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Abstract. Middleware for pervasive spaces has to meet conflicting re-
quirements. It has to both maximize the utility of the information ex-
posed and ensure that this information does not violate users’ privacy.
In order to resolve these conflicts, we propose a framework grounded
in utility theory where users dynamically control the level of disclosure
about their information. We begin by providing appropriate definitions
of privacy and utility for the type of applications that would support col-
laborative work in an office environment—current definitions of privacy
and anonymity do not apply in this context. We propose a distributed
solution that, given a user’s background knowledge, maximizes the utility
of the information being disclosed to information recipients while meet-
ing the privacy requirements of users. We implement our solution in the
context of a real pervasive space middleware and provide experiments
that demonstrate its behaviour.

1 Introduction
Large and dense sensing, communications, and computing infrastructures are en-
abling the creation of pervasive spaces that offer new possibilities, conveniences
and functionalities. Instrumented pervasive spaces that allow observation of enti-
ties enable a rich set of applications ranging from surveillance, situational aware-
ness to collaborative applications. Consider for instance, an office environment—
here, collaboration can be greatly enhanced if members of a team know where
teammates are, what they are doing, and if they are available for discussions.
Unfortunately, while a system that provides this information has the potential
to improve efficiencies, it can encroach on the privacy of the target individuals
(e.g., Peter wants to find Alice who may not wish to be interrupted). A typi-
cal technology solution is to provide opt-in/opt-out mechanisms, where targets
disable the capture/release of personalizing information either physically (e.g.,
Alice turns off localization device) or via suitable access control policies.

We argue that such a binary modality is not sufficient to address the privacy
needs of future pervasive space applications—individuals are often willing to
make personalizing information available based on the needs and context of
the request and requestor (e.g Alice is willing to be interrupted if Peter needs
an urgent signature). In this paper, we develop a utility-centric formulation of
pervasive applications. Observers requesting information specify the utility of the
information and targets (about whom information is being requested) express
their privacy needs as a negative utility of releasing that information, e.g. Alice’s
negative utility of being interrupted and Peter’s positive utility of finding Alice.

Fig. 2 illustrates the role of a pervasive system middleware. Given application
needs, the system observes the pervasive space by probing sensors and interprets
the sensor readings to obtain a useful view of the state of the pervasive space.



The role of the pervasive space middleware is to (a) generate a semantically
meaningful view of the pervasive space state (e.g., where people are and what
they are doing) while hiding the details of how this state is obtained and (b)
determine whether (and in what format) to release information to an observer
in the pervasive space by realizing the privacy/utility tradeoffs expressed via
privacy/utility policies. This paper focuses on the design of the privacy manager,
a key component in such a system.

While the basic idea is straightforward, there are a few complications in de-
veloping a generalized and flexible system that can address the privacy/utility
tradeoff. First, information can be inferred in such a system, without explicit re-
quests. For example, knowledge of associations (e.g. Alice and Mary co-program
for a project) can inadvertantly reveal information. In the above case, knowledge
that Alice is in the conference room and that Mary is in a meeting regarding
the project reveals Mary’s location (i.e., the conference room). This is a problem
if Mary perceives this additional knowledge as a violation of her privacy. This
leads us to our first challenge: the system must account for inferred information
in determining a tradeoff. Second, information can be represented at different
granularities—information can be characterized in a hierachical manner—from
least descriptive to most descriptive. In the above request, the system can pre-
serve Mary’s location privacy by (a) generalizing Alice’s location or (b) hiding
information on the nature of Mary’s meeting. The latter solution would pro-
vide Alice’s location but increment the uncertainty of Mary’s inferred location,
which might preserve Mary’s privacy. The system must be able to capture and
exploit the natural generalization hierarchy offered by the information revealed
instead of completely denying access to the information. Third, the discussion
above implicetly assumes that people can specify their privacy and information
needs. What those needs are, however, is often not clear. Typical privacy defi-
nitions where privacy is a binary concept on top of which statistical guarantees
are formulated (e.g., k-anonymity, l-diversity, and the like [35, 29, 30], or those
based on differential privacy [18, 28]) do not suffice in our scenario since privacy
is no longer a binary concept. Furthermore, specifying these needs is at best
cumbersome, cognitively difficult and even unfeasible if we expect users to con-
tinuously specify their needs for all possible values, contexts, and users. Realistic
mechanisms must be in place to obtain the utility functions.

The goal of this paper is to develop a principled approach and framework
that can address the above challenges and enable the privacy-utility balance in
pervasive space applications.

Contributions. The following are the key contributions of this paper.
1) We develop a model of pervasive spaces to represent the various entities (e.g.
users, objects), their static properties (e.g. name), and their dynamic properties
(e.g. location, activity) the values of which can be represented at different levels
of granularity (Section 2).
2) We model the notion of privacy (for targets), not as a binary concept, but
as the negative utility associated with each piece of information, and formulate
the problem of maximizing the net utility of the information released by the
pervasive space system (to an observer) while avoiding privacy violations due to
inference (Section 3).
3) We propose a solution to address the privacy preservation and utility max-
imization problem based on a distributed simulated annealing algorithm (Sec-
tion 4).



