
How To Keep Your Head Above Water While Detecting
Errors

Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

Dependable Computing Systems Lab (DCSL)
School of Electrical and Computer Engineering, Purdue University

{ilaguna, faarshad, dgrothe, sbagchi}@purdue.edu

Abstract. Today’s distributed systems need runtime error detection to catch
errors arising from software bugs, hardware errors, or unexpected operating
conditions. A prominent class of error detection techniques operates in a
stateful manner, i.e., it keeps track of the state of the application being
monitored and then matches state-based rules. Large-scale distributed
applications generate a high volume of messages that can overwhelm the
capacity of a stateful detection system. An existing approach to handle this is to
randomly sample the messages and process a subset. However, this approach,
leads to non-determinism with respect to the detection system’s view of what
state the application is in. This in turn leads to degradation in the quality of
detection. We present an intelligent sampling algorithm and a Hidden Markov
Model (HMM)-based algorithm to select the messages that the detection system
processes and determine the application states such that the non-determinism is
minimized. We also present a mechanism for selectively triggering
computationally intensive rules based on a light-weight mechanism to
determine if the rule is likely to be flagged. We demonstrate the techniques in a
detection system called Monitor applied to a J2EE multi-tier application. We
empirically evaluate the performance of Monitor under different load
conditions and error scenarios and compare it to a previous system called
Pinpoint.
Keywords: Stateful error detection, High throughput distributed applications,
J2EE multi-tier systems, Intelligent sampling, Hidden Markov Model.

1 Introduction

1.1 Motivation

Increased deployment of high-speed computer networks has made distributed
applications ubiquitous in today’s connected world. Many of these distributed
applications provide critical functionality with real-time requirements. These require
online error detection functionality at the application level.

Error detection can be classified as stateless or stateful detection. In the former,
detection is done on individual messages by matching certain characteristics of the
message, for example, finding specific signatures in the payload of network packets.
A more powerful approach is stateful error detection, in which the error detection
system builds up knowledge of the application state by collecting information from

2 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

multiple application messages. The stateful error detection system then matches
behavior-based rules, based on the application’s state rather than on instantaneous
information. For simplicity, we refer to stateful error detection as just detection in this
paper.

Stateful detection is looked upon as a powerful mechanism for building dependable
distributed systems [1][10]. However, scaling a stateful detection system with
increasing rate of messages is a challenge. The increasing rate may happen due to a
greater number of application components or increasing load from existing
components. The stress on the detection system is due to the increased processing
load of tracking the application state and performing rule matching. The rules can be
heavy-duty and can impose large overhead for matching. Thus the stateful detection
system has to be designed such that the resource usage, primarily computation and
memory, is minimized. Simply throwing more hardware at the problem is not enough
because applications also scale up demanding more from the detection system.

In prior work, we have presented Monitor [10] which provides stateful detection by
observing the messages exchanged between application components. Monitor has a
breaking point in terms of the rate of messages it has to process. Beyond this breaking
point, there is a sharp drop in accuracy or rise in latency (i.e., the time spent in rule
matching) due to an overload caused by the high incoming rate of messages. All
detection systems that perform stateful detection are expected to have such a breaking
point, though the rate of messages at which each system breaks will be different. For
example, the stateful network intrusion detection system (NIDS) Snort running on a
general-purpose CPU can process traffic up to 500 Mbps [15]. For Monitor, we have
observed that the breaking point on a standard Linux box is around 100 packets/sec
[10].

We have shown in previous work [11] that we can reduce the processing load of a
stateful detection system by randomly sampling the incoming messages. The load per
unit time in a detection system is given by the incoming message rate × processing
overhead per message. Thus, processing only a subset of messages by sampling them
reduces the overall load. However, sampling introduces non-determinism in the
detection system. In sampling mode, messages are either sampled (and processed) or
dropped. When a message is dropped, the detection system loses track of which state
the application is in. This causes inaccuracies in selecting the rules to match because
the rules are based on the application state (and the observed message). This leads to
lower quality of detection, as measured by accuracy (the fraction of actual errors that
is detected) and precision (the complement of false alarms).

1.2 Our Contributions

─ Intelligent Sampling: We propose an intelligent sampling technique to reduce the
non-determinism caused by sampling in stateful detection systems. This technique is
based on the observation that in an application’s Finite State Machine (FSM), a
message type can be seen as a state transition in multiple states. If the system
selectively samples and processes the messages with a high discriminating property,
i.e., ones that can narrow down which state the application is in, this would limit the
non-determinism.

How To Keep Your Head Above Water While Detecting Errors 3

─ Probabilistic State Determination: Even with the proper selection of messages,
there is remaining non-determinism about the application state. We propose a Hidden
Markov Model (HMM)-based technique to estimate the likelihood of the different
application states, given an observed sequence of messages, and perform rule
matching for only the more likely states.
─ Efficient Just-in-Time Rule Matching: We propose a technique for selectively
matching computationally expensive rules. These rules are matched only when
evidence of an imminent error is observed. Instability in the system, which is detected
through a light-weight mechanism, is taken as evidence of such an imminent error.

We show that the three techniques make Monitor scale to an application with a high
load, with only a small degradation in detection quality.

For the evaluation, we use a J2EE multi-tier application, the Duke’s Bank
application [12], running on Glassfish [13]. We inject errors in pairs of the
combination (component, method), where ‘component’ can be a Java Server Page
(JSP), a servlet, or an Enterprise Java Bean (EJB), and ‘method’ is a function call in
the component. The injected errors can cause failures in the web interaction in which
this combination is touched, for example, by delaying the completion of the web
interaction or by prematurely terminating a web interaction without the expected
response to the user. Our comparison points are Pinpoint [7] for detecting anomalies
in the structure of web interactions and Monitor with random sampling [11].

The rest of the paper is organized as follows. In Section 2 we present background
material on stateful detection. In Sections 3 and 4, we present the intelligent sampling
and HMM-based application state estimation algorithms. In Section 5 and 6 we
explain our experimental testbed, experiments and results for the intelligent sampling
and HHM-based techniques. In Section 7 we present our efficient rule matching
technique. In Section 8 we review related work and in Section 9 we present the
conclusions, limitations of this work and future directions.

2 Background

In previous work we developed Monitor, a framework for online error detection in
distributed applications [10]. Online implies the detection happens when the
application is executing. Monitor observes the messages exchanged between the
application components and thereby performs error detection under the principle of
black-box instrumentation, i.e., the application does not have to be changed to allow
Monitor to detect errors.

