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Abstract. Today’s distributed systems need runtime error detection to catch 
errors arising from software bugs, hardware errors, or unexpected operating 
conditions. A prominent class of error detection techniques operates in a 
stateful manner, i.e., it keeps track of the state of the application being 
monitored and then matches state-based rules. Large-scale distributed 
applications generate a high volume of messages that can overwhelm the 
capacity of a stateful detection system. An existing approach to handle this is to 
randomly sample the messages and process a subset. However, this approach, 
leads to non-determinism with respect to the detection system’s view of what 
state the application is in. This in turn leads to degradation in the quality of 
detection. We present an intelligent sampling algorithm and a Hidden Markov 
Model (HMM)-based algorithm to select the messages that the detection system 
processes and determine the application states such that the non-determinism is 
minimized. We also present a mechanism for selectively triggering 
computationally intensive rules based on a light-weight mechanism to 
determine if the rule is likely to be flagged. We demonstrate the techniques in a 
detection system called Monitor applied to a J2EE multi-tier application. We 
empirically evaluate the performance of Monitor under different load 
conditions and error scenarios and compare it to a previous system called 
Pinpoint. 
Keywords: Stateful error detection, High throughput distributed applications, 
J2EE multi-tier systems, Intelligent sampling, Hidden Markov Model.  

1 Introduction 

1.1 Motivation 

Increased deployment of high-speed computer networks has made distributed 
applications ubiquitous in today’s connected world. Many of these distributed 
applications provide critical functionality with real-time requirements. These require 
online error detection functionality at the application level.  

Error detection can be classified as stateless or stateful detection. In the former, 
detection is done on individual messages by matching certain characteristics of the 
message, for example, finding specific signatures in the payload of network packets. 
A more powerful approach is stateful error detection, in which the error detection 
system builds up knowledge of the application state by collecting information from 
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multiple application messages. The stateful error detection system then matches 
behavior-based rules, based on the application’s state rather than on instantaneous 
information. For simplicity, we refer to stateful error detection as just detection in this 
paper. 

Stateful detection is looked upon as a powerful mechanism for building dependable 
distributed systems [1][10]. However, scaling a stateful detection system with 
increasing rate of messages is a challenge. The increasing rate may happen due to a 
greater number of application components or increasing load from existing 
components. The stress on the detection system is due to the increased processing 
load of tracking the application state and performing rule matching. The rules can be 
heavy-duty and can impose large overhead for matching. Thus the stateful detection 
system has to be designed such that the resource usage, primarily computation and 
memory, is minimized. Simply throwing more hardware at the problem is not enough 
because applications also scale up demanding more from the detection system. 

In prior work, we have presented Monitor [10] which provides stateful detection by 
observing the messages exchanged between application components. Monitor has a 
breaking point in terms of the rate of messages it has to process. Beyond this breaking 
point, there is a sharp drop in accuracy or rise in latency (i.e., the time spent in rule 
matching) due to an overload caused by the high incoming rate of messages. All 
detection systems that perform stateful detection are expected to have such a breaking 
point, though the rate of messages at which each system breaks will be different. For 
example, the stateful network intrusion detection system (NIDS) Snort running on a 
general-purpose CPU can process traffic up to 500 Mbps [15]. For Monitor, we have 
observed that the breaking point on a standard Linux box is around 100 packets/sec 
[10]. 

We have shown in previous work [11] that we can reduce the processing load of a 
stateful detection system by randomly sampling the incoming messages. The load per 
unit time in a detection system is given by the incoming message rate × processing 
overhead per message. Thus, processing only a subset of messages by sampling them 
reduces the overall load. However, sampling introduces non-determinism in the 
detection system. In sampling mode, messages are either sampled (and processed) or 
dropped. When a message is dropped, the detection system loses track of which state 
the application is in. This causes inaccuracies in selecting the rules to match because 
the rules are based on the application state (and the observed message). This leads to 
lower quality of detection, as measured by accuracy (the fraction of actual errors that 
is detected) and precision (the complement of false alarms). 

1.2 Our Contributions 

─ Intelligent Sampling: We propose an intelligent sampling technique to reduce the 
non-determinism caused by sampling in stateful detection systems. This technique is 
based on the observation that in an application’s Finite State Machine (FSM), a 
message type can be seen as a state transition in multiple states. If the system 
selectively samples and processes the messages with a high discriminating property, 
i.e., ones that can narrow down which state the application is in, this would limit the 
non-determinism.  
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─ Probabilistic State Determination: Even with the proper selection of messages, 
there is remaining non-determinism about the application state. We propose a Hidden 
Markov Model (HMM)-based technique to estimate the likelihood of the different 
application states, given an observed sequence of messages, and perform rule 
matching for only the more likely states.  
─ Efficient Just-in-Time Rule Matching: We propose a technique for selectively 
matching computationally expensive rules. These rules are matched only when 
evidence of an imminent error is observed. Instability in the system, which is detected 
through a light-weight mechanism, is taken as evidence of such an imminent error. 

We show that the three techniques make Monitor scale to an application with a high 
load, with only a small degradation in detection quality.  

For the evaluation, we use a J2EE multi-tier application, the Duke’s Bank 
application [12], running on Glassfish [13]. We inject errors in pairs of the 
combination (component, method), where ‘component’ can be a Java Server Page 
(JSP), a servlet, or an Enterprise Java Bean (EJB), and ‘method’ is a function call in 
the component. The injected errors can cause failures in the web interaction in which 
this combination is touched, for example, by delaying the completion of the web 
interaction or by prematurely terminating a web interaction without the expected 
response to the user. Our comparison points are Pinpoint [7] for detecting anomalies 
in the structure of web interactions and Monitor with random sampling [11]. 

The rest of the paper is organized as follows. In Section 2 we present background 
material on stateful detection. In Sections 3 and 4, we present the intelligent sampling 
and HMM-based application state estimation algorithms. In Section 5 and 6 we 
explain our experimental testbed, experiments and results for the intelligent sampling 
and HHM-based techniques. In Section 7 we present our efficient rule matching 
technique. In Section 8 we review related work and in Section 9 we present the 
conclusions, limitations of this work and future directions. 

