data consumers
or producers and host resources. In typical usage, a peer can be thought of as
a multi-threaded process with a distinguished identity in PTS. We also have
a distributed, replicated directory storing system metadata (for instance, nam-
ing information or mappings between opaque PTS endpoints and network end-
points) which is accessed by peers via an RPC-like protocol. Understanding
the persistent stream architecture does not require knowledge of the metadata
directory design; for the purposes of this discussion, one can simply imagine
naming/location metadata is available in some centralized directory.

Channels are PTS’s distributed and time-indexed representation of temporal
streams and the fundamental mechanism for data transport, manipulation and
storage. Almost all of the implementation complexity of peers revolves around



Persistent Temporal Streams 7

hosting or accessing channels. Peers place timestamped items into channels
(“put” operations) and retrieve items based on time intervals (“get” operations).
Channels are hosted at a single peer, but they may be read-only replicated (pri-
mary copy replication) for capacity or availability; a channel may also migrate
dynamically to another peer if necessary. Architecturally, every peer is a first
class entity that may host channels or interact with existing channels.

The system assumes data producers will have synchronized clocks, which is
not an unreasonable burden. NTP [8] is widely deployed and can keep hosts over
the Internet synchronized with high precision. For extremely limited devices,
more lightweight techniques or producer proxies can be used.

The implementation described here is written in ANSI/ISO C89 with pthreads.

3.2 Channels without data persistence
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Fig. 2. PTS Architecture

A channel stores current live
stream items ordered by times-
tamp; items older than a given
“currency” bound (e.g. 30s) are
automatically reclaimed. Con-
ceptually, a channel may be
viewed as an ordered list of
data items and associated meta-
data (e.g. timestamps) located
at the peer hosting a channel.
Each peer has a single gate-

keeper TCP/IP endpoint where
other peers can either interact
with channels hosted locally or negotiate a separate dedicated connection to
a particular channel for bulk data transfer. The transport protocol of dedicated
connections can be negotiated on a per-connection basis (e.g. shared memory for
colocated processes, RDMA or SCTP within a cluster, etc.). A pool of worker
threads is used to handle remote get/put requests on dedicated connections.

When performing get or put operations, a channel is identified by a channel

descriptor, which is an opaque reference to a particular channel data connec-
tion. Each peer has a table mapping channel descriptors to concrete connection
endpoint information, which acts like a cache: normally, channel operations use
the cached information and no metadata lookup or binding is necessary. When a
channel moves or a new connection to a channel is needed, the runtime contacts
the system metadata directory to find out which peer is hosting a channel and
then contacts the peer’s gatekeeper endpoint to negotiate a data connection.

A channel also has an integral trigger mechanism with two different types of
triggers: 1) garbage collection triggers and 2) new item triggers. Both types of
triggers are functions which apply to a single item at a time. Garbage collection
triggers are invoked when an item is about to be removed from the channel’s
“live” data and either freed or placed on a garbage list; new item triggers are
invoked when a new item is added to a channel. While this is a very simple
concept, it is also remarkably flexible. Triggers are used to implement a variety
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of functionality – new item triggers are the basis for replication of channels,
multicasting channel data, an optional push-style programming interface, and a
virtual synchronization mechanism [5]. For example, to set up a copy of channel
A replicated at host B, the system creates a new locally hosted channel at host
B, and sets up a new item trigger on channel A to send each item to the replica.
Any host can now use the copy by updating its channel descriptor table to point
to the replicated channel.

To execute triggers, each channel maintains a list of functions to call for each
trigger type and invokes them sequentially and in the execution context of the
thread that added an item or caused an old item to be prepared for garbage
collection. Consequently, trigger functions are expected to have short, bounded
execution times. When a trigger is added, an initialization function is run which
can set up an event queue and a dedicated listening thread or bind to a shared
thread/thread pool for asynchronously servicing longer triggers (analogous to
“bottom half” processing for interrupt handlers). Triggers can be loaded by
name statically or dynamically (via dlopen).