Fig. 1. OfficeMonitor: a sample application Fig. 2. Our pervasive space

4) We extend the existing SATware middleware [21] for pervasive spaces with a
privacy manager module (Fig. 2) which incorporates (i) a policy language and
mechanisms to express privacy and utility requirements, and (ii) a background
knowledge model based on first-order probabilistic datalog clauses and machine
learning techniques to populate it, and (iii) the disclosure component that im-
plements the aforementioned simulated annealing-based algorithm (Section 5).
5) We study the performance of our techniques as implemented in a real system
(Section 6) by experimenting with scenarios typical from a motivating Office-
Monitor application. OfficeMonitor is a collaborative application that allows
a user (observer) to graphically browse through a university campus map and
observe locations and tasks of other people. OfficeMonitor also allows targets
(users being monitored) to specify rules on whether and how information about
them (e.g., current location, activity) should be released. With this improved
awareness, office occupants, for example, are able to prompt their co-workers for
impromptu meetings in the most appropriate time

2 Pervasive space model as viewed by the applications
From the point of view of the applications, a pervasive space is a physical space
in which activities and objects are embedded. In this space, there are 3 types of
objects: (1) spatial objects such as rooms, floors, and buildings, (2) people such
as Mary, Peter, and Alice, and (3) inanimate objects such as coffee pots, recycle
bins, and refrigerators. Each of these objects have attributes such as name,
occupancy level, location, salary, level of coffee, and so on. These attributes are
either static or dynamic (i.e., they change as a function of time). For instance,
name and salary are static whereas location is static for spatial objects but
dynamic for people. We call observable attributes the subset of attributes that
can be sensed by the pervasives space. For example, a pervasive space with video-
based people counters and RFID readers can detect both the level of occupancy
of a room as well as recognize the people in it.

Our pervasive space middleware will allow applications to view the space as a
database whose main table contains the values of the observable attributes over
time. The main table has 4 columns: ObjectId, AttributeName, AttributeValue,



and Time. We call such a database an observable database (ODB), and the main
table is called the Base table. An example of an ODB.Base table is depicted in
Fig. 3.

Fig. 3. ODB.Base and generalization hierarchy

OfficeMonitor type of applications pose continuous queries on ODB.Base.
The pervasive space middleware continously answers these queries by deciding
which sensors need to be queried and how to interpret the data streams generated
by the sensors [21]. At any point of time t the query answers are a set of tuples
Yreq = {< id, att, v, t >} where id identifies an object, att identifies an attribute,
and v is the observed value. For the OfficeMonitor -type of applications we only
need simple filter queries that use selections on the observable attributes such
as 1

SELECT AttributeValue FROM ODB.Base WHERE ObjectId=Alice
AND AttributeName=Location AND Time=Now

We refer to the users who pose these queries as observers. We refer to the
objects of queries as targets. Target identities, attribute values, and time are
considered to be generalizable—hierarchies exist to capture these concepts.

2.1 Modeling generalization hierarchies

People may be organized into a hierarchy according to their occupation, location
may be organized according to physical inclusion, and time may be generalized
from seconds to minutes, hours, and days. Given the type of pervasive applica-
tions we are interested in enabling (e.g., OfficeMonitor), in this paper we only
focus on generalizing attribute values. Fig. 3 illustrates a generalization hierar-
chy for the attribute Location. A query for Alice’s location may now use this
hierarchy to return information at the room, floor, building, or campus level.

We denote generalizations with the ≺ partial order and use the notation
x ≺n y to indicate that the minimum number of generalizations between x and
y is n. For example, <Mary, Location, Campus1, Now> ≺1 <Mary, Location,
Campus1/Building1, Now> and <Mary, Location, Unknown, Now> ≺2 <Mary,
Location, Campus1/Building1, Now>. We extend the definition of ≺ to sets of
tuples; we say that X ≺1 Y , iff ∃y ∈ Y, x ∈ X s.t. x ≺1 y and X−{x} = Y −{y};
we say that X ≺n Y , iff ∃ Z ≺n−1 Y and X ≺1 Z. We define the partial order �
as x � y iff x = y or x ≺ y, and X � Y iff X = Y or X ≺ Y . At the top of each
attribute generalization hierarchy (i.e., at level 0) there is the null value [35],
which we call Unknown.

1 More complex queries (e.g., “select the location and picture of whoever is nearest to
the exit”), can be modeled as queries on views that are defined on top of ODB.Base
and other tables that contain extra information regarding the space objects, the
sensing infrastructure, and so on.



Last, two further assumptions that we make in our model are: (i) we trust the
sentient system software and hardware—no privacy leakage is due to them, and
(ii) the interest is in the current state: information utility regarding an attribute
value decreases exponentially with time.

3 Problem Formulation
The task of pervasive space applications such as the OfficeMonitor is to provide
answers to users’ queries. While the utility of a query response is maximized for
the observer when the data is in “the most precise” form, the utility may be
quite the opposite for the target of the query. For instance, if location privacy is
a concern then revealing accurate information about location is certainly detri-
mental for the target. There is often such a conflict between the “positive” and
“negative” utilities associated with a piece of information that comprises a query
response. Traditional access control mechanisms are geared towards deciding be-
tween the binary options of granting and denying access to a piece of information.
In contrast, we consider a much larger set of options where the same information
is revealed to the observer at a different granularity, i.e. level of generalization.
For instance, the system may decide to send the tuple <Mary, Location, Cam-
pus1/Building1, Now> instead of the most accurate version <Mary, Location,
Campus1/Building1/Floor1/Room1, Now> if it determines (using some criteria
which we will describe later) that this is the resolution that achieves the de-
sired degree of tradeoff between privacy of targets and utility of the observer.
We claim that our approach allows a greater amount of useful information to
be released in general and is acceptable for many pervasive application scenar-
ios where strict access control happens to be too restrictive. Another important
feature of our privacy analysis is that we factor in the information disclosed
due to inference. The inference problem is especially critical in pervasive spaces
where the observer may have substantial amount of background knowledge and
historic information (i.e., the contents of ODB.Base over time) using which he
can deduce more facts besides what is revealed directly by the response gener-
ated by the system. The inference algorithms can lead to substantial increase
in load on a real-time system as the knowledge base grows. Therefore, an ef-
ficient and scalable implementation is required to deliver a practical solution.
In the remainder of this section we describe how we model background knowl-
edge, observer and target utilities, and the information release problem as a
constrained optimization problem in an utility theoretic framework. In the next
section, we will describe our solution methodology and give efficient algorithms
for the optimization problem.