2 Background 

In previous work we developed Monitor, a framework for online error detection in 
distributed applications [10]. Online implies the detection happens when the 
application is executing. Monitor observes the messages exchanged between the 
application components and thereby performs error detection under the principle of 
black-box instrumentation, i.e., the application does not have to be changed to allow 
Monitor to detect errors.  

2.1 Fault Model 

Monitor can detect any error that manifests itself as a deviation from the 
application’s model and expected behavior that is given to the Monitor as input—an 
FSM and a set of application-level behavior-based rules. The FSM can be generated 
from a human-specified description (e.g., a protocol specification), or from analysis of 
application observations (e.g., function call traces, as done here). We define a web 
interaction as the set of inter-component messages that are caused by one user 
request. The end point of the interaction is marked by the response back to the user. In 
the context of component-based web applications, an FSM is used to pinpoint 
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deviations in the structure of the observed web interactions, while rules are used to 
determine deviations from the expected normal behavior of application’s components.  

2.2 Stateful Detection 

Monitor architecture consists of three primary components, as shown in Fig. 1: the 
PacketCapturer engine, the StateMaintainer engine, and the 
RuleMatching engine. The PacketCapturer engine is in charge of capturing 
the messages exchanged between the application components, which can be done 
through middleware forwarding (as done here) or through network assist (such as, 
port forwarding or using a broadcast medium). When Monitor receives a rate of 
incoming messages close to the maximum rate that it can handle, the 
PacketCapturer is responsible for activating a sampling mechanism to reduce the 
workload for state transition and rule matching [11]. 

An incoming message 
into Monitor may be 
sampled, meaning, it 
will be processed (by 
performing a state 
transition and matching 
rules based on that 
message), or it may be 
dropped. In random 
sampling, messages are 
sampled randomly 
without looking at the 
type or content of the 
message. As shown in 

[10], under non-sampling conditions, Monitor’s accuracy and precision suffer when 
the rate of incoming messages goes above a particular point which is denoted as Rth. 
Therefore, random sampling is activated at any rate R > Rth, in which Monitor drops 
messages uniformly. 

Sampled messages are passed to the StateMaintainer engine to perform state 
transitions according to the FSM. For each received message, the 
StateMaintainer engine is in charge of determining which states the application 
may be in. This is called the state vector and represented by ω. Here, the events are 
messages from the application that are observed at Monitor. When Monitor is in non-
sampling mode, the state vector typically contains only one state (|ω|=1) since 
Monitor has an almost-complete view of the events generated in the application—
some states that do not involve externally visible messages will not be revealed to 
Monitor, thus ω will not always reflect the current state of the application. However, 
when sampling mode is activated, Monitor loses track of the actual state of the 
application since it is not observing every event generated by the application. Then, ω 
becomes a set of the possible states in which the application can be in. Once a 
message m is sampled, ω is updated. This is performed by observing (in the FSM) the 
new state (or states) to where the application could have moved, from each state in ω 
given m. We define this mechanism as pruning the state vector and it is explained in 

 
Fig. 1. Monitor architecture. One-sided and two-sided arrows 

show unidirectional and bidirectional flow of information 
respectively. Gray boxes indicate new components added to 

Monitor in this work. 
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further detail in Section 3.1. Typically, when ω is pruned, its size is reduced.  The 
RuleMatching engine is responsible for matching rules associated with the state(s) 
in ω. In previous work [10] we developed a syntax for rule specification for message-
based applications. We now extend the syntax to be more flexible so that it can be 
applied more naturally to RPC-style component-based applications. For detecting 
performance problems in distributed applications, we use a set of temporal rules that 
characterize allowable response time of subcomponents, i.e., the lower bound and 
upper bound for response time of each subcomponent. We consider that the issue of 
how to generate appropriate rules is outside the scope of this paper. If 
RuleMatching engine determines that the application does not satisfy a rule, we 
say the rule is flagged, implying the error is detected. 

A challenge in Monitor, when performing random sampling, is to maintain high 
levels of accuracy and precision even while dropping messages. Due to the 
randomness of the sampling approach proposed in [11], we obtained a maximum 
accuracy of 0.7 when detecting failures in TRAM, a reliable multicast protocol. 
Systems running critical services often demand higher levels of accuracy while 
having low detection latency. 

2.3 Building FSM from Traces 

We build an FSM for the Duke’s Bank Application from traces when the application 
is exercised with a given workload. A state Si in the FSM is defined as a tuple 
(component, method). In the rest of the paper we use the term subcomponent to denote 
the tuple (component, method). This level of granularity allows Monitor to pinpoint 
performance problems or errors in particular methods, rather than only in 
components. A state change is caused by a call or return event between two 
subcomponents. We create the FSM by imposing a workload on the application which 
consists of as nearly an exhaustive list of transactions supported in the application as 
possible. We cannot claim this is exhaustive since it is manually done and no rigorous 
mechanism is used to guarantee completeness. When we generate application traces, 
no error injection is performed and we assume that design faults in the application, if 
any, are not activated, an assumption made in many learning-based detection systems 
[4][7][16]. For large-scale distributed applications, the traces may grow large, but this 
does not pose a significant problem because the process is offline and traces can be 
stored on tertiary storage and parts of them can be cached in an as-needed basis. 

3 Handling High Streaming Rates: Intelligent Sampling 

3.1 Sampling in Monitor 

With increasing incoming message rates, Monitor opts for sampling (and dropping) 
messages to maintain acceptable detection latency. When a message is dropped, 
Monitor cannot determine the correct application state, resulting in an undesirable 
condition, which we call state non-determinism. As an example, consider an FSM 
fragment in Fig. 2. Suppose that the application is in state SA at time t1, and that a 
message is dropped. From the FSM, Monitor determines that the application can be in 



6 Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi 

state SB or state SC, so the state vector ω = {SB, SC}. If another message is dropped at 
time t2, ω grows to {SB, SD, SE, SF}.    