The C-based runtime uses reference counting for internal storage manage-
ment of channel data. Without persistence, channel garbage collection is easy:
since a put call places a single timestamped item into a channel, we just check
to see if we can reclaim the oldest item in the channel after a put call. If the
span between the newest and oldest items is greater than the channel’s speci-
fied currency bound, the item is removed from the live channel and the system
invokes the GC trigger functions. The last trigger will either place the item on
a garbage list if its refcount is non-zero or immediately free it otherwise. If the
item isn’t immediately freed, we walk through a small fixed number of items on
the garbage list and free those with refcounts of zero. There is no need for a
background GC thread because new garbage is only generated when old items
are displaced by newly arriving data, so the system can maintain stasis by doing
a small amount of GC work cooperatively during each put call.

3.3 Persistence

The persistence mechanism implements the high-level channel persistence se-
mantics and is separated into three general layers: 1) the channel interaction
layer, 2) the generic persistence layer and 3) specific persistence backends. The
persistence backends are loaded dynamically and handle interfacing with a par-
ticular storage mechanism (e.g. a filesystem). Both the generic persistence layer
and concrete persistence backends provide a simple API with four basic calls:
persist item and get interval as well as init and cleanup. persist item

and get interval directly correspond to the live channel get/put operations.

Channel interaction layer: The channel interaction layer is the small set of
hooks in the channel implementation (described in Section 3.2) which interfaces
with the generic persistence layer. For channel get operations, this consists of the
logic to interpret get types (ANY, LIVE, etc.) and to call down to the persistence
layer if stored items will be needed. If a get operation is performed on interval
[l, h] and some live item has a timestamp ≤ l, then no call to the persistence
layer is needed. After a get interval call to the persistence layer is made, this



Persistent Temporal Streams 9

layer also handles placing temporary items retrieved from the storage backend
on the garbage list.

Triggers are used to send items to the lower levels of the storage stack by call-
ing persist item in the generic persistence layer. The channel interaction layer
also contains routines to initialize the persistence interface. When a channel is
initially marked as persistent, a background garbage collection thread is spawned
since get operations spanning persisted items may create significant additional
garbage and our previous strategy may not be able to keep up (particularly if
put calls are rare).

Generic Persistence Layer: This layer sits between the channel implemen-
tation and a particular concrete storage backend. It maintains a small queue of
items to be persisted in batches, and is responsible for calling pickling handlers
to map items into their persistent representation. The persist item call just in-
crements an item’s refcount and enqueues it on a processing work queue handled
by a worker thread. This structure has several key properties: 1) it prevents the
persist item call from blocking a long time (since it is called from a trigger),
2) queueing is necessary for pickling handlers that transform N items to 1 item,
3) if items are eagerly pushed to storage on a channel with multiple producers,
some queueing is necessary to ensure items are written out in temporal order,
and 4) it allows the generic persistence layer to serialize writes to the backend.

Several of these properties simplify the assumptions a storage backend must
deal with. For example, serializing writes to the backend by the persistence layer
simplifies backend implementation – it may assume there are no concurrent writ-
ers, although a single writer may overlap with item reads. Another feature of
this layer is that it guarantees that items will be presented in temporal order to
the storage backend, which again can simplify the backend’s implementation.

To process a get inverval request, the generic persistence layer must search
its work queue for items that are waiting to be persisted as well as call down into
the concrete storage backend layer to retrieve items that have reached “stable”
storage. Finally, the generic persistence layer is also responsible for dynamically
loading storage backends and pickling functions (via dlopen) when a channel
is first marked as persistent. The generic persistence layer can also monitor
and react to different kinds of resource contention: by measuring the latency of
backend persist item calls, it can determine if storage contention is too high.
Similarly, by timing pickling handler execution, it can estimate CPU load. The
generic persistence layer can adjust to these conditions by switching between
pickling handlers or disabling pickling. The persistence layer primarily affects
CPU and storage contention; network and memory usage can be monitored and
controlled by the live channel implementation (Section 3.2).

Storage backends As mentioned earlier, the storage backends are responsible
for implementing persist item and get interval calls.