2.1 Fault Model

Monitor can detect any error that manifests itself as a deviation from the
application’s model and expected behavior that is given to the Monitor as input—an
FSM and a set of application-level behavior-based rules. The FSM can be generated
from a human-specified description (e.g., a protocol specification), or from analysis of
application observations (e.g., function call traces, as done here). We define a web
interaction as the set of inter-component messages that are caused by one user
request. The end point of the interaction is marked by the response back to the user. In
the context of component-based web applications, an FSM is used to pinpoint

4 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

deviations in the structure of the observed web interactions, while rules are used to
determine deviations from the expected normal behavior of application’s components.

2.2 Stateful Detection

Monitor architecture consists of three primary components, as shown in Fig. 1: the
PacketCapturer engine, the StateMaintainer engine, and the
RuleMatching engine. The PacketCapturer engine is in charge of capturing
the messages exchanged between the application components, which can be done
through middleware forwarding (as done here) or through network assist (such as,
port forwarding or using a broadcast medium). When Monitor receives a rate of
incoming messages close to the maximum rate that it can handle, the
PacketCapturer is responsible for activating a sampling mechanism to reduce the
workload for state transition and rule matching [11].

An incoming message
into Monitor may be
sampled, meaning, it
will be processed (by
performing a state
transition and matching
rules based on that
message), or it may be
dropped. In random
sampling, messages are
sampled randomly
without looking at the
type or content of the
message. As shown in

[10], under non-sampling conditions, Monitor’s accuracy and precision suffer when
the rate of incoming messages goes above a particular point which is denoted as Rth.
Therefore, random sampling is activated at any rate R > Rth, in which Monitor drops
messages uniformly.

Sampled messages are passed to the StateMaintainer engine to perform state
transitions according to the FSM. For each received message, the
StateMaintainer engine is in charge of determining which states the application
may be in. This is called the state vector and represented by ω. Here, the events are
messages from the application that are observed at Monitor. When Monitor is in non-
sampling mode, the state vector typically contains only one state (|ω|=1) since
Monitor has an almost-complete view of the events generated in the application—
some states that do not involve externally visible messages will not be revealed to
Monitor, thus ω will not always reflect the current state of the application. However,
when sampling mode is activated, Monitor loses track of the actual state of the
application since it is not observing every event generated by the application. Then, ω
becomes a set of the possible states in which the application can be in. Once a
message m is sampled, ω is updated. This is performed by observing (in the FSM) the
new state (or states) to where the application could have moved, from each state in ω
given m. We define this mechanism as pruning the state vector and it is explained in

Fig. 1. Monitor architecture. One-sided and two-sided arrows

show unidirectional and bidirectional flow of information
respectively. Gray boxes indicate new components added to

Monitor in this work.

State
Maintainer

Engine

Rule
Matching

Engine

FSM
Database

Rule
Database

Monitor

Packets Intelligent
Sampling
Random
Sampling

HMM µ

Packet Capturer
Engine

ω Alarmsmsg

How To Keep Your Head Above Water While Detecting Errors 5

further detail in Section 3.1. Typically, when ω is pruned, its size is reduced. The
RuleMatching engine is responsible for matching rules associated with the state(s)
in ω. In previous work [10] we developed a syntax for rule specification for message-
based applications. We now extend the syntax to be more flexible so that it can be
applied more naturally to RPC-style component-based applications. For detecting
performance problems in distributed applications, we use a set of temporal rules that
characterize allowable response time of subcomponents, i.e., the lower bound and
upper bound for response time of each subcomponent. We consider that the issue of
how to generate appropriate rules is outside the scope of this paper. If
RuleMatching engine determines that the application does not satisfy a rule, we
say the rule is flagged, implying the error is detected.

A challenge in Monitor, when performing random sampling, is to maintain high
levels of accuracy and precision even while dropping messages. Due to the
randomness of the sampling approach proposed in [11], we obtained a maximum
accuracy of 0.7 when detecting failures in TRAM, a reliable multicast protocol.
Systems running critical services often demand higher levels of accuracy while
having low detection latency.

2.3 Building FSM from Traces

We build an FSM for the Duke’s Bank Application from traces when the application
is exercised with a given workload. A state Si in the FSM is defined as a tuple
(component, method). In the rest of the paper we use the term subcomponent to denote
the tuple (component, method). This level of granularity allows Monitor to pinpoint
performance problems or errors in particular methods, rather than only in
components. A state change is caused by a call or return event between two
subcomponents. We create the FSM by imposing a workload on the application which
consists of as nearly an exhaustive list of transactions supported in the application as
possible. We cannot claim this is exhaustive since it is manually done and no rigorous
mechanism is used to guarantee completeness. When we generate application traces,
no error injection is performed and we assume that design faults in the application, if
any, are not activated, an assumption made in many learning-based detection systems
[4][7][16]. For large-scale distributed applications, the traces may grow large, but this
does not pose a significant problem because the process is offline and traces can be
stored on tertiary storage and parts of them can be cached in an as-needed basis.

3 Handling High Streaming Rates: Intelligent Sampling

3.1 Sampling in Monitor

With increasing incoming message rates, Monitor opts for sampling (and dropping)
messages to maintain acceptable detection latency. When a message is dropped,
Monitor cannot determine the correct application state, resulting in an undesirable
condition, which we call state non-determinism. As an example, consider an FSM
fragment in Fig. 2. Suppose that the application is in state SA at time t1, and that a
message is dropped. From the FSM, Monitor determines that the application can be in

6 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

state SB or state SC, so the state vector ω = {SB, SC}. If another message is dropped at
time t2, ω grows to {SB, SD, SE, SF}.

Monitor’s RuleMatching engine matches rules for all the states in ω. To avoid
matching rules in incorrect states, Monitor prunes invalid states from the state vector
once a message is sampled. For example, if the current state vector is {SB, SC} and
message m2 is sampled, the state vector is reduced to {SB} because this is the only
possible transition from any state in the state vector given the event m2, assuming that
the sampled message is not erroneous. The HMM-based algorithm (Section 4)
handles the case when the sampled message may be erroneous.

A large state vector increases the
computational cost since a larger number of
potentially expensive rules have to be matched
leading to high detection latency. For example,
an expensive rule we encounter in practice is
checking consistency of multiple database
tables. Worse, a large and inaccurate state
vector degrades the quality of detection
through an increase in false alarms and missed
alarms. Our goal is then to keep the state
vector size bounded so that the detection
latency does not exceed a threshold (Lth), and
the detection quality stays acceptable.