Monitor’s RuleMatching engine matches rules for all the states in ω. To avoid 
matching rules in incorrect states, Monitor prunes invalid states from the state vector 
once a message is sampled. For example, if the current state vector is {SB, SC} and 
message m2 is sampled, the state vector is reduced to {SB} because this is the only 
possible transition from any state in the state vector given the event m2, assuming that 
the sampled message is not erroneous. The HMM-based algorithm (Section 4) 
handles the case when the sampled message may be erroneous. 

A large state vector increases the 
computational cost since a larger number of 
potentially expensive rules have to be matched 
leading to high detection latency. For example, 
an expensive rule we encounter in practice is 
checking consistency of multiple database 
tables. Worse, a large and inaccurate state 
vector degrades the quality of detection 
through an increase in false alarms and missed 
alarms. Our goal is then to keep the state 
vector size bounded so that the detection 
latency does not exceed a threshold (Lth), and 
the detection quality stays acceptable.  

3.2 Intelligent Sampling Approach 

We hypothesize that sampling based on some inherent property of messages from 
the FSM can lead to a reduction in the state vector size when pruning is performed. 
We have observed that messages in the application have different properties with 
respect to the different transitions in the FSM that they appear in. For example, some 
messages can appear in multiple transitions while others appear in only one. Suppose 
for example that state vector ω = {SB, SC} at time t2 following Fig. 2. If m3 is sampled, 
StateMaintainer would prune ω to {SD}, while if m4 is sampled, ω would be 
pruned to {SE, SF}. Thus, the fact that m3 appears in one transition while m4 appears in 
two ones, makes a difference to the resulting state vector. We say therefore that m3 
has a more desirable property than m4 in terms of sampling. 

We use an intelligent sampling approach whereby all incoming messages are 
observed, and a subset of messages with a desirable property is sampled; the others 
are dropped. A message is observed by determining its type at the application level, 
which determines the transition in the FSM. For our application, type is given by the 
combination (component, method, call|return). Let us define discriminative size dm as 
the number of times a message m appears in a state transition to different states in the 
FSM. In the intelligent sampling approach, a message with a small dm is more likely 
to be sampled. The discriminative sizes of all messages can be determined by 
considering the message labels on edges that are incoming into the states of the FSM. 

3.3 Intelligent Sampling Algorithm 

Fig. 2. A fragment of a Finite State 
Machine (FSM) to demonstrate non-
determinism introduced by sampling. 
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To guarantee that the rate of messages processed by Monitor is less than Rth, it 
samples n messages in a window of m messages, where n < m and the fraction n/m is 
determined by the incoming message rate. Now, given a window of m messages, 
which particular messages should Monitor sample? Ideally, Monitor should wait for n 
messages with a discriminative size less than a particular threshold dth. However, 
since we do not know in advance what the discriminative sizes of messages in the 
future will be, Monitor could end up with no sampled messages at all by the end of 
the window. To address this, Monitor tracks the number of messages seen in the 
window and the number of messages already sampled in counters numMsgs and 
numSampled respectively. If Monitor reaches a point where the number of remaining 
messages in the window (m − numMsgs) is equal to the number of messages that it 
still needs to sample (n − numSampled) all the remaining messages (m − numMsgs) 
are sampled without looking at their discriminative sizes. We call this point the last 
resort point.  Before reaching the last resort point, Monitor samples only those 
messages with discriminative sizes less than dth; after that, it samples all remaining 
messages in the window. Because of lack of space we omit the pseudocode of the 
intelligent sampling algorithm. The interested reader can find the pseudocode in [22]. 

4 Reducing Non-Determinism: HMM-based State Vector 
Reduction 

There are two remaining problems when pruning the state vector with the intelligent 
sampling approach. First, when a message is sampled and the state vector is pruned, 
the size of the new state vector can still be large making detection costly and 
inaccurate. This situation arises if the FSM has a large number of states and the FSM 
is highly connected, or if highly discriminative messages are not seen in a window. 
The second disadvantage is that if the sampled message is incorrect, Monitor can end 
up with an incorrect state vector—a state vector that does not contain the actual 
application’s state. An incorrect message is one that is valid according to the FSM, 
but is incorrect given the current state. For example, in Fig. 2, if state vector ω = {SB, 
SC}, only messages m2, m3, and m4 are correct messages. Incorrect messages can be 
seen due to a buggy component, e.g., a component that makes an unexpected call in 
an error condition. To overcome these difficulties, we propose the use of a Hidden 
Markov Model to determine probabilistically the current application state. 

4.1 Hidden Markov Model 

A Hidden Markov Model (HMM) is an extension of a Markov Model where the 
states in the model are not observable. In a particular state, an outcome, which is 
observable, is generated according to an associated probability distribution.  

The main challenge of Monitor, when handling non-determinism, is to determine 
the correct state of the application when only a subset of messages is sampled. This 
phenomenon can be modeled with an HMM because the correct state of the 
application is hidden from Monitor while the messages are observable. Therefore, we 
use an HMM to determine the probability of the application being in each of its states. 

An HMM is characterized by the set of states, a set of observation symbols, the state 
transition probability distribution A, the observation probability distribution B (given 
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a state i, what is the probability of observation j), and the initial state probability 
distribution π. We use λ = (A, B, π) as a compact notation for the HMM. 

We used the Baum-Welch algorithm [24] to estimate HMM parameters to model the 
Duke’s Bank application. The HMM is trained with the same set of traces used to 
build the application FSM. More details about the estimation of the HMM parameters 
can be found in [22]. 

4.2 Algorithm for Reducing the State Vector using HMM 

We have implemented the ReduceStateVector algorithm (Fig. 3) for reducing 
the state vector using an HMM. When Monitor samples a message, it asks the HMM 
for the k most probable application states. Monitor then intersects the previous state 
vector with the set of k most probable states. Then an updated state vector is 
computed from the FSM using pruning (as defined in Section 2.2), i.e., by asking the 
FSM that given the set of states from the intersection and the sampled message, what 
are the possible next states.  