MySQL backend: The MySQL backend is not designed for streams with high
data rates, but it is certainly appropriate for low bandwidth sensors. persist item

simply puts a tuple with (timestamp,data) into a specified table and get interval

performs a SELECT of items with timestamps in the interval [low,high). Given
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the SELECT query, the timestamp column should also have an index suitable for
range queries (e.g. B-trees). Currently the backend simply stores item data as
BLOBs, which is not very flexible. We are looking into providing a richer in-
terface by allowing user-defined functions to map binary item data into some
number of separate data items matching the desired schema.

Filesystem backend: The fs1 filesystem backend is implemented as a light-
weight overlay on top of a filesystem (SGI’s XFS [9] generally has the best overall
performance for these workloads [7]), but could also be implemented directly on a
block device. The data layout is quite simple and uses the properties provided by
the generic storage layer to avoid unnecessary complexity and synchronization.
We use the log file rotation approach from the Hyperion paper [7].

A backend needs to store timestamped data items in order and retrieve them
by bounded time intervals. To accomplish this, fs1 uses a two-level indexing
scheme. A given channel has a single top-level index file and many individual
data files, each with a second-level index; a data file’s size is roughly bounded
by a chunk size parameter (default 16MB per file) and the small, fixed index is
stored at the beginning. The overall organization is similar to ISAM.

Since the generic persistence layer guarantees that items arrive in order and
there is only a single writer, the data files are append-only, which leads to simple
logic for put item. Items are added by first writing file data, adding the offset
and length to the index and finally by writing the timestamp into the index. This
allows readers to co-exist with writers without much synchronization – a memory
fence may be needed to ensure that item data appears before the timestamp in
the index, depending on underlying hardware write ordering semantics.

Distributed filesystem backend: This backend is a variant of the fs1 filesys-
tem backend. It stores streams as whole files with a separate multi-level index
directly on GPFS [6], which is already relatively well-tuned for streaming work-
loads. This backend also takes into account desired replication/failure semantics
in placing data into proper filesets/storage pools with GPFS tools.

4 Evaluation

Here we present two sets of PTS evaluations. The first consists of system-level
benchmarks testing the performance of pieces of our persistence architecture.
The second is an application-based evaluation using a video-based surveillance
application. We believe it is representative of a variety of live stream analysis
applications in its basic structure and requirements.

4.1 System/Architectural Benchmarks

In order to measure the architectural overhead of our design, we perform several
sets of targeted experiments. We start with a relative comparison of the storage
backends, the lowest layer. After that we use our most lightweight backend and
target the higher layers, showing the overhead for get operations, performing
storage scaling tests with pickling handlers and adaptive load shedding, and
finally showing the relative performance between live and stored gets in both
pathological situations with no locality and locality-friendly scenarios.
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The experiment in this section are performed on an x86 64 Linux 2.6.24 host
with an Intel Core 2 Duo E6750 (2.66Ghz) processor and 4GB of DDR667 RAM.
For storage results, we use the fs1 backend (on a dedicated 300GB Seagate
7200.8 drive with XFS) since it has the lowest overhead and is self-contained.

Single Producer Storage Backend Overhead: As a baseline, we compare
the relative overhead of the different storage backends using OProfile [10], a low-
overhead, sampling-based system-wide profiling tool integrated with the Linux
kernel capable of profiling un-instrumented binaries. Although the results are
elided for space, we found that the overheads associated with an RDBMS like
MySQL are very high for such workloads (e.g. 2-3x the user+kernel cycles com-
pared to *fs1 backends). These trends validate our decision (and intuition) to
build lighter-weight, task-specific storage backends – fs1 is only about 600 lines
of C code and gpfs1 is similar.
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Fig. 3. Cost of gets with an increasing num-
ber of items: 50 live items, 100 stored items

Single Consumer Get Over-
head: This experiment demon-
strates baseline retrieval over-
heads of the storage layer with
fs1. In Figure 3, we measure the
cost of a get interval operation as
we increase the maximum num-
ber of items in the interval to
include stored items. We place
100 items in an persistent chan-

nel (using the fs1 backend) which will hold up to 50 live items. Each item is
1024 bytes and the gets are performed over loopback TCP/IP networking. Each
get is performed 10,000 times and we report the per-get averages (i.e. measured
time / 10,000); the values are averaged over five runs (the standard deviations
are less than 1% and thus not drawn on the graph). In the figure, get operations
scale roughly linearly with the number of items requested until items must be
fetched from the storage backend. At that point, each operation incurs a fixed
cost of approximately 118 microseconds, and the roughly linear trend continues
– obviously the additional cost of accessing stored items will vary widely de-
pending on the storage backend and underlying storage media, but these figures
show baseline overheads for fs1 (when all data is in buffer cache).