3.2 Intelligent Sampling Approach

We hypothesize that sampling based on some inherent property of messages from
the FSM can lead to a reduction in the state vector size when pruning is performed.
We have observed that messages in the application have different properties with
respect to the different transitions in the FSM that they appear in. For example, some
messages can appear in multiple transitions while others appear in only one. Suppose
for example that state vector ω = {SB, SC} at time t2 following Fig. 2. If m3 is sampled,
StateMaintainer would prune ω to {SD}, while if m4 is sampled, ω would be
pruned to {SE, SF}. Thus, the fact that m3 appears in one transition while m4 appears in
two ones, makes a difference to the resulting state vector. We say therefore that m3
has a more desirable property than m4 in terms of sampling.

We use an intelligent sampling approach whereby all incoming messages are
observed, and a subset of messages with a desirable property is sampled; the others
are dropped. A message is observed by determining its type at the application level,
which determines the transition in the FSM. For our application, type is given by the
combination (component, method, call|return). Let us define discriminative size dm as
the number of times a message m appears in a state transition to different states in the
FSM. In the intelligent sampling approach, a message with a small dm is more likely
to be sampled. The discriminative sizes of all messages can be determined by
considering the message labels on edges that are incoming into the states of the FSM.

3.3 Intelligent Sampling Algorithm

Fig. 2. A fragment of a Finite State
Machine (FSM) to demonstrate non-
determinism introduced by sampling.

SA

SC

SE

SD

SF

m1

m3

m4

m6

m4

SB

m2

…

…

…

…
time

t1 t2 t3

How To Keep Your Head Above Water While Detecting Errors 7

To guarantee that the rate of messages processed by Monitor is less than Rth, it
samples n messages in a window of m messages, where n < m and the fraction n/m is
determined by the incoming message rate. Now, given a window of m messages,
which particular messages should Monitor sample? Ideally, Monitor should wait for n
messages with a discriminative size less than a particular threshold dth. However,
since we do not know in advance what the discriminative sizes of messages in the
future will be, Monitor could end up with no sampled messages at all by the end of
the window. To address this, Monitor tracks the number of messages seen in the
window and the number of messages already sampled in counters numMsgs and
numSampled respectively. If Monitor reaches a point where the number of remaining
messages in the window (m − numMsgs) is equal to the number of messages that it
still needs to sample (n − numSampled) all the remaining messages (m − numMsgs)
are sampled without looking at their discriminative sizes. We call this point the last
resort point. Before reaching the last resort point, Monitor samples only those
messages with discriminative sizes less than dth; after that, it samples all remaining
messages in the window. Because of lack of space we omit the pseudocode of the
intelligent sampling algorithm. The interested reader can find the pseudocode in [22].

4 Reducing Non-Determinism: HMM-based State Vector
Reduction

There are two remaining problems when pruning the state vector with the intelligent
sampling approach. First, when a message is sampled and the state vector is pruned,
the size of the new state vector can still be large making detection costly and
inaccurate. This situation arises if the FSM has a large number of states and the FSM
is highly connected, or if highly discriminative messages are not seen in a window.
The second disadvantage is that if the sampled message is incorrect, Monitor can end
up with an incorrect state vector—a state vector that does not contain the actual
application’s state. An incorrect message is one that is valid according to the FSM,
but is incorrect given the current state. For example, in Fig. 2, if state vector ω = {SB,
SC}, only messages m2, m3, and m4 are correct messages. Incorrect messages can be
seen due to a buggy component, e.g., a component that makes an unexpected call in
an error condition. To overcome these difficulties, we propose the use of a Hidden
Markov Model to determine probabilistically the current application state.

4.1 Hidden Markov Model

A Hidden Markov Model (HMM) is an extension of a Markov Model where the
states in the model are not observable. In a particular state, an outcome, which is
observable, is generated according to an associated probability distribution.

The main challenge of Monitor, when handling non-determinism, is to determine
the correct state of the application when only a subset of messages is sampled. This
phenomenon can be modeled with an HMM because the correct state of the
application is hidden from Monitor while the messages are observable. Therefore, we
use an HMM to determine the probability of the application being in each of its states.

An HMM is characterized by the set of states, a set of observation symbols, the state
transition probability distribution A, the observation probability distribution B (given

8 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

a state i, what is the probability of observation j), and the initial state probability
distribution π. We use λ = (A, B, π) as a compact notation for the HMM.

We used the Baum-Welch algorithm [24] to estimate HMM parameters to model the
Duke’s Bank application. The HMM is trained with the same set of traces used to
build the application FSM. More details about the estimation of the HMM parameters
can be found in [22].

4.2 Algorithm for Reducing the State Vector using HMM

We have implemented the ReduceStateVector algorithm (Fig. 3) for reducing
the state vector using an HMM. When Monitor samples a message, it asks the HMM
for the k most probable application states. Monitor then intersects the previous state
vector with the set of k most probable states. Then an updated state vector is
computed from the FSM using pruning (as defined in Section 2.2), i.e., by asking the
FSM that given the set of states from the intersection and the sampled message, what
are the possible next states.

The HMM is implemented in
Monitor in the frontend thread, the
PacketCapturer. Thus, the
HMM observes all messages since
they are needed to build complete
sequences of observations.

The ReduceStateVector
algorithm consists of three steps:
─ Step 1: Calculate what is the
probability that, after seeing a
sequence of messages O, the
application is in each of the
possible states s1, … sN? This is
expressed as P(qt = si | O, λ). This
step produces a vector of
probabilities µt (lines 1−3).
─ Step 2: Sort the vector µt by the
probability values. This produces a
new vector of probabilities αt (line
4).
─ Step 3: Compute a new state
vector ωt+1 as the intersection of
the current state vector ωt and the
top k elements in αt. By using a
small k, Monitor is able to reduce
the state vector to few states. If the
intersection of ωt and αt is null, we
take the union of the two sets. This
is a safe choice because having the

intersection of ωt and αt equal to null implies that either the HMM or ωt is

Fig. 3. Pseudocode for reducing state vector using
HMM’s estimate of probability of each application

state.

ReduceStateVector computes a new
state vector based on: the HMM, an
observation sequence and a previous state
vector.
Input: λ: Hidden Markov Model; O:
observation sequence O = {O1, O2,…,Ot};
ωt: application’ state vector at time t; k:
Filtering criteria for the number of
probabilities estimated by the HMM.
Output: ωt+1
Variables: µt: probability vector µt = {p1,
p2,…,pN}, where pi = P(qt = si | O, λ), for all
i in S={s1,…,sN} (the states in the FSM) and
qt is the state at time t; αt: sorted µt.