The HMM is implemented in 
Monitor in the frontend thread, the 
PacketCapturer. Thus, the 
HMM observes all messages since 
they are needed to build complete 
sequences of observations. 

The ReduceStateVector 
algorithm consists of three steps: 
─ Step 1: Calculate what is the 
probability that, after seeing a 
sequence of messages O, the 
application is in each of the 
possible states s1, … sN? This is 
expressed as P(qt = si | O, λ). This 
step produces a vector of 
probabilities µt (lines 1−3).  
─ Step 2: Sort the vector µt by the 
probability values. This produces a 
new vector of probabilities αt (line 
4). 
─ Step 3: Compute a new state 
vector ωt+1 as the intersection of 
the current state vector ωt and the 
top k elements in αt. By using a 
small k, Monitor is able to reduce 
the state vector to few states. If the 
intersection of ωt and αt is null, we 
take the union of the two sets. This 
is a safe choice because having the 

intersection of ωt and αt equal to null implies that either the HMM or ωt is 

 
Fig. 3. Pseudocode for reducing state vector using 
HMM’s estimate of probability of each application 

state. 

ReduceStateVector computes a new 
state vector based on: the HMM, an 
observation sequence and a previous state 
vector.
Input: λ: Hidden Markov Model; O: 
observation sequence O = {O1,  O2,…,Ot}; 
ωt: application’ state vector at time t; k: 
Filtering criteria for the number of 
probabilities estimated by the HMM.
Output: ωt+1
Variables: µt: probability vector µt = {p1, 
p2,…,pN}, where pi = P( qt = si | O, λ ), for all 
i in S={s1,…,sN} (the states in the FSM) and 
qt is the state at time t; αt: sorted µt.

ReduceStateVector(λ, O, ωt, k):
1. µt←∅
2. For each i in S
3. Add P( qt = si | O, λ ) to µt
4. αt ← sort(µt) by pi
5. I←∅
6. I← ωt ∩ αt[1…k]
7. if ( I = ∅ ) then
8. ωt+1 ←ωt ∪ αt[1…k]
9. else
10. ωt+1 ← I
11.returnωt+1
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incorrect. We acknowledge that if both HMM and state vector are incorrect, this 
scheme will not work. However, proper training of the HMM makes a concurrent 
error highly unlikely, and one that never occurred in any of our experiments.  This 
step is executed in lines 5-11. 

Fig. 4 shows points in time when the algorithm is invoked in StateMaintainer. 
FSMLookup(ω, n) calculates the new state vector from ω given that n consecutive 
messages have been dropped (as explained in Section 3.1). 

The time complexity of the 
algorithm is proportional to the 
time in computing P(qt = si |O, λ) 
for all the states, the time to sort 
the array µt, and the time to 
compute the intersection of ωt 
and the top k elements in αt. The 
vector µt can be computed in 
time O(N3T), where N is the 
number of states in the HMM 
(and the FSM), and T is the 
length of the observation 
sequence O. Sorting µt can be 
performed in O(N log N), and the 
intersection of ωt and αt[1…k] 

can be performed in O(Nk). Hence, the overall time complexity is O(N3T). 

5 Experimental Testbed

5.1 J2EE Application and Web Users Emulator 

We use the J2EE Duke’s Bank Application [12] running on Glassfish v2 [13] as our 
experimental testbed. Glassfish has a package called CallFlow that provides a 
central function for Monitor—a unique ID is assigned to each web interaction. It also 
provides caller and called component and methods, without needing any application 
change.  

To evaluate our solutions in diverse scenarios such as high user request rates and 
multiple types of workload, we developed WebStressor, a web interactions emulator. 
WebStressor takes different traces and replays them by sending each message to the 
tested detection systems. Each trace contains sequences of web interactions that 
would be seen in CallFlow when a user of Duke’s Bank application is executing 
multiple operations. WebStressor also has error injection capabilities which are 
explained in Section 6.3. 

5.2 Pinpoint Implementation 

We implemented Pinpoint [7] that proposes an approach for tracing paths through 
multiple components, triggered by user requests. A Probabilistic Context Free 
Grammar (PCFG) is used to model normal path behavior and to detect anomalies 

 
Fig. 4. Example of points in time when the 
ReduceStateVector algorithm is invoked. 

Time Operations in Monitor

t11 Dropped message
ωt10 ← ReduceStateVector(λ, O, ωt10, k)
ωt11 ← FSMLookup(ωt10 , 1 dropped message)

...

t16 m16 is sampled
ωt15 ← ReduceStateVector(λ, O, ωt15, k)
ωt16 is pruned from ωt15 given m16

... (Sampled messages. Last sampled 
message at time t10.)

(Dropped messages. Last dropped 
message at time t15.)
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whenever a path’s structure does not fit the PCFG. A PCFG has productions 
represented in Chomsky Normal Form (CNF) and each production is assigned a 
probability after a training phase. Pinpoint-PCFG is trained using the same traces 
from Duke’s Bank that are used to build the FSM and to train the HMM. We call this 
implementation Pinpoint-PCFG in the paper. 

6 Experiments and Results 

In this section we report experiments to evaluate the performance of Monitor and 
compare it with that of the Pinpoint-PCFG algorithm. When we refer to Monitor, we 
mean baseline Monitor [10], with the addition of two techniques intelligent sampling 
and HMM. The machines used have 4 processors, each an Intel Xeon 3.4 GHz with 
1024 MB of memory and 1024 KB of L1 cache. All experiments are run with 
exclusive access to the machines. We show 95% confidence intervals for some 
representative plots, but not all, to keep the graphs readable. 

6.1 Benefits of Intelligent Sampling 

We run experiments to verify our hypothesis that intelligent sampling helps in 
reducing the size of the state vector ω. For this, we run WebStressor with a fixed 
moderate user load (8 concurrent users) and with no error injection.  When a message 
is dropped, ω increases or stays constant. When a message is sampled, ω is pruned 
and it is passed to the RuleMatching engine. 