3.1 Background Knowledge Model

We model an observer’s background knowledge (BKobs) as a set of probabilistic
first-order Datalog (pDatalog) clauses [25]. pDatalog is much more expressive
than propositional logic variations usually used in inference control on statistical
databases [30] in that it allows us to model relationships among attributes as
well as relationships between attributes and time. With the use of variables,
rules can be expressed more concisely. Moreover, pDatalog allows us to reason
with probabilities. An example of a rule is:

Tuple(Alice, Location, l, t) : p ∗ 0.8← Tuple(Mary, Location, l, t) : p (1)



A data element is represented as a multi-attribute tuple of the form Tu-
ple(objectId, attributeName, attributeValue, time):certainty. The rule above states
that if Mary is at location l at time t with probability p, then Alice is also present
at the same location (as Mary) with a probability of 0.8*p. Here 0.8*p is the
certainty factor associated with the consequent tuple. The knowledge base con-
sists of rules of the above form along with some other auxiliary information in
the form of hierarchies and facts.

The background knowledge base with respect to each observer is the set of
rules in the union of a general knowledge base (KBG) (which is common to
all observers) and a knowledge base KBTold consisting of the facts that the
system has recently revealed to that observer i.e., KBobs = KBG ∪ KBTold.
The general knowledge base KBG, in turn comprises generalization hierarchies
(KBGH) as shown in Fig. 3, a knowledge base that expresses the intended us-
age of the space and its characteristics (KBS), and a set of rules that expresses
the individual usage of the space and further attribute and value relationships
(KBD) (i.e., KBG = KBGH ∪ KBS ∪ KBD). We call BKsys the union of all
observer’s background knowledge model, a.k.a. the system’s background knowl-
edge. In Section 5.2 we give examples of rules in KBD and KBS and describe
how the knowledge bases are populated.

3.2 Privacy vs Utility

We argue that the potential use (or misuse) of information is what defines the
expected utility of information. Given this premise, we derive the definitions of
positive expected utility of a piece of information for the observer and neg-
ative expected utility of a piece of information for the target. We formulate
our problem as a maximization problem based on these utilities.

Let Tell(obs, Yrel ⊆ ODB.Base) be the action of the system releasing in-
formation Yrel to an observer obs, where Yrel is a set of tuples of the form
yr =< id, att, v, t > where id identifies an object, att identifies an attribute, and
v is the attribute’s value at time t. Given that an observer’s possible actions are
a function of the information he believes in [31, 40, 39], the possible outcomes
of Tell(obs, Yrel) is defined by the set of actions that the observer could respond
with. For example, if due to Tell(Peter, Yrel) Peter believes that Mary is in her
office, he might go there, and if she is actually in her office, Mary will get inter-
rupted. Furthermore, we assume that the probability of the observer attempting
to perform that action is equal to his belief that the piece of information is true.

The outcome of an observer’s action has a utility for both the observer and
the target of the information released by the system. Namely, it has an immediate
positive utility for the observer (Peter gets help from Mary) and an immediate
non-positive utility for the target (Mary gets interrupted). We will classify a
tuple as private information if it has some associated negative utility. Further-
more, since the observer can potentially infer information about other targets
(e.g., Alice’s location), the observer’s might incur a non-positive utility for other
targets 2. The functions utilityO(obs, y, ctxtobs) and utilityT (obs, y, ctxttgt) re-
turn a number between [0.0, 1.0) and [−1.0, 0.0] respectively, which represent the
utility for the observer and the target of an observer learning a specific piece of
information y ∈ ODB.Base in a given context. A user’s context is defined as a

2 Utility can also be negative for the observer and positive for the targets [17, 11]. In
this paper, however, we focus on a simpler model.



subset of tuples regarding himself and some “benign” objects whose state does
not disclose (directly or via inference) private information 3:

ctxtu = {y =< id, att, v, t > |id = u or id = benignObj, y ∈ ODB.Base} (2)

We define the observer’s expected utility for a piece of information as the
product of “the probability of the user successfully performing an action (which
is equivalent to the observer’s belief that a piece of information is true times
the probability that the information is true)” and “the utility of the outcome
of such an action”. For notational simplicity, we suppress the obs and context
terms from the expression:

EUO(y) = P (y | Yrel, KBGH) ∗ P (y | Yrel, BKsys) ∗ utilityO(y) (3)

where P (y | Yrel, KBGH) represents the observer’s belief that y is true, and
P (y | Yrel, BKsys) represents the probability that y is true.

We define the target’s expected utility in a similar manner except for the
fact that we have to consider inferences regarding (a) future data and (b) other
targets. For example, if Peter knows that Mary joins Alice for dessert, he can
infer where Mary might be in the near future if he knows where Alice is having
lunch. This way, the target’s expected utility can be defined as the product of
the probability that the observer will deduce a new piece of information, the
information being true, and the (negative) utility for the target4:

EUT (y) = P (y | Yrel, BKobs) ∗ P (y | Yrel, BKsys) ∗ utilityT (y) (4)

Symbol Description

Yreq tuples before discl. control
Yrel tuples after discl. control

Yderived info inferrable from Yrel

GH(Yrel) info inferrable from yrel based on gen. hierarchies
Tell(obs, Yrel) sentient system’s action

≺, � generalization relations

BKobs = KBG ∪ KBTold obs’s background knowledge
KBG = KBGH ∪ KBS ∪ KBD general KB

KBGH generalization hierarchy KB
KBS intended space usage KB
KBD domain KB

utilityO obs’s utility for a piece of info
utilityT tgt’s utility for a piece of info