ReduceStateVector(λ, O, ωt, k):
1. µt←∅
2. For each i in S
3. Add P(qt = si | O, λ) to µt
4. αt ← sort(µt) by pi
5. I←∅
6. I← ωt ∩ αt[1…k]
7. if (I = ∅) then
8. ωt+1 ←ωt ∪ αt[1…k]
9. else
10. ωt+1 ← I
11.returnωt+1

How To Keep Your Head Above Water While Detecting Errors 9

incorrect. We acknowledge that if both HMM and state vector are incorrect, this
scheme will not work. However, proper training of the HMM makes a concurrent
error highly unlikely, and one that never occurred in any of our experiments. This
step is executed in lines 5-11.

Fig. 4 shows points in time when the algorithm is invoked in StateMaintainer.
FSMLookup(ω, n) calculates the new state vector from ω given that n consecutive
messages have been dropped (as explained in Section 3.1).

The time complexity of the
algorithm is proportional to the
time in computing P(qt = si |O, λ)
for all the states, the time to sort
the array µt, and the time to
compute the intersection of ωt
and the top k elements in αt. The
vector µt can be computed in
time O(N3T), where N is the
number of states in the HMM
(and the FSM), and T is the
length of the observation
sequence O. Sorting µt can be
performed in O(N log N), and the
intersection of ωt and αt[1…k]

can be performed in O(Nk). Hence, the overall time complexity is O(N3T).

5 Experimental Testbed

5.1 J2EE Application and Web Users Emulator

We use the J2EE Duke’s Bank Application [12] running on Glassfish v2 [13] as our
experimental testbed. Glassfish has a package called CallFlow that provides a
central function for Monitor—a unique ID is assigned to each web interaction. It also
provides caller and called component and methods, without needing any application
change.

To evaluate our solutions in diverse scenarios such as high user request rates and
multiple types of workload, we developed WebStressor, a web interactions emulator.
WebStressor takes different traces and replays them by sending each message to the
tested detection systems. Each trace contains sequences of web interactions that
would be seen in CallFlow when a user of Duke’s Bank application is executing
multiple operations. WebStressor also has error injection capabilities which are
explained in Section 6.3.

5.2 Pinpoint Implementation

We implemented Pinpoint [7] that proposes an approach for tracing paths through
multiple components, triggered by user requests. A Probabilistic Context Free
Grammar (PCFG) is used to model normal path behavior and to detect anomalies

Fig. 4. Example of points in time when the
ReduceStateVector algorithm is invoked.

Time Operations in Monitor

t11 Dropped message
ωt10 ← ReduceStateVector(λ, O, ωt10, k)
ωt11 ← FSMLookup(ωt10 , 1 dropped message)

...

t16 m16 is sampled
ωt15 ← ReduceStateVector(λ, O, ωt15, k)
ωt16 is pruned from ωt15 given m16

... (Sampled messages. Last sampled
message at time t10.)

(Dropped messages. Last dropped
message at time t15.)

10 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

whenever a path’s structure does not fit the PCFG. A PCFG has productions
represented in Chomsky Normal Form (CNF) and each production is assigned a
probability after a training phase. Pinpoint-PCFG is trained using the same traces
from Duke’s Bank that are used to build the FSM and to train the HMM. We call this
implementation Pinpoint-PCFG in the paper.

6 Experiments and Results

In this section we report experiments to evaluate the performance of Monitor and
compare it with that of the Pinpoint-PCFG algorithm. When we refer to Monitor, we
mean baseline Monitor [10], with the addition of two techniques intelligent sampling
and HMM. The machines used have 4 processors, each an Intel Xeon 3.4 GHz with
1024 MB of memory and 1024 KB of L1 cache. All experiments are run with
exclusive access to the machines. We show 95% confidence intervals for some
representative plots, but not all, to keep the graphs readable.

6.1 Benefits of Intelligent Sampling

We run experiments to verify our hypothesis that intelligent sampling helps in
reducing the size of the state vector ω. For this, we run WebStressor with a fixed
moderate user load (8 concurrent users) and with no error injection. When a message
is dropped, ω increases or stays constant. When a message is sampled, ω is pruned
and it is passed to the RuleMatching engine.

(a) (b)

Fig. 5. Performance results when comparing Monitor random sampling and intelligent
sampling. (a) Sampled values of state vector ω for Monitor with random and intelligent
sampling; (b) CDF for the pruned state vector ω with random and intelligent sampling.

In each mode, we obtained 3337 sample values of ω’s size. Fig. 5(a) shows 100
snapshots of these values for Random Sampling (RS) and Intelligent Sampling (IS)
modes. Here the size of ω is shown for every message arriving at Monitor. The high-
peaks pattern that we observe in RS mode is due to the deficiency of random
sampling in selecting messages with small discriminative size. In contrast we do not
observe this pattern in IS mode, because it preferentially samples the discriminating
messages, producing smaller pruned state vectors ω.

10 20 30 40 50 60 70 80 90 100
0

10
20
30

Discrete Time

S
ta

te
 V

ec
to

r S
iz

e Random Sampling

10 20 30 40 50 60 70 80 90 100
0

10
20
30

Discrete Time

S
ta

te
 V

ec
to

r S
iz

e Intelligent Sampling

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Pruned State Vector Size

C
D

F
of

 s
iz

e
of

 ω

Random Sampling
Intelligent Sampling

How To Keep Your Head Above Water While Detecting Errors 11

Next, we measure ω’s size only after it is pruned. Recall that the pruned state vector
ω is the one used for rule instantiation and matching. Hence, it is at this point that it is
critical to have a small ω. Fig. 5(b) shows the cumulative distribution function (CDF)
for the observed values of ω’s size. In IS mode, ω’s size of 1 has a higher frequency
of occurrence (about 83%) than in RS mode (60%). In contrast, all ω’s size values > 1
have higher frequency of occurrence in RS than in IS. After being pruned, ω can have
a maximum size of 7. This is due to the nature of Duke’s Bank application in which
the maximum discriminative size of a message is 7.

6.2 Definition of Performance Metrics

We introduce the metrics that we use to evaluate detection quality. Let W denote the
entire set of web interactions generated in the application in one experimental run. For
W, we collect the following variables, I: out of W, the web interactions where faults
were injected; D: out of W, the web interactions in which Monitor detected a failure;
C: out of I, the web interactions in which Monitor detected a failure (these are the
correct detections).

Based on these variables, we calculate two metrics:

Accuracy = |C| / |I|; Precision = |C| / |D|

Accuracy expresses how well the detection system is able to identify the web
interactions in which problems occurred, while precision is a measure of the inverse
of false alarms in the system.