Multiple Stream Scaling: This experiment shows how the fs1 backend and
our persistence architecture scale with increasing I/O rates by scaling the number
of concurrent streams committed to the same disk. Figure 4(a) shows the results
of multiple persistent channels simultaneously saving data to the same local XFS
partition using the fs1 backend with a chunk-size of 144MB. Each channel is
filled by a producer putting 300KB RGB video frames at 30 frames per second,
and the experiment runs for 36,000 items in each channel (20 minutes at 9MB/sec
per stream). We scale the number of concurrent producers and show results for
the normal configuration as well as results where data writes simply go to a file
descriptor which throws away the data (/dev/null) – since the local disk will
bottleneck long before other components, “no op” disk writes let us isolate the
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overhead of other pieces of our architecture. We modified the backend to get the
current time after an item’s data is written out and modify the item’s stored
timestamp to provide an estimate of the total latency from the time it arrives in
the channel to the time it is written out. We also set the level of queuing in the
generic persistence layer to one, so each item is sent to the backend as soon as it
arrives to the generic persistence layer. We present the results of item latencies
in the form of several statistical percentiles (50%, 90%, 99%, 100%) because
the general distribution is hard to characterize with a single number. For each
percentile, we present the maximum among all producers. The vast majority of
items have small latencies and then median times are quite low, but heavy I/O
tends to induce a small tail of extreme outliers, particularly when the data rate
streaming to disk is high (note the graphs’ log scale and broken axes). The 99th
percentile latencies seem to be primarily influenced by the amount of filesystem
traffic and contention between multiple producers writing to a common disk.
The absolute worst case measures (100%) have a high variance and are less
meaningful across tests, because they are determined by a single high reading.
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Fig. 4. Item latencies by statistical percentile

Multiple Stream Scal-
ing with Pickling Han-
dlers: The next exper-
iment shows how ap-
plying pickling handlers
to producers effectively
reduces the data rate
of streams committed
to disk, enabling us to
scale up the number of
streams. We cannot reli-
ably commit five concur-
rent 9MB/s streams us-
ing fs1 with our particular hard disk and XFS, so we configure a pickling han-
dler to compress each 300KB RGB video frame into a JPEG image. The average
JPEG size is 20K, a fifteen-fold reduction in data committed to disk. Figure 4(b)
shows the results for runs with 6, 8 or 12 producers all doing JPEG compression,
and a mix of RGB and JPEG producers. The item latency now includes a JPEG
compression step, performed by libjpeg6b, so the median item latencies are
∼4.5ms versus ∼210µs without the added compression and creation of tempo-
rary items. The raw measured cost of the JPEG compression by itself (without
dynamic allocation of items or buffers) is ∼3.7ms per frame on average. Although
the data rate of 12 MJPEG streams is still less than a single RGB stream, each
producer requires at least 270MB of memory to hold 30 seconds of RGB data
in the live channel (plus some extra memory for temporary JPEG items), and
we run into some physical memory pressure around 14-15 streams. We could
reduce the number of seconds of live data that each channel holds to add more
producers, but we eventually hit a CPU bottleneck for JPEG compression be-
fore the disk bottlenecks. If we look at the all JPEG producer runs versus the
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mixed runs, we see that the 99th percentile latencies are now more indicative
of CPU contention versus disk contention; since we present the maximum value
over all producers for each percentile and compression adds significant latency
in the critical path for all JPEG streams, the storage latency for uncompressed
items will generally be overshadowed by JPEG items. Again, the 100th percentile
measures are less meaningful.
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Fig. 5. 8 producers: latency before/after adjustment