EUO Observer’s expected utility
EUT Target’s expected utility

Table 1. Symbols

Note that for the target’s expected utility we consider the entire observer’s
background knowledge (BKobs) whereas for the observer’s expected utility we

3 In general, there exists no “benign” object since for any given information, theoreti-
cally exists some background knowledge that can be applied to obtain some private
information [18]. In practice, however, there is information which is more unlikely
to allow an observer to infer private information. For example, benign information
includes tuples such as <Campus1/Building1, onFire, true, now>

4 Note how this definition is very similar to the disclosure risk definitions of privacy-
preserving data publishing [30]. The main difference is that we multiply the disclosure
risk by the utility and the probability of a future action happening



consider the generalization knowledge base (KBGH). For the targets, we are
interested in a worst-case scenario; thus we need to consider any possible leakage
of information. For the observer, on the other hand, we are only concerned with
the attributes he posed the continuous queries on—i.e., the attributes he is in
fact interested in. All the notations are summarized in the Table 1 for easy
reference.

Let us denote by GH(Yrel) all the information that can be inferred from Yrel

given the generalization hierarchy knowledge base KBGH . Denote by Yderived

all the information that can be inferred from Yrel given the observer’s knowledge
base KBobs. Then, we define the expected utility of Tell(obs, Yrel) as the sum
of the expected utilities of the data the observer receives as long as these data
do not violate the privacy constraints:

EUTell(obs,Yrel) =

{

P

y∈GH(Yrel)
EUO(y) if Private(Yderived)

−∞ otherwise
(5)

where Private(Yderived) is a boolean function that decides whether privacy is
violated or not. In this paper, we take a simple criteria for checking privacy
violation. We say that privacy is met if there is no data whose negative utility
is larger than the observer’s utility of either that data or any other piece of data
that contributed to its inference. Let us define a minimal independent partition
Y i

rel as a subset of Yrel such that no piece of information in Y i
rel allows one to

infer a piece of information in Yderived −Y i
rel and vice versa, then privacy is met

if:

Private(Y i
rel) =

{

true if |EUT (yd) ∗ ω(yd.t)| ≤ EUO(yr)
∀yr ∈ GH(Yreli),∀yd ∈ Y i

derived

false otherwise
(6)

where ω(t) = 2 1
1+e|now−yd.t|/τ , with τ as a small constant (e.g., 1), accounts

for information utility decreasing exponentially with time (Section 2).

3.3 The Utility Maximization Problem

We cast the problem as a maximization problem where the objective is to find
a generalization Y i

rel � Y i
req for each minimum independent partition Y i

rel that
maximizes (5) and meets the privacy requirements (6). Namely, the objective is
to maximize the observer aggregated expected utility of the information released
while ensuring that the largest negative utility of all the information pieces the
observer can infer, given his background knowledge and the information being
released, is not greater than the largest positive utility of all the information
pieces the observer can infer given the generalization hierarchy and the informa-
tion being released. Formally it can be stated as:

max
Y i

rel

EUO(Y i
rel) (7)

such that

min EUT (Y i
rel) + max EUO(Y i

rel) ≥ 0.0 (8)

Y i
rel � Y i

req (9)

where



EUO(Y i
rel) =

∑

∀yr∈GH(Yreli )

EUO(yr)

min EUT (Y i
rel) = min

yd∈Y i
derived

EUT (yd)

max EUO(Y i
rel) = max

yr∈GH(Y i
rel)

EUO(yr) (10)

4 Solution
In this section, we describe how the optimization problem is solved in our system.
We utilize the generalization hierarchies to compute a suitable generalization
of the tuples before releasing them to the observer. If an observer poses N
continuous queries, it is possible that on an event N distinct tuples might need
to be generalized. The algorithm therefore has to search for a joint generalization
scheme for these N tuples. If there are m levels of generalization per attribute (on
average) and N tuples, the number of different generalization schemes is O(mN ).
Similar to problems of privacy preservation in data publishing applications, it
can be easily shown that this problem is in fact NP-hard for most cases and,
hence, efficient polynomial time solutions are unlikely. Now, we describe the
properties of the objective function and, based on those, propose a stochastic
and distributed scalable algorithm based on simulated annealing to look for an
optimal generalization.

4.1 Problem characterization

An important property of the objective function (5) is its parallel nature. That
is, minimal independent partitions can be solved independently and in parallel.
Another important property, is the fact that the utility of a piece of information
is never smaller than its generalization, which allows for prunning of the solution
space. Formally:

Property 1. If Y j
rel is a feasible solution, it is better than any Y q

rel ≺ Y j
rel.

Proof. For any Y q
rel ≺ Y j

rel,
∑

y∈Y j
rel

EUO(y) =
∑

y∈Y q
rel

EUO(y) +
∑

y∈{Y j
rel−Y q

rel}
EUO(y) →

∑

y∈Y j
rel

EUO(y) >
∑

y∈Y q
rel

EUO(y). In other words,

the utility of a piece of information is never smaller than its generalization.

Given the exponential size of the feasible region, the need for real-time solu-
tions, the parallel nature of the problem formulation, and the distributed com-
puting affinity of sentient systems, we propose a distributed stochastic solution.

4.2 A simulated annealing based solution.

Our solution is based on distributed simulated annealing [26, 32, 34, 27]. Fig. 4
depicts the algorithm. We use the Rete algorithm [19] (an optimized incremen-
tal forward-chaining algorithm [34]) on the union of Y i

rel and BKobs to find
the minimal independent partitions (findMinIndPartitions). That is, every time
a rule fires in Rete, all the involved facts along with the rule are joined with
every other set that contains any of the involved facts. The time complexity
of this first step is polynomial because we make the following assumptions
on the background knowledge model. We assume that uncertainty functions
(f) adhere to the “natural restrictions” [25] of monotonicity (f(x1, . . . , xn) ≤



f(y1, . . . , yn) ∀i∈[1..n] xi ≤ yi), boundedness (f(x1, . . . , xn) ≤ xi∀i∈[1..n]), and
continuity w.r.t its arguments—that is, the higher the premises the higher the
consequent, the new data being inferred is as good as its premises, and the cer-
tainty function is continuously defined. Since the background knowledge is used
to model possible privacy violations, resulting facts that are identical except
for their associated uncertainty are combined with the MAX function. In the
worst-case, the observer will know the rule that resulted in the highest certainty.
With these assumptions, the inference analysis terminates in a finite number of
steps [25].