Another performance metric is the latency of detection. Let Ti denote the time when
a fault is injected and Td the time when the failure caused by the injected fault is
detected by the detection system. We define detection latency as Td – Ti. When a
delay δ is injected (emulating a performance problem in a component of the
application), δ is subtracted from the total time since it represents only a characteristic
of the injected fault and not the quality of the detection system.

6.3 Error Injection Model

Errors are injected by WebStressor at runtime when mimicking concurrent users.
This results in errors in the application traces which are fed to the detection systems.
We inject four kinds of errors that occur in real operating scenarios:

1. Response delay: a delay d is selected randomly between 100 msec and 500 msec,
and is injected in a particular subcomponent. This error simulates subcomponent’s
response delays due to performance problems.

2. Null Call: a called subcomponent is never executed. This error terminates the web
interaction prematurely and the client receives a generic error report, e.g., HTTP
500 internal server error.

3. Runtime Exception: an undeclared exception, or a declared exception that is not
masked by the application, is thrown. As in null calls, the web interaction is
terminated prematurely and the client receives an error report.

4. Incorrect Message Sequences: an error that occurs for which there is an exception
handler that invokes an error handling sequence. This sequence changes the normal
structure of the web interaction. We emulate this by replacing the calls and returns

12 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

in N consecutive subcomponents. The value of N is selected randomly between 1
and 5.

Of these, Pinpoint-PCFG cannot detect response delay errors. We perform
comparative evaluation of Monitor with Pinpoint-PCFG for the other error types.

6.4 Detecting Performance Problems

We inject delays to simulate performance problems in the set of 5 subcomponents
listed in Table 1. A category of errors that is difficult to detect is transient errors—
those that are caused by unpredictable random events and that are difficult to
reproduce and isolate. We want to test Monitor in detecting this category of errors. In
order to mimic this scenario in our injection strategy, we inject delays only 20% of
the time a subcomponent is touched in a web interaction.

Before running the
experiment, we
determine the best set of
parameter values in
Monitor. We generate
ROC (Receiver
Operating Characteristic)
curves by varying their
configuration parameters
(i.e., number of rules)

and the imposed load of
users to the application.
Then, we select the
operational point as the
one closest to the ideal
point (0, 1); in case of a
tie, we use the point with
the better precision.
Because of lack of space
we omit the ROC curves;

however, the reader can refer to [22] for these.
For the performance delay rules, first, we measure the average (µ) and standard

deviation (σ) of the response time from the components in the application during the
training phase. We then create rules with the following thresholds for response times
in each component: µ±σ, µ±2σ and µ±3σ.

Fig. 6 shows the results of this experiment. We observe that using µ±2σ provides
the best combination of accuracy and precision. For rule types µ±σ and µ±2σ we
observe a decrease in accuracy of about 10% as concurrent users are increased from 4
to 16, and an increase in the same order of magnitude as users are increased to 24.
The reason for the increase in accuracy is due to the precision rate that decreases
rapidly after 16 concurrent users. Because of the large rate of false alarms generated
after this point, accuracy is increased as a trade-off.

Table 1. List of subcomponents (component, method) in
which performance delays are injected

Fig. 6. Accuracy and precision of Monitor in detecting

performance delays for three type of rules.

Name Method Type of Component
AccountControllerBean createNamedQuery EJB

TxControllerBean deposit EJB
/template/banner.jsp JspServlet.service servlet

/bank/accountList.faces FacesServlet.service servlet
/logon.jsp JspServlet.service servlet

4 8 12 16 20 240

0.2

0.4

0.6

0.8

1

Concurrent Users

Ac
cu

ra
cy

µ ± σ
µ ± 2σ
µ ± 3σ

4 8 12 16 20 240

0.2

0.4

0.6

0.8

1

Concurrent Users

Pr
ec

is
io

n

µ ± σ
µ ± 2σ
µ ± 3σ

How To Keep Your Head Above Water While Detecting Errors 13

We also evaluate the performance of random and intelligent sampling in detecting
performance delays. For this experiment, we use similar definitions for accuracy and
precision as in the previous experiments, but we change the granularity of detection
from web interactions to individual subcomponents. Detection at the level of a
subcomponent is helpful in diagnosis—finding the root cause of the problem—since it
helps in pinpointing suspect subcomponents. The results are shown in Fig. 7(f). We
observe that accuracy and precision are higher for IS for most loads (4−16 concurrent
users). Although, for high loads (20 and 24 users), random and intelligent sampling
exhibit almost the same (poor) performance.

6.5 Detecting Anomalous Web Interactions

We evaluate Monitor’s performance in detecting anomalous web interactions by
injecting null calls, runtime exceptions and incorrect message sequences. We also
evaluate Pinpoint-PCFG’s performance here.

Monitor detects anomalous web interactions at the StateMaintainer. If an
event is unexpected according to the current state in Monitor’s state vector, an error is
flagged. This avoids the need for explicit rules for this type of detection. For the
Duke’s Bank application, if the correct state is Sc and the state vector after a message
is sampled and pruning is completed, is ω, then we find empirically that in all cases Sc
∈ ω. Thus, a detection happens at Monitor only if the message is incorrect, i.e., there
is an actual fault. This gives a precision value of 1 for Monitor’s detection of
anomalous web interactions in Duke’s Bank.

We empirically determine the best value of parameter k for the HMM-based state
vector reduction algorithm. Fig. 7(a) shows Monitor running with different values of
k while we inject anomalous web interactions. Parameter k=0 represents Monitor
running without HMM. We observe that, with no HMM, in both low and high loads,
accuracy is very low (about 0.4). Since Monitor with k > 0 performs better than with k
= 0, this validates our design choice of using an HMM. In high load, two conditions
cause Monitor to have a decreasing accuracy with increasing k. Monitor samples less
often leading to an increase in the size of ω. With large k, few states get pruned and if
the observed erroneous message is possible in any of the remaining states of ω, the
error is not detected. Second, when the erroneous message may not be sampled, the
HMM is particularly important. Increasing k effectively reduces the impact of the
HMM, since even states with low probabilities given by the HMM are considered.

For the remaining experiments, we use k=1 as it allows Monitor to have the best
accuracy in both low and high load. We determine the best configuration parameter
setting for Pinpoint-PCFG to get ROC curves under low and high loads. Pinpoint-
PCFG’s ROC curves can be found in [22].