Dynamic Load Ad-
justment with Pick-
ling Handlers: This ex-
periment shows how PTS
can dynamically adjust to
overload conditions. By
measuring operation la-
tencies in the generic per-
sistence layer, the system
can react by adding pickling handlers if the disk is overloaded or remov-
ing/changing them if the CPU is overloaded. The user could also provide several
pickling handlers to compromise between stored item size and computational
cost. In our current prototype we’ve implemented a simple proof-of-concept to
illustrate the possibility of dynamic load adjustment: currently we only consider
disk load and a single pickling handler, but if the item latency starts to increase
heavily, some number of consumers automatically switch to using their pickling
handlers until the overload is resolved. We ran successful tests starting with 6, 8
and 12 RGB video producers with JPEG pickling handlers; in all initial config-
urations (6, 8 and 12 uncompressed video streams), the load is too great for the
local disk and the system would normally fall behind and never recover without
removing producers. Figure 5 shows the item latencies for a single producer of
the 8 producer run before and after it switches to JPEG frames.

Mixed Stored/Live Reader Workload: In order to demonstrate the perfor-
mance impact of accessing stored versus live items, we vary the percentage of
get operations requesting live versus stored items and measure the time to per-
form 10,000 get operations. Again we use 300KB RGB frames and perform get
operations which request 50 items from a point in the channel determined by a
probability distribution. 72,000 items are placed into the channel with a storage
backend of fs1, and the last 200 items will stay in the live channel. Since the size
of all of the items is ∼20.6GB, it is much larger than can fit in memory. We mea-
sure the cost of gets of exactly 50 items from some random point in the channel
(containing all stored or all live items), and we limit the transferred data of each
item to 100 bytes to eliminate the network transfer overhead and emphasize the
overhead of stored data retrieval (all data is still read from disk when stored
items are fetched). We vary the percentage of requests for live items from 0 to
100 and measure the total time to complete 10,000 requests with three different
distributions – a uniform random distribution, a Zipf distribution (s = 2.0) and
a binomial distribution (p = 0.5). The uniform random distribution exhibits no
locality and rapidly bottlenecks by the raw speed of the disk. Both the Zipf and
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binomial distributions exhibit a lot of locality and thus benefit from caching,
scaling much better (in fact, their differences are too small to see on the graph
scale). Figure 6 shows the average per-get time for the distributions (each point
is also averaged over five runs). Although none of these test configurations are
realistic models of an actual application, which might have many different clus-
ters of “popular” historical data based on detected events, it does show the
gamut of scaling behavior between pathologically bad and more locality-friendly
workloads. Real workloads should fall in-between these extremes.
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These system experiments show that the persistence architecture and prim-
itives can be implemented in a lightweight manner, scaling to store relatively
high data rate streams.

4.2 Application-based Evaluation

For an application-based evaluation, we use a representative kernel of a video
surveillance application implemented on PTS. Although live stream analysis
applications vary greatly, we believe that the core of a video analytics system can
potentially represent a wide range of applications because the general structure of
such applications is usually similar. Each application has some set of potentially
high bandwidth streams (like video), a set of feature detectors running on these
baseline streams to produce more structured high-level data, and a hierarchy
of higher-level analysis modules which analyze and aggregate multiple potential
feature streams and produce alerts/adjust future analysis/perform actions/etc.
Some higher-level analysis will require historical data from archived streams.

Since distributed stream processing is at the heart of these applications,
they require efficient low overhead stream transport with persistence manage-
ment. Using a system like PTS simplifies the application logic significantly and
provides greater functionality than non-stream oriented primitives, supporting
richer domain-specific communication features, and transparent persistence of
data streams. The video surveillance kernel implemented using PTS is only 670
lines of C code, not including command-line argument parsing or interfaces to
OpenCV / libjpeg. Although it is subjective, the logic is very straightforward
with PTS handling stream operations.