Furthermore, the worst-

Yrel =findMinIndPartitions(Yreq,BKobs)

for each(Y i
rel ∈ Yreq)

do n times in parallel

SimulatedAnnealing(Y i
rel)

enddo
endfor

Fig. 4. Maximization algorithm

case time complexity of Rete
is still linear w.r.t. the num-
ber of rules (r) and poly-
nomial w.r.t. the number of
facts (f c, c = ruleLength +
ruleArity) as it is for non-
probabilistic Datalog clauses [34].
Given that the actions taken
for every time a rule is fired
have a time complexity of O(f3 + 2fr), this first part of the algorithm has a
worst-case time complexity of O(rf c + r(f3 + 2rf)) = O(rf c + r2f).

Every minimal independent par-

function SimulatedAnnealing(Y i
rel)

Y
j

rel = Y i
rel.neighbor()

Y ∗

rel = max(Y
j

rel,Y
i

rel)
T = initial Temperature
while(!terminate)

if(accept(Y
j

rel, T))

if(Y
j

rel.energy < Y ∗

rel.energy)

Y ∗

rel = Y
j

rel

endif
endif
if(!change temperature)

Y
j

rel = Y
j

rel.neighbor()
else
T.decrease();
if(!terminate)

Y
j

rel = Y
j

rel.neighbor()
endif

endif
endwhile
return Y ∗

rel

endfunction

Fig. 5. Simulated annealing

tition Y i
rel is optimized by multiple

simultaneous instances of the sim-
ulated annealing algorithm from Fig. 5.In
this algorithm, a state’s neighbor is
generated by randomly selecting a
tuple and then generalizing it. A neigh-
bouring state is accepted according
to the typical acceptance function
for simulated annealing accept(s, T ) =
e−∆E/T . We define a state’s energy
E(Y j

rel) as:

E(Y j
rel) = ρ(

∑

yr∈Y j
rel

EUO(yr)

|Y j
rel|

)+

1

ρ
(Nat(− max

yr∈Y j
rel

(EUO(yr))−

min
yd∈Y j

derived

(EUT (yd) ∗ ω(yd.t)))

(11)

where Nat(y) returns y if y >=
0.0 or 0.0 otherwise, and ρ = 10−r, with r ≥ 1, is the penalty associated with
violating Constraint 8 . Note that if the initial solution Y i

req is feasible, then

∆E(Y i
req) ≤ ρ, which is a number close to 0.0.

We choose the initial temperature T0 to be 1
ρ according to the following

reasoning. The worst-case ∆E that we consider is when the neighboring state



violates Constraint 8 by the approximate same amount but utility drops dras-
tically. An upper bound on ∆E is thus ∆E = ρ. In order to accept this state
with a high probability at high temperatures, we set T0 = 1

ρ since 1
eρ/T0

= 0.99

for ρ = 0.1.

We change the temperature every N ′∗max(m′)
2 iterations (m′ < m is the

maximum number of granularities in Y i
rel) because N ′∗max(m′)

2 is the average
distance from the initial state to the optimal. The temperature schedule follows
the typical geometric rule Tk = δ ∗ Tk−1. Normally, with such a temperature
schedule, δ is chosen very close to 1.0 such as 0.9 or 0.99 [32]; however, and in a
manner similar to [27], since we are running multiple instances of the simulated
annealing operator in parallel, we choose a small δ (e.g, for r = 1, delta = ρ =
0.1).

The algorithm terminates when a state with energy 0.0 has been found, the
temperature reaches δ, or a feasible solution has been found (Property 1). The
time complexity of the distributed simulated annealing becomes O(logδ(δ/T0) ∗
N ′∗m′

2 ∗ (rf c + N)) = O(logδ(δ ∗ ρ) ∗ N ′∗m′

2 ∗ (rf c + N)) = O(logδ(δ
2) ∗ N ′∗m′

2 ∗

(rf c + N)) = O(Nrf c + N2). Consequently, the worst-time complexity of the
whole maximization algorithm is O((rf c +r2f)+(Nrf c+N2))—i.e., polynomial
w.r.t. the size of the knowledge base and number of queries.

5 Implementation
We implemented the Privacy Manager in a real pervasive space composed of the
Responsphere infrastructure [4] and the SATware middleware [21]. Together,
Responsphere and SATware provide a campus-wide pervasive testbed for inter-
disciplinary research in situation monitoring and awareness. Responsphere is a
pervasive sensing, communications, computing, and storing infrastructure that
covers a third of our university campus. It includes more than 200 sensors of
different types such as video cameras, RFID readers, networked people counters,
and wireless sensor networks (i.e., motes). SATware [21] is a middleware we have
developed for executing pervasive applications on top of such an infrastructure.
It provides applications with a semantically richer level of abstraction of the
physical world compared to raw sensor streams. SATware’s processing and pro-
gramming model is based on operators, which serve as the transition between
raw sensor streams to semantically richer information streams. Operators are
Java-based mobile agents that implement a simple and data-centric function.
For example, SATware provides operators that given a stream of video frames
generates a stream of tuples that indicate whether motion has been detected.
The Responsphere-SATware framework has been and is being used to test and
develop applications such as privacy-preserving video surveillance [22, 7, 43], sit-
uational awareness for firefighters (SAFIRE) [6], building visitor tracking [5],
technology-induced recycling behaviour, fresh coffee alerts, and others.