Fig. 7(b)−(c) show the results for accuracy and precision of Monitor and Pinpoint-
PCFG. We observe that on average, Monitor’s accuracy is comparable to that of
Pinpoint-PCFG. In Monitor, accuracy decreases for higher loads due to dropping
more messages in a sampling widow. As the load increases, Pinpoint-PCFG maintains
a high accuracy because it is not dropping messages—messages are being enqueued
for eventual processing. However its latency of detection suffers significantly in high
loads—it is in the order of seconds (Fig. 7(e)) while in Monitor it is in the order of
milliseconds (Fig. 7(d)).

14 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

(a) (b) (c)

(d) (e) (f)

 Fig. 7. Performance results for Monitor and Pinpoint when detecting anomalous web
interactions. (a) Accuracy in Monitor when varying parameter k in the HMM-based state vector

reduction algorithm; (b)−(c) Accuracy and precision for Monitor and Pinpoint-PCFG;
(d)−(e)Detection latency for Monitor and Pinpoint-PCFG; (f) Accuracy and Precision for

Random Sampling and Intelligent Sampling for performance delay errors.

 We observe the robustness of Pinpoint-PCFG to false positives as it maintains on
average almost the same precision (0.9) with increasing number of users. However,
the precision in Pinpoint-PCFG is lower than that in Monitor of 1.0.

The high detection latency in Pinpoint-PCFG is due to the fact that the parsing
algorithm in the PCFG has time complexity O(L3) and space complexity O(RL2),
where R is the number of rules in the grammar and L is the size of a web interaction.
In the Duke’s Bank application we observe that the maximum length of a web
interaction is 256 messages, and the weighted average size is 70. Previous work [14]
has shown that the time to parse sentences of length 40 can be 120 seconds even with
optimized parameters. Moreover, in Pinpoint-PCFG, error detection can only be
performed after the end of web interactions which also explains longer detection
latencies than in Monitor. Another cause of the high latency in Pinpoint-PCFG is the

large amount of virtual memory
that the process takes (933.56 MB
for a load of 24 concurrent users as
shown in Table 2). This makes the
Pinpoint-PCFG process thrash.

To look into the issue of memory
consumption further, we measure
average memory consumption for

Monitor and Pinpoint-PCFG under a load of 24 concurrent users. Physical and virtual
memory usage are collected every 5 seconds by reading the /proc file system and
averaged over the duration of each experimental run. Table 2 shows the results of
this experiment.

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Parameter k

Ac
cu

ra
cy

Low Load
High Load

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Concurrent Users

Ac
cu

ra
cy

Monitor
Pinpoint-PCFG

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Concurrent Users

Pr
ec

is
io

n

Monitor
Pinpoint-PCFG

4 8 12 16 20 24
0

50

100

150

200

Concurrent Users

D
et

ec
tio

n
La

te
nc

y
(m

se
c)

Monitor

4 8 12 16 20 24
0

50

100

150

200

Concurrent Users

D
et

ec
tio

n
La

te
nc

y
(s

ec
)

Pinpoint-PCFG

4 8 12 16 20 240

0.2

0.4

0.6

0.8

Concurrent Users

RS-Accuracy
IS-Accuracy
RS-Precision
IS-Precision

Table 2. Memory consumption for the compared
systems

Virtual Memory Memory in RAM
Monitor 282.27 25.53
Pinpoint-PCFG 933.56 696.06

Average Memory Usage (MB)

How To Keep Your Head Above Water While Detecting Errors 15

7 Efficient Rule Matching

7.1 Motivation

We present a technique for selectively matching computationally expensive rules in
Monitor, thereby allowing it to operate under higher application message loads. The
technique is based on the observation that the computationally expensive rules do not
have to be matched all the time. Rather they can be matched when there is evidence of
system instability. Previous work [21] has shown that errors are more likely when
instability in the system is observed. For example, an increasing average response
time in a web server may indicate an imminent failure because of resource
exhaustion. Therefore, we use a light-weight mechanism of determining system
instability to trigger the computationally expensive rules.

Many rules can be computationally expensive both in time and space. For example,
a pattern matching rule such as calculating the convolution of two signals, as
presented in [8], requires long computations, while matching strings with probabilistic
context free grammars, as in Pinpoint [7], demands a large amount of memory space.
For other rules, the system requires to re-train its model for detecting anomalies based
on newly observed data, as in semi-supervised learning techniques [23]. The re-
training is often quite expensive.

7.2 Selective Rule Matching Approach

We propose an approach for matching computationally expensive rules if evidence
of instability is observed in the system. Instability can be observed by measuring
different metrics in the application or the underlying middleware, for example,
response time, memory, or CPU usage. Manifestation of instability can be in the form
of abrupt changes in the measurements (either increasing or decreasing), or in
fluctuations in the measurements.

Our approach for selectively matching rules is as follows. Let Ct denote the
condition of the system at time t. Thus, Ct can take one of two conditions of the set
{stable, unstable}; let {c+, c−} denote these conditions. Suppose that at time t, a
message mt is observed, a rule R has to be matched, and a sequence of the n
previously observed messages {mt-n , mt-n+1 ,…, mt-1} are kept in a buffer B. Then, if Ct
= c−, R is matched, otherwise, B becomes {mt-n+1,…, mt} and Monitor waits for the
next message to arrive.

The main challenge in this approach is to infer and use an accurate classifier
function F mapping the universe of possible messages (i.e., system-level
measurements) to the range of system conditions C, so that the probability of catching
an error when Ct = c− and the rule R is matched is maximized. A complete study for
addressing this challenge is out of the scope of this paper and will be pursued in
future work. However, we present an example in which this technique is used in
Monitor for detecting a memory leak in the Apache Tomcat web server [17] by using
a simple estimator of instability.

7.3 Memory Leak Injection

16 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

 We instrumented the Apache Tomcat
web server to inject a memory leak
dynamically. Upon receiving a request, an
unused object is created with probability
pleak in the server’s thread-pool, and it is
kept referenced so that it is not taken by
the Java garbage collector. The result is an
increase in memory usage that can be
observed from the Java process running
the server.

We perform experiments to observe the
pattern of memory consumption of the
web server in both normal conditions and
when the memory leak is injected. We use
a testbed of an e-commerce site that

simulates the operation of an online store as specified by the TPC-W benchmark [18].
We use the benchmark WIPSo mixture (50% browsing and 50% ordering) that is
intended to simulate a web site with a significant percentage of order requests.

Fig. 8 shows the results of the experiment when the probability pleak of the memory
leak injection is set to 0.5, and when a load of 50 concurrent users is imposed.
Memory measurements are taken in a fixed interval of 1 second for a window of 10
minutes after the server is started.