Components: Our PTS application consists of six parts: 1) the agents hosting
video and sensor channels, 2) video data producers, 3) sensor data producers, 4)
video feature detectors – face detection and optical flow, 5) random query agents,
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and 6) feature aggregation agents. Figure 7 depicts the dataflow between com-
ponents. Each agent hosts some number of persistent video and sensor channels.
The video data is 225KB RGB video frames at ∼29fps, transformed to JPEG
format using a pickling handler. The sensor data is random 1024 byte samples
produced at ∼15fps. Video producers generate the RGB video frames by decod-
ing MJPEG 3-4 minute compressed video files captured from TV and playing
them back on a loop. The feature detectors get video frames one at a time from
the channels and run either face detection or optical flow analysis on each frame.
The optical flow process first converts each video frame to grayscale but only
performs the subsequent optical flow computation on every other frame (the
CPUs limited our ability to do full frame-rate optical flow). Each feature detec-
tor outputs a small 128-byte digest of the results into a channel. The random
query agents generate random historical and live data queries on the video and
sensor data with a specific probability distribution. Finally, there is a single fea-
ture aggregation agent for each feature detector type (face detector or optical
flow); each agent gets the results from all feature detectors of the given type
(corresponding to all video channels) and calculates the latency of processing
video frames. All components process data in order and do not drop frames.

Topology: In our setup, we host four video channels and two sensor channels
per agent, with one agent per cluster node. The four video producers and two
sensor data producers corresponding to an agent are also colocated on the same
node, although they are logically separate processes. This node will be decoding 4
MJPEG video streams to produce RGB video frames, encoding 4 MJPEG video
streams from the same RGB frames for pickling handlers and committing all six
data streams to disk. It is also responsible for serving video content to eight fea-
ture detectors (four of each type) and handling live and historical queries from
the random query agents. The rest of the pieces run on independent nodes in
different groupings. The feature detectors run two per node and host their own
output channels locally. The random query agents run six per node (four video,
two sensor) and both measurement agents run on separate nodes. For our ex-
periments, we use two agents and eight video streams total. Table 1 summarizes
this setup.

Component Configuration Total

Agent 1 per node, hosts 4 vid. / 2 sensor 2
Producers 6 per agent node, one per stream 12

Historical Query 6 per dedicated node 12
Face Detection / Optical Flow 2 per dedicated node 8 / 8

Feature Aggregators 1 per dedicated node 2

Table 1. Video surveillance experiment

Experimental Setup: Our experiments are run on 14 nodes from a cluster of
dual-processor 64-bit Linux nodes. Each node has two Pentium 4-based Xeon
3.2Ghz processors with 1MB of L2 cache, 800Mhz FSB, 6GB of RAM, and IP
over Infiniband networking (4x SDR). The nodes run RHEL 4u6, kernel 2.6.9-
67.0.1.ELsmp (64-bit). The feature detector functionality is from OpenCV 1.0
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and libjpeg6b is again used for JPEG operations. All binaries are built with gcc
4.1.2 with -O2 and -g. Persistent channels use fs1, writing to an ext3 filesystem
on a Seagate ST373207LC 10k SCSI drive.
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Fig. 7. Video surveillance components

Workload Characteristics: We
perform five runs of each experi-
ment, each normal run lasting six
minutes and involving about 10,500
frames of video for each channel.
Each query agent makes a video