In order to enable further applications such as the OfficeMonitor, we extended
SATware with the Privacy Manager. The high-level design for integrating the
Privacy Manager into SATware is shown in Fig. 6, which has 3 key components:
(1) Policy Manager, (2) Background Knowledge Generator, and (3) Disclosure
Control module.

In the Policy Manager, privacy policies and utilities are specified by users
through the Policy Editor, validated by the Policy Processor, and stored into
the Privacy DB. The knowledge base representing the background knowledge of
users is partly populated by system and space administrators and partly learned



Fig. 6. PrivacyManager Fig. 7. Utility Scales

(on-the-fly) by the system using the BK Generator, and stored into the BK-DB.
Continuous queries are posed by an observer through an application, and their
results are transmitted to the Disclosure Control module which analyses the
possible information (using the proposed distributed simulated annealing tech-
nique) that the observer could infer and, with the active policies, decides which
information should be generalized and how. We now describe implementation
details (and issues) for the 3 modules.

5.1 Policy Manager

We developed the Policy Language for Pervasive Spaces (PLPS) based on the
Platform for Privacy Preference (P3P) [16] to assist users (observers and targets)
in specifying the privacy policies and utilities (positive for observers and negative
for targets). P3P is a W3C standard that enables websites to express their pri-
vacy policies in a computer-readable format and provides a protocol to read and
process the policies automatically through web browsers. Additionally, it allows
web users to express their privacy preferences that can be match with privacy
policies specified by the websites. Based on these concepts, PLPS is designed to
enable users of pervasive spaces to express their privacy policies to protect their
personal information. In PLPS, a policy is defined as a set of statements, where
each statement contains: (a) a piece of information; (b) the observer; (c) the
retention that defines the length of the observation; (d) the context; and (e) the
utility. In addition, each policy is associated with the mandatory elements name
of the policy and observer who owns the policy, and the optional elements policy
creation date, expiration date, and description. A policy is formally defined as a
tuple of the form PP = {PolicyID, Target, CreationDate, ExpirationDate, State-
ments}, where Statements is a set of statements and each statement is formally
stated as a tuple of the form Statement = {Observer, Retention, Context, Data,
Utility}. The Retention element is defined as a tuple of the form {StartDate,
EndDate, Frequency}. The Frequency element indicates the repetition of the
observation defined in the statement and it is drawn from the set {Once, Daily,
Weekly, Monthly, Yearly}. An example of a target’s privacy policy in the Of-
ficeMonitor application could be “Between 01/01/2009 and 03/30/2009, every
Monday between 1pm and 4pm, Mary allows the system to tell if she is in her
office to her research group members, but not to other users”. This example is
encoded as follows:
{Policy1, Mary, 01/01/2009, 03/30/2009,



{Group1, [01/05/09-1:00, 01/05/09-4:00, Weekly], Location, C1/B1/F2/R1, 0.0},
{Others, [01/05/09-1:00, 01/05/09-4:00, Weekly], Location, C1/B1/F2/R1, -1.0}}.

PLPS is not only flexible in terms of representing, managing, and intercon-
necting various types of policies; it also allows the definition of policies at differ-
ent granularity levels for data attributes. Furthermore, policies are not static but
rather the system dynamically updates them as the users specify new needs or
tune old ones. We use the Web Ontology Language (OWL) [2] to represent the
privacy policy rules modeled in PLPS in the form of ontology and complement
it with the Semantic Web Rule Language (SWRL) [3] to express more complex
rules. The advantage of using the Semantic Web to represent the policies, is
the ability to perform various operations on the policies, including consistency
checking, through ontology reasoners. We used the Jena API to implement the
module.

Specifying Utilities: An important factor in defining the privacy policies
is how to obtain the utility values. Obtaining the user’s utility function is cogni-
tively difficult [14] and specifying the utility of every possible piece of information
for every target, observer, and context is an incredibly tedious task, which can
hinder the usability of the approach. To address this issue, we propose a model
that allows users to dynamically change their utility values for each policy state-
ment based on their experiences and needs using a graphical continuous sliding
scale with 5 labels homogeneously distributed 5. Fig. 7 shows the 5 labels and
the utility values associated with them. Recall that the utility for the observer
is in the range [0.0, 1.0) and the utility for the target in the range [0.0,−1.0].

We extended the scale approach by adopting the Conditional Outcome Pref-
erence Network (COP-network) [12], for eliciting user preferences and estimating
utilities. Applied to our policy model, a COP-network is a directed graph that
represents the relative user preferences of the different data. Using this network
of preferences and a few utilities “anchored” in some of the labels from Fig. 7,
one can estimate the remaining utilities. Three techniques for estimating utilities
are included with the COP-network approach, and we have selected and imple-
mented the one that is proven to be more effective: the Longest-Path technique.
In short, this technique takes as inputs a COP-network and a set of known “an-
chored” utilities, selects the longest path of private data in the network for which
utilities are unknown, and compute utilities for those private data in a way that
the preference ordering in the network is preserved. This process continues until
all the private data has been considered.

5.2 Background Knowledge Generator

The privacy manager implementation also needs to deal with the issue of pop-
ulating the knowledge base that represents the background knowledge of the
users. In our background knowledge model, we identified three types of back-
ground knowledge that we modeled with pDatalog clauses: the generalization
hierarchy (KBGH), the space intended usage (KBS) such as most people check
their emails in their office, and the space individual usage (KBD). We propose
populating the knowledge bases as follows. The information in KBGH and KBS

is initially populated by system and space administrators and continuously cal-
ibrated by the middleware. Calibration of rules in KBGH and KBS is done

5 We used 5 intervals as in the Likert scale, which is a well-accepted psychometric
ordinal scale used in questionnaires and survey research [1]. Five levels are the usual
choice since 3 do not provide enough variability and 7 offer to many choices



by regularly matching the recent data observed by the system with their rules.
Borrowing the terminology from rule-mining algorithms, we call support s% the
number of times a rule’s premises appear divided by the number of tuples ob-
served, and we call confidence c% the percentage of these times that the rule
consequent also appears. We update a rule in KBGH or KBS when s% is above
a threshold and we cannot reject the null hypothesis that the average times the
rule holds for all individuals c% has not changed.