7.4 Rule for Detecting Memory Leak Error

Previous work on software rejuvenation [19] has proposed the use of time series
analysis to model memory usage patterns in the Apache web server. In this paper, we
use time series analysis to build rules that are able to pinpoint a memory leak. In
particular, the web server memory consumption is modeled as an autoregressive (AR)
moving average (MA) process ARMA(p, q). This process is formally defined as
follows [20]:

• A memory usage measurement Xt is an ARMA(p, q) process if for every time t,

௧ܺ ൌ ܥ ൅ ∑ ߮௜ܺ௧ି௜
௣
௜ୀଵ ൅ ௧ߝ ൅ ∑ ௧ି௜ߝ௜ߠ

௤
௜ୀଵ ,

where εt is the error term, C is a constant, and {ϕ1, …, ϕp} and {θ1, …, θp} are
the parameters of the model.

• The error term εt is considered to be white noise, i.e., independently and
identically distributed with mean 0 and variance σ2.

We collect training data in several runs of the Apache Tomcat server for generating
two ARMA(p, q) models λ and λ′ that represent memory usage under normal
conditions and memory leak conditions respectively. The models are inferred by
maximum likelihood estimation by using the statistical tool R. To estimate the
number of p and q parameters that best fit the models, while keeping the number of
parameters small, we vary p and q over 1, 2, and 3. We then select the values of p
and q that produce the minimum root-mean-square (RMS) error when comparing test
data and new data generated with the models. For this, test data is labeled as being

Fig. 8. Percentage of memory usage of

the Apache Tomcat web server under
normal conditions and with a memory leak
fault injection.

0

5

10

15

20

25

30

0 2 4 6 8 10

M
em

or
y

us
ag

e
(%

)

Time (min.)

Normal usage
Memory leak

How To Keep Your Head Above Water While Detecting Errors 17

normal or erroneous when selecting the parameters in λ and λ′ respectively. For our
test-bed, p=3 and q=2 resulted in the best configuration for the models.

7.5 Rule Matching Latency Reduction

After the two models λ and λ’ are trained, we build a rule for detecting the memory
leak in the web server by observing to which model the test data fits better. The rule
takes as input a sequence A of n old observed messages, and a sequence B of n new
observed messages in which it will look for errors. Then, two simulated sequences S
and S’ are generated by using the two models λ and λ′ respectively on observations A.
Finally, S and S’ are compared to B by measuring the RMS error. If B fits better with
S’, an error is flagged by the rule indicating a possible memory leak.

We detect instability in the system by measuring the standard deviation σ of the m
previous observed memory consumption values and if it is greater than a threshold Pth

we conclude Ct = c−, the rule is matched.
Table 3 shows the results for 3 different configurations in Monitor when the

memory leak is injected in the web server. For the three experiments, n=10, m = 5,
and the same workload that we used for training is imposed on the web server. The
initial values of 0.5 and 1.0 for σ are taken from the average standard deviation
observed in the training data set for the web server running under normal conditions
which is around 1.2 % of memory usage. This confirms that, in normal conditions,
memory usage variation is much less than in unstable conditions.

We notice that when the rule is
always matched, the average latency
is the maximum as expected, and as
we increase σ, the latency decreases.
This is due to an inherent reduction
in the chances of matching the
ARMA-based rule which is more
computationally expensive than
evaluating σ. However, if σ is too
low, the error may be missed since
the ARMA-rule may not be matched

at all, as is the case when σ=1.0.
Detection of the memory leak presented here can be done by many other profiling

tools. The point behind this experiment is not to claim any novel detection capability.
Rather, it is to show how instability can be used to trigger more computationally
expensive rule matching.

8 Related Work

Error Detection in Distributed Systems: Previous approaches of error detection in
distributed systems have varied from heartbeats to watchdogs. However, these
designs have looked at a restricted set of errors (such as, livelocks) as compared to
our work, or depended on alerts from the monitored components.

Table 3. Detection coverage and average rule
matching delay for the ARMA-based rule.

Rule Matching
Criteria

Memory Leak
Detected

Average Matching
Latency (msec.)

Always matched yes 19.283

σ ≥ 0.5 yes 7.115
σ ≥ 1.0 no 1.25

18 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

A recent work closely related to ours is Pinpoint [7]. Authors present an approach
for tracing paths from user requests and use a Probabilistic Context Free Grammar
(PCFG) to model normal path behavior as seen during a training phase. A path’s
structure is then considered anomalous if it significantly deviates from a pattern that
can be derived from the PCFG. Pinpoint however does not consider the problem of
dealing with high rates of requests. We provide a comparative evaluation of Monitor
with Pinpoint in Section 6.5. A variant of the Pinpoint work [16] uses a weighting for
long web interactions so that they are not mistakenly flagged as erroneous. This
weighting seems less useful for Duke’s Bank since the probabilities for the less likely
transitions differ significantly from the expected probability. This work also uses an
additional parameter (α) to pick a particular point in the false alarm-missed alarm
spectrum. We believe that an equivalent effect is achieved through our ROC-based
characterization.
Performance Modeling and Debugging in Distributed Systems: There is recent
activity in providing tools for debugging problems in distributed applications, notably
Project5 [8][9] and Magpie[6]. These approaches provide tools for collecting trace
information at different levels of granularity which are used for automatic analysis,
often offline, to determine the possible root causes of the problem.

Project5’s main goal is detecting performance characteristics in black-box
distributed systems. In [8] models for performance delays on RPC-style and message-
based application for LAN environments are proposed—authors focus on finding
causal path patterns with unexpected timing or shape. In [9] authors present an
algorithm for performance debugging in wide-area systems. We determined that this
work’s focus is on determining the performance characteristics of different
components in a complete black-box manner. Since Project 5 does not assume a
uniform middleware, such as J2EE, it cannot assign a unique identifier to all messages
in a causal path as they occur. We use the GlassFish-assigned unique identifier to a
path of causal request-responses. In our work, we use both these features. However,
Project5's accuracy suffers greatly when detecting anomalous patterns under
concurrent load (in fairness, this is not the goal of the work either). Therefore, we did
not perform a quantitative comparison with Project5 for detecting performance
problems (in Section 6.4).