query every 100ms requesting a live or historical frame with equal probability.
The historical frames’ timestamps are chosen based on a probability distribu-
tion that is roughly Zipfian(we use a power-law distribution to approximate a
situation where most video captured will be uninteresting with a few periodic
events of high interest). The standard configuration has all streams converted
to MJPEG before being stored to disk. The 1RGB configuration has one stream
per agent (two total streams) stored to disk without compression to increase the
size of the historical data-set. Similarly, the 2RGB configuration has two streams
per agent stored without compression. Due to the large amount of RAM on each
node, the set of files comprising all historical streams can fit in buffer cache
easily on the shorter runs. Consequently, we also run some significantly longer
experiments to ensure that the historical data set size is large enough to ensure
that all requests cannot be serviced from RAM. All of the longer experiments
have one RGB stream per agent.
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Feature Detector Re-
sults: Figure 8 shows the
feature detector latencies
(in milliseconds) of several
different configurations: the
first two columns are the
processing latency measure-
ments at the face detector
and optical flow feature de-
tectors. The Agg columns
show the measured latency
at the aggregation agents.
In both cases, the latency is calculated using the timestamp of the original video
frame. The aggregation agents include another network hop since they consume
the feature detection output data stream; in addition, the aggregation agents
get the newest item from all feature detectors of a given type in sequence rather
than concurrently, and each get call can potentially block. Consequently, the
feature aggregation agents’ latencies (and standard deviation) increase with the
number of streams they are consuming. Having a separate thread handle each
feature stream independently would alleviate this, but the most straightforward
implementation (sequential) is entirely adequate for our target application and
the performance is still quite good.
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Face detection is less expensive than the optical flow calculation, so the la-
tencies are as expected. The baseline costs for the stand-alone feature detectors
run on the same datasets on an unloaded node are shown as “Standalone.” The
face detection standard deviation is slightly higher because the face detection
operation takes a varying amount of time depending on how many potential
faces are present in an image, while the optical flow is only dependent on the
image resolution. The deviation drops slightly going from nRGB to n+1RGB
because the processing load decreases slightly with the removal of JPEG encod-
ing pickling handlers. The variance on all components increases on the longer
runs because of the effect of historical queries that cannot fit into RAM.

Historical Query Results: Figure 9 shows the average time to make a random
historical query (in milliseconds) for video streams. We separate the RGB and
the compressed streams to show the effect of larger historical data sets. We can
see that the average query time and variance grows as the amount of historical
data grows – since the RAM size is constant, our locality gets worse as the total
dataset grows. The compressed streams’ latencies are affected too (but not as
severely) because the same node and disk are used to host both types of streams.

All Historical RGB Compressed
0

10

20

30

40

T
im

e
 i
n
 m

s

0RGB
1RGB
2RGB
1RGB-30mins
1RGB-45mins

Fig. 9. Query time in ms.

To provide a frame of
reference for our numbers,
ASAP [4] is a video surveil-
lance system implemented
in Java; its published end-
to-end latency results for
live queries are between
135-175 ms, which in prac-
tice are perfectly adequate
for the application domain.
In our PTS-based evalua-

tion, the highest latency we have measured for historical queries is 18ms (+/-
16ms). Although the PTS-based implementation and functionality are not di-
rectly comparable to the ASAP system, the structure of our application com-
ponents is derived from the ASAP design and both evaluations were run on the
same hardware using the same OpenCV library primitives for analytics. This
does show that the results are promising and potentially provide headroom for
higher fidelity. These preliminary results also show that the PTS runtime adds
minimal overhead to the baseline stream processing operations which are at the
core of such applications.

5 Related Work

As mentioned earlier, most work in alleviating higher-level concerns for live
stream analysis applications comes in the form of stream processing engines
or stream databases. These systems manage execution of stream analysis func-
tionality and often use continuous queries in declarative query languages. There
are a variety of relevant research systems like domain-specific Gigascope [11] and
Hyperion [7] (for network monitoring) as well as more general-purpose systems



18 David Hilley and Umakishore Ramachandran

like TelegraphCQ [12], Borealis [13] (and its predecessor Aurora [14]), and Stan-
ford’s STREAM Data Manager [15]. IBM’s Stream Processing Core [16] (part
of System S) is another research system using a continuous query approach for
“stream mining” (data mining on streaming data). General-purpose commercial
systems include StreamBase and Coral8. Various extended SQLs and non-SQL
based temporal query languages have been proposed over the last twenty years:
CQL [17] and GSQL [11] are recent examples.

While these systems are impressive, they represent a different architectural
approach than temporal streams. These systems provide centrally managed and
controlled execution (often with high level query languages), while our system
is a glue for loosely coupled systems of independent communicating components
with no centralized control. Our system is also targeted at scenarios involving
significant feature detection/analysis on streams such as audio and video, in con-
trast to SQL-like declarative query languages often more suited to domains with
highly structured data like network monitoring or stock trading. The authors of
the WaveScript language [18]/XStream engine [19] note that traditional stream
database approaches are not well suited to signal analysis applications (audio, for
example) and provide an augmented stream management system for isochronous
signal processing. The Linear Road benchmark [20], the only standard bench-
mark for stream databases/stream processing engines, uses highly structured
data for analysis and does not include signal analysis or feature detection from
data sources like video.