 
(a) (b) 

Fig. 5. Performance results when comparing Monitor random sampling and intelligent 
sampling. (a) Sampled values of state vector ω for Monitor with random and intelligent 
sampling; (b) CDF for the pruned state vector ω with random and intelligent sampling. 

In each mode, we obtained 3337 sample values of ω’s size. Fig. 5(a) shows 100 
snapshots of these values for Random Sampling (RS) and Intelligent Sampling (IS) 
modes. Here the size of ω is shown for every message arriving at Monitor. The high-
peaks pattern that we observe in RS mode is due to the deficiency of random 
sampling in selecting messages with small discriminative size. In contrast we do not 
observe this pattern in IS mode, because it preferentially samples the discriminating 
messages, producing smaller pruned state vectors ω. 
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Next, we measure ω’s size only after it is pruned. Recall that the pruned state vector 
ω is the one used for rule instantiation and matching. Hence, it is at this point that it is 
critical to have a small ω. Fig. 5(b) shows the cumulative distribution function (CDF) 
for the observed values of ω’s size. In IS mode, ω’s size of 1 has a higher frequency 
of occurrence (about 83%) than in RS mode (60%). In contrast, all ω’s size values > 1 
have higher frequency of occurrence in RS than in IS. After being pruned, ω can have 
a maximum size of 7. This is due to the nature of Duke’s Bank application in which 
the maximum discriminative size of a message is 7. 

6.2 Definition of Performance Metrics 

We introduce the metrics that we use to evaluate detection quality. Let W denote the 
entire set of web interactions generated in the application in one experimental run. For 
W, we collect the following variables, I: out of W, the web interactions where faults 
were injected; D: out of W, the web interactions in which Monitor detected a failure; 
C: out of I, the web interactions in which Monitor detected a failure (these are the 
correct detections). 

Based on these variables, we calculate two metrics: 

Accuracy = |C| / |I|; Precision = |C| / |D| 

Accuracy expresses how well the detection system is able to identify the web 
interactions in which problems occurred, while precision is a measure of the inverse 
of false alarms in the system. 

Another performance metric is the latency of detection. Let Ti denote the time when 
a fault is injected and Td the time when the failure caused by the injected fault is 
detected by the detection system. We define detection latency as Td – Ti. When a 
delay δ is injected (emulating a performance problem in a component of the 
application), δ is subtracted from the total time since it represents only a characteristic 
of the injected fault and not the quality of the detection system. 

6.3 Error Injection Model 

Errors are injected by WebStressor at runtime when mimicking concurrent users. 
This results in errors in the application traces which are fed to the detection systems. 
We inject four kinds of errors that occur in real operating scenarios: 

1. Response delay: a delay d is selected randomly between 100 msec and 500 msec, 
and is injected in a particular subcomponent. This error simulates subcomponent’s 
response delays due to performance problems. 

2. Null Call: a called subcomponent is never executed. This error terminates the web 
interaction prematurely and the client receives a generic error report, e.g., HTTP 
500 internal server error. 

3. Runtime Exception: an undeclared exception, or a declared exception that is not 
masked by the application, is thrown. As in null calls, the web interaction is 
terminated prematurely and the client receives an error report. 

4. Incorrect Message Sequences: an error that occurs for which there is an exception 
handler that invokes an error handling sequence. This sequence changes the normal 
structure of the web interaction. We emulate this by replacing the calls and returns 
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in N consecutive subcomponents. The value of N is selected randomly between 1 
and 5.  

Of these, Pinpoint-PCFG cannot detect response delay errors. We perform 
comparative evaluation of Monitor with Pinpoint-PCFG for the other error types. 

6.4 Detecting Performance Problems  

We inject delays to simulate performance problems in the set of 5 subcomponents 
listed in Table 1. A category of errors that is difficult to detect is transient errors—
those that are caused by unpredictable random events and that are difficult to 
reproduce and isolate. We want to test Monitor in detecting this category of errors. In 
order to mimic this scenario in our injection strategy, we inject delays only 20% of 
the time a subcomponent is touched in a web interaction. 

Before running the 
experiment, we 
determine the best set of 
parameter values in 
Monitor. We generate 
ROC (Receiver 
Operating Characteristic) 
curves by varying their 
configuration parameters 
(i.e., number of rules) 

and the imposed load of 
users to the application. 
Then, we select the 
operational point as the 
one closest to the ideal 
point (0, 1); in case of a 
tie, we use the point with 
the better precision. 
Because of lack of space 
we omit the ROC curves; 

however, the reader can refer to [22] for these. 
For the performance delay rules, first, we measure the average (µ) and standard 

deviation (σ) of the response time from the components in the application during the 
training phase. We then create rules with the following thresholds for response times 
in each component: µ±σ, µ±2σ and µ±3σ.  

Fig. 6 shows the results of this experiment. We observe that using µ±2σ provides 
the best combination of accuracy and precision. For rule types µ±σ and µ±2σ we 
observe a decrease in accuracy of about 10% as concurrent users are increased from 4 
to 16, and an increase in the same order of magnitude as users are increased to 24. 
The reason for the increase in accuracy is due to the precision rate that decreases 
rapidly after 16 concurrent users. Because of the large rate of false alarms generated 
after this point, accuracy is increased as a trade-off. 

Table 1.  List of subcomponents (component, method) in 
which performance delays are injected 

 

 
Fig. 6. Accuracy and precision of Monitor in detecting 

performance delays for three type of rules. 