The Magpie project [6] is complementary to our work—it is a tool that helps in
understanding system behavior for the purposes of performance analysis and
debugging in distributed applications. Magpie collects CPU usage and disk access for
user requests as they travel though the system components. These workload models of
request behavior can be used in Monitor to specify performance-based rules.
Stateful Intrusion Detection in High Throughput Streams: In the area of intrusion
detection, techniques have been proposed to allow network-based intrusion detection
systems (NIDS) to keep up with high network bandwidths by parallelizing the
workload [1] and by efficient pattern matching [2]. Although distributing the
detection load in multiple machines helps, this does not solve the fundamental
problem of how to manage the resource usage in individual machines, which we
address.
Sampling Techniques for Anomaly Detection: Recently there is an increased effort
in finding network failures, anomalies and attacks through changes in high-speed
network links. For example, in [3] authors propose a sketch-based approach, where a

How To Keep Your Head Above Water While Detecting Errors 19

sketch is a set of hash tables that models data as a series of (key, value) pairs; key can
be a source/destination IP address, and the value can be the number of bytes or
packets. A sketch can provide accurate probabilistic estimates of the changes in
values for a key. Sampling has also been used in high-speed links as input for
anomaly detection [4], for example, for detecting denial-of-service (DoS) attacks or
worm scans. However, some studies show that these sampling techniques introduce
fundamental bias that degrades performance when detecting network anomalies [5].
Our work matches rules based on aggregated information at the application level,
while this work matches rules based on network level traffic statistics of the traffic.

9 Conclusions and Limitations

This paper presents an intelligent sampling algorithm and an HMM-based technique
to enable stateful error detection in high throughput streams. The techniques are
applied and tested in the Monitor detection system and provide a high quality of
detection (accuracy and precision) for a range of real-world errors in distributed
applications with low detection latency. It compares favorably to an existing detection
system for distributed component-based systems called Pinpoint. We also present a
technique to optimize the cost of matching computationally expensive rules for
detecting resource exhaustion. Our technique relies on triggering the expensive rules
only on detecting, through lightweight means, evidence of system instability.

The techniques were tested successfully in Dukes’s Bank (an online banking
application) and in the Apache Tomcat web server, and they can be applied to
distributed systems that are composed of multiple interacting components. In general
the advantage of Monitor would be the highest when messages are discriminating in
terms of state transitions to different extents in the application’s FSM.

A disadvantage of our HMM-based technique is that an application with a large
number of states can make the HMM processing too expensive. It is a subject of
future work to determine what size of the FSM would cause a cross-over beyond
which HMM execution will have to be done with an incomplete sequence of
messages, which will call for a novel algorithm itself. Another limitation of Monitor
is that in sampling mode some states may not be examined. If such a state happens to
contain the error condition, Monitor will miss the error. In future work we will
address this problem by developing a sampling scheme that allows Monitor to
preferably sample messages (or sequence of messages) that are likely to point to
errors in the application. We will also work on automatic generation of rules from
traces that can be obtained in previous runs of the applications, and on scaling the
matching of different computationally expensive rules.

Acknowledgements

The authors would like to thank Patrick Reynolds for discussions explaining the
powers and limits of Project5’s algorithms, and Harpreet Singh of Sun Microsystems
for his help in understanding and instrumenting CallFlow in the Glassfish server.

20 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi

References

[1] C. Kruegel, F. Valeur, G. Vigna and R. Kemmerer, "Stateful intrusion detection for high-
speed network's," IEEE Symp. on Security and Privacy, 2002.

[2] W. Jiang, H. Song and Y. Dai, "Real-time Intrusion Detection for High-speed Networks,"
Computers & Security, vol. 24, Issue 4, Jun 2005, pp. 287-294.

[3] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change detection:
methods, evaluation, and applications,” IMC 2003.

[4] A. Lakhina, M. Crovella and C. Diot, “Mining Anomalies Using Traffic Feature
Distributions,” ACM SIGCOMM Comput. Commun. Rev., vol. 35, issue 4, Oct 2005.

[5] J. Mai, C. Chuah, A. Sridharan, T. Ye and H. Zang, “Is Sampled Data Sufficient for
Anomaly Detection?,” IMC 2006.

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie for Request Extraction
and Workload Modeling,” USENIX OSDI, 2004.

[7] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E. Brewer,
“Path-based failure and evolution management,” USENIX NSDI, 2004.

[8] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds and A. Muthitacharoen,
“Performance debugging for distributed systems of black boxes,” ACM SOSP, 2003.

[9] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera and A. Vahdat, “WAP5: black-box
performance debugging for wide-area systems,” WWW 2006.

[10] G. Khanna, P. Varadharajan and S. Bagchi, "Automated online monitoring of distributed
applications through external monitors," IEEE Trans. on Dependable and Secure
Computing, vol.3, no.2, pp.115-129, April-June 2006.

[11] G. Khanna, I. Laguna F. A. Arshad and S. Bagchi, "Stateful Detection in High Throughput
Distributed Systems," SRDS 2007.

[12] The Java EE 5 Tutorial. http://java.sun.com/javaee/5/docs/tutorial/doc/, Sep 2007.
[13] GlassFish: Open Source Application Server. https://glassfish.dev.java.net/, 2008.
[14] D. Klein and C. D. Manning, “Parsing with treebank grammars,” Assoc. for

Computational Linguistics, 2001.
[15] D. L. Schuff, V. S. Pai, "Design Alternatives for a High-Performance Self-Securing

Ethernet Network Interface," IPDPS 2007.
[16] E. Kiciman, A. Fox, "Detecting application-level failures in component-based Internet

services," IEEE Trans. Neural Networks, vol.16, no.5, pp.1027-1041, Sept. 2005.
[17] Apache Tomcat: An Open Source JSP and Servlet Container. http://tomcat.apache.org/.
[18] TPC-W Benchmark. http://www.tpc.org
[19] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, "Analysis of Software Aging in a

Web Server," IEEE Trans. on Reliability, Vol. 55, No. 3, pp. 411-420, 2006.
[20] P. J. Brockwell, R. A. Davis, “Time Series: Theory and Methods,” Second Edition, 1998.
[21] A. W. Williams, S. M. Pertet, P. Narasimhan, "Tiresias: Black-Box Failure Prediction in

Distributed Systems," IPDPS, 2007.
[22] I. Laguna, F. A. Arshad, D. M. Grothe, and S. Bagchi, "How To Keep Your Head Above

Water While Detecting Errors," ECE Technical Reports, Purdue University, URL:
http://docs.lib.purdue.edu/ecetr/379.

[23] Y. S. Wu, S. Bagchi, N. Singh and R. Wita, “Spam Detection in Voice-Over-IP Calls
through Semi-Supervised Clustering,” IEEE/IFIP DSN 2009.

[24] L. R. Rabiner, "A tutorial on Hidden Markov Models and selected applications in speech
recognition", Proceedings of the IEEE, vol. 77, no. 2, Feb, 1989.