Our approach does not impose a particular computational model on stream
analysis applications; PTS only models stream data interactions, supporting ar-
bitrary communication/data dependencies between components at the expense
of being less declarative. In the end, we believe this tradeoff is acceptable given
the added flexibility of general distributed applications (e.g. components can be
developed independently/in different languages, hold internal state, utilize ex-
ternal resources, be integrated into existing systems, etc.). Our approach also
provides a substrate for higher-level domain-specific solutions which raise the
level of abstraction for a set of applications.

Ultimately, our approach represents another point in the design space bal-
ancing tradeoffs between flexibility/generality as well as performance and the
level of abstraction. Our choices are similar to Distributed Data Structures [1]
and BerkeleyDB [2], where some higher-level and heavyweight features of a full
DBMS are traded off for a simpler, more procedural programmatic interface. In
some ways our approach is similar to Boxwood [3], which provides distributed,
managed data structures as a fundamental storage abstraction; in our case, the
stream abstraction also serves as the storage interface.

PTS builds on the earlier work in StampedeRT [5], which defines a program-
ming model for live stream analysis applications. The StampedeRT paper [5] sur-
veys relevant work related to data-flow programming models like StreamIt [21]
or TStreams [22] and the communications aspects of temporal stream abstrac-
tions: distributed programming systems/programming models, such as message-
passing systems, distributed shared memory, RPC/RMI, group communication,



Persistent Temporal Streams 19

tuple spaces, or publish/subscribe systems. The workload of live stream analysis
applications is unique and lends itself well to distributed programming, because
stream processing has natural and explicit communication boundaries.

The general concept of processing streamed data as it is made available is
fundamental – for example, the Unix pipe [23] is a ubiquitous streaming data
flow abstraction, as are lazily-evaluated infinite lists in functional programming
languages [24] or various reactive programming constructs. Hundreds of other
abstractions in many diverse areas also model streams as a sequence of bytes or
messages; this view is significantly different from the data-parallel array model
typical in stream programming/GPGPU workand much closer to our preferred
model for live stream analysis applications. Unlike most previous work, our ab-
stract model of streams used in live stream analysis applications also includes a
notion of time and random access.

Distributed programming models and runtime systems designed for process-
ing/mining large amounts of data, such as MapReduce [25] and Dryad [26],
often have similar concerns as live analysis applications, which makes many re-
lated ideas relevant to our domain. For example, Sawzall [27] provides a small
domain-specific language for item-at-a-time processing of stored data sets within
MapReduce, but it could also apply to streaming data. The key difference is that
live stream analysis is continuous and data is explicitly time-related, while these
aforementioned systems operate on stored data for batch processing. Although
stored data is often streamed for processing, the time at which a streamed data
item becomes available for processing is unrelated to the data itself. In live
stream analysis, time is semantically significant. Also, systems such as MapRe-
duce are generally optimized for throughput over latency, are not limited to
one-pass processing, and often have foreknowledge of the size of a dataset to
partition processing.

6 Conclusion

Many critical applications involve continuous and computationally intensive
analysis on live streaming data and also require access to historical data. While
distributed programming support for traditional high-performance computing
applications is fairly mature, existing solutions for live stream analysis appli-
cations are still in their early stages and, in our view, inadequate. We have
described Persistent Temporal Streams (PTS), which are specifically designed to
address the needs of these distributed applications by providing a higher-level
unified abstraction for dealing with live and archived streams. The channel prim-
itive of our PTS system unifies transport, manipulation and storage of streams.
We have presented a detailed description of the PTS system architecture and
elements of its implementation. Finally, we have presented a set of system-level
benchmarks looking at pieces of the system in isolation as well as a whole-system,
application-based evaluation. Although preliminary, these results show that the
PTS architecture can be implemented in a lightweight manner and provide good
performance in a video-surveillance application scenario based.
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