Name Method Type of Component
AccountControllerBean createNamedQuery EJB

TxControllerBean deposit EJB
/template/banner.jsp JspServlet.service servlet

/bank/accountList.faces FacesServlet.service servlet
/logon.jsp JspServlet.service servlet
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We also evaluate the performance of random and intelligent sampling in detecting 
performance delays. For this experiment, we use similar definitions for accuracy and 
precision as in the previous experiments, but we change the granularity of detection 
from web interactions to individual subcomponents. Detection at the level of a 
subcomponent is helpful in diagnosis—finding the root cause of the problem—since it 
helps in pinpointing suspect subcomponents. The results are shown in Fig. 7(f). We 
observe that accuracy and precision are higher for IS for most loads (4−16 concurrent 
users). Although, for high loads (20 and 24 users), random and intelligent sampling 
exhibit almost the same (poor) performance. 

6.5 Detecting Anomalous Web Interactions 

We evaluate Monitor’s performance in detecting anomalous web interactions by 
injecting null calls, runtime exceptions and incorrect message sequences. We also 
evaluate Pinpoint-PCFG’s performance here. 

Monitor detects anomalous web interactions at the StateMaintainer. If an 
event is unexpected according to the current state in Monitor’s state vector, an error is 
flagged. This avoids the need for explicit rules for this type of detection. For the 
Duke’s Bank application, if the correct state is Sc and the state vector after a message 
is sampled and pruning is completed, is ω, then we find empirically that in all cases Sc 
∈ ω. Thus, a detection happens at Monitor only if the message is incorrect, i.e., there 
is an actual fault. This gives a precision value of 1 for Monitor’s detection of 
anomalous web interactions in Duke’s Bank. 

We empirically determine the best value of parameter k for the HMM-based state 
vector reduction algorithm. Fig. 7(a) shows Monitor running with different values of 
k while we inject anomalous web interactions. Parameter k=0 represents Monitor 
running without HMM. We observe that, with no HMM, in both low and high loads, 
accuracy is very low (about 0.4). Since Monitor with k > 0 performs better than with k 
= 0, this validates our design choice of using an HMM. In high load, two conditions 
cause Monitor to have a decreasing accuracy with increasing k. Monitor samples less 
often leading to an increase in the size of ω. With large k, few states get pruned and if 
the observed erroneous message is possible in any of the remaining states of ω, the 
error is not detected. Second, when the erroneous message may not be sampled, the 
HMM is particularly important. Increasing k effectively reduces the impact of the 
HMM, since even states with low probabilities given by the HMM are considered.  

For the remaining experiments, we use k=1 as it allows Monitor to have the best 
accuracy in both low and high load. We determine the best configuration parameter 
setting for Pinpoint-PCFG to get ROC curves under low and high loads. Pinpoint-
PCFG’s ROC curves can be found in [22]. 

Fig. 7(b)−(c) show the results for accuracy and precision of Monitor and Pinpoint-
PCFG. We observe that on average, Monitor’s accuracy is comparable to that of 
Pinpoint-PCFG. In Monitor, accuracy decreases for higher loads due to dropping 
more messages in a sampling widow. As the load increases, Pinpoint-PCFG maintains 
a high accuracy because it is not dropping messages—messages are being enqueued 
for eventual processing. However its latency of detection suffers significantly in high 
loads—it is in the order of seconds (Fig. 7(e)) while in Monitor it is in the order of 
milliseconds (Fig. 7(d)). 
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(a) (b) (c) 

 
(d) (e)                                  (f) 

 Fig. 7. Performance results for Monitor and Pinpoint when detecting anomalous web 
interactions. (a) Accuracy in Monitor when varying parameter k in the HMM-based state vector 

reduction algorithm; (b)−(c) Accuracy and precision for Monitor and Pinpoint-PCFG; 
(d)−(e)Detection latency for Monitor and Pinpoint-PCFG; (f) Accuracy and Precision for 

Random Sampling and Intelligent Sampling for performance delay errors. 

 We observe the robustness of Pinpoint-PCFG to false positives as it maintains on 
average almost the same precision (0.9) with increasing number of users. However, 
the precision in Pinpoint-PCFG is lower than that in Monitor of 1.0. 

The high detection latency in Pinpoint-PCFG is due to the fact that the parsing 
algorithm in the PCFG has time complexity O(L3) and space complexity O(RL2), 
where R is the number of rules in the grammar and L is the size of a web interaction. 
In the Duke’s Bank application we observe that the maximum length of a web 
interaction is 256 messages, and the weighted average size is 70. Previous work [14] 
has shown that the time to parse sentences of length 40 can be 120 seconds even with 
optimized parameters. Moreover, in Pinpoint-PCFG, error detection can only be 
performed after the end of web interactions which also explains longer detection 
latencies than in Monitor. Another cause of the high latency in Pinpoint-PCFG is the 

large amount of virtual memory 
that the process takes (933.56 MB 
for a load of 24 concurrent users as 
shown in Table 2). This makes the 
Pinpoint-PCFG process thrash.  

To look into the issue of memory 
consumption further, we measure 
average memory consumption for 

Monitor and Pinpoint-PCFG under a load of 24 concurrent users. Physical and virtual 
memory usage are collected every 5 seconds by reading the /proc file system and 
averaged over the duration of each experimental run.  Table 2 shows the results of 
this experiment. 
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Table 2. Memory consumption for the compared 
systems 

 

Virtual Memory Memory in RAM
Monitor 282.27 25.53
Pinpoint-PCFG 933.56 696.06

Average Memory Usage (MB)
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7 Efficient Rule Matching 

7.1 Motivation 

We present a technique for selectively matching computationally expensive rules in 
Monitor, thereby allowing it to operate under higher application message loads. The 
technique is based on the observation that the computationally expensive rules do not 
have to be matched all the time. Rather they can be matched when there is evidence of 
system instability. Previous work [21] has shown that errors are more likely when 
instability in the system is observed. For example, an increasing average response 
time in a web server may indicate an imminent failure because of resource 
exhaustion. Therefore, we use a light-weight mechanism of determining system 
instability to trigger the computationally expensive rules. 

Many rules can be computationally expensive both in time and space. For example, 
a pattern matching rule such as calculating the convolution of two signals, as 
presented in [8], requires long computations, while matching strings with probabilistic 
context free grammars, as in Pinpoint [7], demands a large amount of memory space. 
For other rules, the system requires to re-train its model for detecting anomalies based 
on newly observed data, as in semi-supervised learning techniques [23]. The re-
training is often quite expensive. 