The information in KBD is not pre-populated; rather, it is learned by the
system overtime. Similar to KBGH or KBS , we create an exception rule in KBD

when s% is above a threshold and we cannot reject the null hypothesis that
the average times the rule holds for some individual i (ci%) and the average
times the rule holds for all individuals (c%) are different (e.g., whereas most
people check their emails in their office, Peter does it at the conference room).
Furthermore, KBD contains rules learned by regularly running association-rule
mining algorithms, such as [9], on the information observed by the system. Given
a set of items I = {i0, . . . , ik} and a set of transactions/baskets T = {t0, . . . , tn |
ti ⊆ I}, rule association mining algorithms produce propositional rules of the
form Y ← X , with X ⊂ I and Y ⊂ I, where each rule has an associated
confidence c% and support s%. We propose basketizing the data observed by the
system into time-based baskets at different time granularities and then mining
association rules for each granularity. For instance, we would (i) put all the tuples
whose time is within the same second in the same basket and then mine for rules
such as “Mary writes emails at her office”; (ii) put all the tuples whose time is
between 8 a.m. and noon in the same basket and mine for rules such as “Peter
has coffee in the mornings”; (iii) put all the tuples whose time is in a Tuesday
and derive that “Alice goes to board meetings on Tuesdays”; and so on up to
weekly baskets. Note that we can, this way, derive both rules regarding the space
usage (e.g, “Mary writes emails at her office”) and inter-object relationships (e.g.,
“Mary’s location is the same as Alice’s 4/5 times”).

We will then upgrade the resulting propositional rules to pDatalog rules by
using c% as the uncertainty associated with the rule and fixing s% as a system
parameter. Moreover, whenever a rule appears consistently among entities it will
be generalized and added to KBS—for example, if most people have coffee in
the morning. The implementation details of the background knowledge learning
algorithms are out of the scope of this paper. In here, we limit ourselves to show
that the knowledge can be obtained and, hence, assumed that it has.

5.3 Disclosure Control
The disclosure control module is the key to the approach. Given a set of base re-
sults to an observer’s queries, the disclosure control consults the policy database
and BK to determine how to release the information without violating the target
privacy, while maximizing the observer utility. Fig. 8 depicts the details of the
implementation of the disclosure control module. Our solution is implemented
as a graph of operators. The B operator outputs a series of sets where each set
contains meta-information on an independent component. Namely, each set con-
tains a small knowledge base with the relevant rules for this component and a
subset of the tuples in Yreq. Similar to [15], we extend the Jess deffact template
with an extra slot for the associated uncertainty and an extra rule to handle
the combination of evidences on the same fact. The output of the B operator is
forwarded to the scheduling operator, which forwards each input to a different
PSA operator in a round-robin manner. Each PSA operator executes the paral-
lel simulated annealing on the minimum independent components using also the



extended Jess. The utility functions come from the CTXT operators which, de-
pending on the current context, query the policy DB for the active policies. The
results of the PSA operators are forwarded to the π operators. The π operators
then filter the data so the UI operators receive the < id, att, v, t > tuples they
expected.

Fig. 8. Disclosure control.

6 Experiments

The main goal of the disclosure control submodule is to be able (i) to produce
good results (high utility with adequate privacy) and (ii) to do so in real-time.
To test the parallel simulated annealing based approach (PSA), we compared
it to two simpler and centralized approaches: a brute force search (BF) and
an anonymity-based approach (minGen). The BF approach was implemented
as a depth-first search (DFS) with pruning based on Property 1. The minGen
approach was an adaptation of the typical privacy definition in data publish-
ing [37], where data is either private or public and the goal is to guarantee that
private data attains a certain degree of anonymity while the information lost due
to generalization is minimized. We measured the information lost as the average
uncertainty introduced. Formally:

max
Yrel

∑

yq∈Yreq

P (yq|Yrel, KBGH)

|Yreq|

s.t.∀(yd∈Yderived,yd∈P ) P (yd|Yrel, BKobs) > (1/k) (12)

where P is the set of private data. This algorithm was implemented also with
DFS with pruning. For comparison purposes, we considered all data with nega-
tive utility to be private and we assumed a fixed value of k = 4. We implemented
3 versions of the disclosure control submodule, one for each approach.

The experiments setup was as follows. We used scenarios from the Office-
Monitor application to create a realistic experimental setup. For the basic case,
we instantiated the OfficeMonitor queries for a typical project group (7 people).
Queries generated tuples of the form <id,att,v,t> which were then routed to the
Disclosure Control submodule. The query set generated 9 tuples every second
over a period of time (our results are an average of 36 of such runs). The tuples
represented 2 different minimal independent partitions. For the first partition,
the utility values were set such that the solution was 5 generalizations away



from the initial solution (the distance to generalizing everything to unknown
was 28 generalizations). For the second partition, the solution was 0 generaliza-
tions away from the initial solution. The knowledge base had 12 facts, and 47
rules (similar to rule (1)), 14 of which were related to the 9 tuples being sent.
We believe this to be a typical setup and dimensioning for the OfficeMonitor
application.