7.2 Selective Rule Matching Approach 

We propose an approach for matching computationally expensive rules if evidence 
of instability is observed in the system. Instability can be observed by measuring 
different metrics in the application or the underlying middleware, for example, 
response time, memory, or CPU usage. Manifestation of instability can be in the form 
of abrupt changes in the measurements (either increasing or decreasing), or in 
fluctuations in the measurements.  

Our approach for selectively matching rules is as follows. Let Ct denote the 
condition of the system at time t. Thus, Ct can take one of two conditions of the set 
{stable, unstable}; let {c+, c−} denote these conditions. Suppose that at time t, a 
message mt is observed, a rule R has to be matched, and a sequence of the n 
previously observed messages {mt-n , mt-n+1 ,…, mt-1} are kept in a buffer B. Then, if Ct 
= c−, R is matched, otherwise, B becomes {mt-n+1,…, mt} and Monitor waits for the 
next message to arrive. 

The main challenge in this approach is to infer and use an accurate classifier 
function F mapping the universe of possible messages (i.e., system-level 
measurements) to the range of system conditions C, so that the probability of catching 
an error when Ct = c− and the rule R is matched is maximized. A complete study for 
addressing this challenge is out of the scope of this paper and will be pursued in 
future work. However, we present an example in which this technique is used in 
Monitor for detecting a memory leak in the Apache Tomcat web server [17] by using 
a simple estimator of instability.  

7.3 Memory Leak Injection 
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 We instrumented the Apache Tomcat 
web server to inject a memory leak 
dynamically. Upon receiving a request, an 
unused object is created with probability 
pleak in the server’s thread-pool, and it is 
kept referenced so that it is not taken by 
the Java garbage collector. The result is an 
increase in memory usage that can be 
observed from the Java process running 
the server. 

We perform experiments to observe the 
pattern of memory consumption of the 
web server in both normal conditions and 
when the memory leak is injected. We use 
a testbed of an e-commerce site that 

simulates the operation of an online store as specified by the TPC-W benchmark [18]. 
We use the benchmark WIPSo mixture (50% browsing and 50% ordering) that is 
intended to simulate a web site with a significant percentage of order requests.  

Fig. 8 shows the results of the experiment when the probability pleak of the memory 
leak injection is set to 0.5, and when a load of 50 concurrent users is imposed. 
Memory measurements are taken in a fixed interval of 1 second for a window of 10 
minutes after the server is started. 

7.4 Rule for Detecting Memory Leak Error 

Previous work on software rejuvenation [19] has proposed the use of time series 
analysis to model memory usage patterns in the Apache web server.  In this paper, we 
use time series analysis to build rules that are able to pinpoint a memory leak. In 
particular, the web server memory consumption is modeled as an autoregressive (AR) 
moving average (MA) process ARMA(p, q). This process is formally defined as 
follows [20]: 

• A memory usage measurement Xt is an ARMA(p, q) process if for every time t, 

௧ܺ ൌ ܥ ൅ ∑ ߮௜ܺ௧ି௜
௣
௜ୀଵ ൅ ௧ߝ ൅ ∑ ௧ି௜ߝ௜ߠ

௤
௜ୀଵ , 

where εt is the error term, C is a constant, and {ϕ1, …, ϕp} and {θ1, …, θp} are 
the parameters of the model. 

• The error term εt is considered to be white noise, i.e., independently and 
identically distributed with mean 0 and variance σ2. 

We collect training data in several runs of the Apache Tomcat server for generating 
two ARMA(p, q) models λ and λ′ that represent memory usage under normal 
conditions and memory leak conditions respectively. The models are inferred by 
maximum likelihood estimation by using the statistical tool R. To estimate the 
number of p and q parameters that best fit the models, while keeping the number of 
parameters small, we vary p and q over 1, 2, and 3.  We then select the values of p 
and q that produce the minimum root-mean-square (RMS) error when comparing test 
data and new data generated with the models. For this, test data is labeled as being 

 
Fig. 8. Percentage of memory usage of 

the Apache Tomcat web server under 
normal  conditions and with a memory leak 
fault injection. 
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normal or erroneous when selecting the parameters in λ and λ′ respectively. For our 
test-bed, p=3 and q=2 resulted in the best configuration for the models. 

7.5 Rule Matching Latency Reduction 

After the two models λ and λ’ are trained, we build a rule for detecting the memory 
leak in the web server by observing to which model the test data fits better. The rule 
takes as input a sequence A of n old observed messages, and a sequence B of n new 
observed messages in which it will look for errors.  Then, two simulated sequences S 
and S’ are generated by using the two models λ and λ′ respectively on observations A. 
Finally, S and S’ are compared to B by measuring the RMS error. If B fits better with 
S’, an error is flagged by the rule indicating a possible memory leak. 

We detect instability in the system by measuring the standard deviation σ of the m 
previous observed memory consumption values and if it is greater than a threshold Pth 

we conclude Ct = c−, the rule is matched. 
Table 3 shows the results for 3 different configurations in Monitor when the 

memory leak is injected in the web server.  For the three experiments, n=10, m = 5, 
and the same workload that we used for training is imposed on the web server. The 
initial values of 0.5 and 1.0 for σ are taken from the average standard deviation 
observed in the training data set for the web server running under normal conditions 
which is around 1.2 % of memory usage. This confirms that, in normal conditions, 
memory usage variation is much less than in unstable conditions.  

We notice that when the rule is 
always matched, the average latency 
is the maximum as expected, and as 
we increase σ, the latency decreases. 
This is due to an inherent reduction 
in the chances of matching the 
ARMA-based rule which is more 
computationally expensive than 
evaluating σ. However, if σ is too 
low, the error may be missed since 
the ARMA-rule may not be matched 

at all, as is the case when σ=1.0. 
Detection of the memory leak presented here can be done by many other profiling 

tools. The point behind this experiment is not to claim any novel detection capability. 
Rather, it is to show how instability can be used to trigger more computationally 
expensive rule matching. 

8 Related Work 

Error Detection in Distributed Systems:  Previous approaches of error detection in 
distributed systems have varied from heartbeats to watchdogs. However, these 
designs have looked at a restricted set of errors (such as, livelocks) as compared to 
our work, or depended on alerts from the monitored components. 

Table 3. Detection coverage and average rule 
matching delay for the ARMA-based rule. 

 

Rule Matching 
Criteria

Memory Leak 
Detected

Average Matching 
Latency (msec.)

Always matched yes 19.283

σ ≥ 0.5 yes 7.115
σ ≥ 1.0 no 1.25
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A recent work closely related to ours is Pinpoint [7]. Authors present an approach 
for tracing paths from user requests and use a Probabilistic Context Free Grammar 
(PCFG) to model normal path behavior as seen during a training phase. A path’s 
structure is then considered anomalous if it significantly deviates from a pattern that 
can be derived from the PCFG. Pinpoint however does not consider the problem of 
dealing with high rates of requests. We provide a comparative evaluation of Monitor 
with Pinpoint in Section 6.5. A variant of the Pinpoint work [16] uses a weighting for 
long web interactions so that they are not mistakenly flagged as erroneous. This 
weighting seems less useful for Duke’s Bank since the probabilities for the less likely 
transitions differ significantly from the expected probability. This work also uses an 
additional parameter (α) to pick a particular point in the false alarm-missed alarm 
spectrum. We believe that an equivalent effect is achieved through our ROC-based 
characterization.  
Performance Modeling and Debugging in Distributed Systems:  There is recent 
activity in providing tools for debugging problems in distributed applications, notably 
Project5 [8][9] and Magpie[6]. These approaches provide tools for collecting trace 
information at different levels of granularity which are used for automatic analysis, 
often offline, to determine the possible root causes of the problem.  

Project5’s main goal is detecting performance characteristics in black-box 
distributed systems. In [8] models for performance delays on RPC-style and message-
based application for LAN environments are proposed—authors focus on finding 
causal path patterns with unexpected timing or shape. In [9] authors present an 
algorithm for performance debugging in wide-area systems. We determined that this 
work’s focus is on determining the performance characteristics of different 
components in a complete black-box manner. Since Project 5 does not assume a 
uniform middleware, such as J2EE, it cannot assign a unique identifier to all messages 
in a causal path as they occur. We use the GlassFish-assigned unique identifier to a 
path of causal request-responses. In our work, we use both these features. However, 
Project5's accuracy suffers greatly when detecting anomalous patterns under 
concurrent load (in fairness, this is not the goal of the work either).  Therefore, we did 
not perform a quantitative comparison with Project5 for detecting performance 
problems (in Section 6.4).  

The Magpie project [6] is complementary to our work—it is a tool that helps in 
understanding system behavior for the purposes of performance analysis and 
debugging in distributed applications. Magpie collects CPU usage and disk access for 
user requests as they travel though the system components. These workload models of 
request behavior can be used in Monitor to specify performance-based rules. 
Stateful Intrusion Detection in High Throughput Streams:  In the area of intrusion 
detection, techniques have been proposed to allow network-based intrusion detection 
systems (NIDS) to keep up with high network bandwidths by parallelizing the 
workload [1] and by efficient pattern matching [2]. Although distributing the 
detection load in multiple machines helps, this does not solve the fundamental 
problem of how to manage the resource usage in individual machines, which we 
address.  
Sampling Techniques for Anomaly Detection:  Recently there is an increased effort 
in finding network failures, anomalies and attacks through changes in high-speed 
network links. For example, in [3] authors propose a sketch-based approach, where a 
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sketch is a set of hash tables that models data as a series of (key, value) pairs; key can 
be a source/destination IP address, and the value  can be the number of bytes or 
packets. A sketch can provide accurate probabilistic estimates of the changes in 
values for a key. Sampling has also been used in high-speed links as input for 
anomaly detection [4], for example, for detecting denial-of-service (DoS) attacks or 
worm scans. However, some studies show that these sampling techniques introduce 
fundamental bias that degrades performance when detecting network anomalies [5]. 
Our work matches rules based on aggregated information at the application level, 
while this work matches rules based on network level traffic statistics of the traffic.  

9 Conclusions and Limitations 

This paper presents an intelligent sampling algorithm and an HMM-based technique 
to enable stateful error detection in high throughput streams. The techniques are 
applied and tested in the Monitor detection system and provide a high quality of 
detection (accuracy and precision) for a range of real-world errors in distributed 
applications with low detection latency. It compares favorably to an existing detection 
system for distributed component-based systems called Pinpoint. We also present a 
technique to optimize the cost of matching computationally expensive rules for 
detecting resource exhaustion. Our technique relies on triggering the expensive rules 
only on detecting, through lightweight means, evidence of system instability. 

The techniques were tested successfully in Dukes’s Bank (an online banking 
application) and in the Apache Tomcat web server, and they can be applied to 
distributed systems that are composed of multiple interacting components. In general 
the advantage of Monitor would be the highest when messages are discriminating in 
terms of state transitions to different extents in the application’s FSM. 

A disadvantage of our HMM-based technique is that an application with a large 
number of states can make the HMM processing too expensive. It is a subject of 
future work to determine what size of the FSM would cause a cross-over beyond 
which HMM execution will have to be done with an incomplete sequence of 
messages, which will call for a novel algorithm itself. Another limitation of Monitor 
is that in sampling mode some states may not be examined. If such a state happens to 
contain the error condition, Monitor will miss the error. In future work we will 
address this problem by developing a sampling scheme that allows Monitor to 
preferably sample messages (or sequence of messages) that are likely to point to 
errors in the application.  We will also work on automatic generation of rules from 
traces that can be obtained in previous runs of the applications, and on scaling the 
matching of different computationally expensive rules. 
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