Our first set of experiments compared the PSA approach with the BF and
the minGen approaches. In order to further study the characteristics of the PSA
approach, we instantiated 5 variations of it. These instantiations differed on the
degree of concurrent exploration (i.e., number of threads) being used. We call
these PSA(x) where x is the number of concurrent explorations on the same
partition. We then compared PSA(1), PSA(6), PSA(11), PSA(16), and PSA(21)
with the BF and minGen versions in terms of time overhead and utility loss.
Fig. 9 shows the results of our experiments with a dual-core machine featuring
an AMD Turion 64 X2 at 2.0Ghz, with 3GB of memory, and running Linux.
While the BF approach always finds the optimal, it takes far more time than
the PSA approaches (minutes versus a few hundred milliseconds), which manage
to return a solution very close to the optimal when incrementing the amount
of concurrent exploration. The greatest utility loss is incurred by minGen, as
expected (recall from above that minGen can only differentiate between public
and private data and thus, it considers all data with negative utility equally
private).

Our second set of experiments studied the scalability properties of the PSA
approach. Fig. 10 suggests that, whereas our approach still takes a feasible
amount of time for 12, 18, 24, and 30 tuples per second, it does not scale lin-
early but polynomially (which is expected, recall from Section 4.2 that the time-
complexity of the disclosure control algorithm is polynomial w.r.t. the number
of queries). PSA might not scale for other applications beyond the OfficeMoni-
tor where applications need a large amount of tuples per second. However, the
scalability of our approach can be improved by making use of (a) the paral-
lel nature of the problem at hand and (b) the very nature of pervasive spaces
which allows for distributed computing. In most cases, query results will have
several minimum independent partitions in it. Each of these partitions can be
optimized separately. Fig. 11 studies the effect of adding more PSA operators.
It shows that, since, we had 2 minimum partitions, there is an important re-
duction of the time needed to find the solution when we had a number of PSA
operators close to the number of independent partitions. With one PSA opera-
tor, independent partitions get queued in front of the operator; with 2 or more
PSA operators, these queues tend to be small or almost empty; however, there is
a point where the overhead of having the extra operators starts weighing more
than their distributed benefit.

7 Related work
Several privacy and anonymity definitions and metrics along with specific solu-
tions have been proposed in the literature. For instance, [35] presents the metric
of k-anonymity, which expresses the fact that in the worst-case the value of
a user’s sensitive attribute can only be narrowed to a set of size k. In [37],
the authors present a framework to achieve k-anonymity by generalization and
suppression. In [29] the authors extend the k-anonymity metric with l-diversity
which guarantees that it takes at least l−1 pieces of negative background knowl-
edge (i.e., “Tom does not have arthrities”) to sufficiently disclose the sensitive



Fig. 9. Comparing average time overhead and utility loss of PSA with different con-
current explorations with BF and minGen

Fig. 10. Behaviour of PSA as the number
of tuples/sec increases

Fig. 11. Effect of the increase of number of
PSA operators

value of any individual by assuring that the l most frequent sensitive values
are approximatly equi-probable. Positive background knowledge regarding the
sensitive attribute of the type “If Tom has the flu his wife has it as well” is con-
sidered in [30], where its authors show the k worst rules that can be in a users’
background knowledge and provide polynomial mechanisms to still be able to
guarantee a degree of anonymity. In [18] the author proves the impossibility for
absolute privacy in statistical databases and defines the alternative metric of dif-
ferential privacy, which is a metric relative to the risk of a user participating in a
statistical database. Nonetheless, none of the previous definitions applies to our
scenario: we need a non-binary definition regarding information that is not use-
ful in an anonymous manner—the OfficeMonitor is not interested in statistical
data.

Our work here is similar to QoS-related work in stream systems. Stream
systems such as Aurora [13] use semantic shedding [38] as one of the techniques
to decide which tuples to drop when resources run low—that is, the less useful
the data is for the recipient, the earlier it gets dropped. Here we take this concept
further by deciding to drop (or generalize) tuples when a user’s privacy would
be violated.

Privacy in pervasive spaces has been researched at multiple levels. At the
network layer, [10] combines hop-to-hop routing based on handles with limited
public-key cryptography to preserve privacy from eavesdroppers and traffic an-
alyzers. At the architectural level, and in a manner similar to outdoor GPS [24],
solutions such as Cricket [33] and Place Lab [36] protect a user’s (private) loca-
tion by having a user’s carry-on device calculate its location based on a series of
beacons from the infrastructure rather than having the infrastructure compute
the location as in [42] and [8]. In contrast, we assume that the sensor might not
have enough context and resources to compute observations nor it is the final



recipient of information (i.e., it is the system who captures and interprets the
information and applications, on behalf of their users, the recipients of informa-
tion). Other work regarding privacy in pervasive spaces includes the framework
for evaluating privacy control and feedback proposed for IMBuddy contextual
IM service [23], which strives to improve users understanding of privacy impli-
cations through feedbacks. They do not take into account, however, information
that can be inferred as a result of the information being disclosed.

Using Semantics Web technologies as means for describing and reasoning
about privacy policies in different domains including pervasive environments are
becoming common [41, 20]. Relevant to our privacy policy language is the se-
mantic context-aware policy model based on Description Logic (DL) ontologies
and Logic Programming (LP) rules in [41]. Central to this approach is the spec-
ification of policies based on context rather than the usual way of using roles
and identities of users. In user-centric pervasive space applications such as Of-
ficeMonitor, however, identity-based policies are still necessary since privacy is
an individual-centric concept.

8 Conclusions and Future work

To build a pervasive space middleware that allows applications to query the state
of the objects in a given space is indeed a challenging task. One of the main chal-
lenges stems from the fact that some of the objects being monitored are people.
The middleware needs to make sure that the query answers it provides to the
applications do not violate privacy. In this paper, we proposed a novel approach
for modeling privacy in the context of pervasive-space-supported collaborative
work. We turned away from a traditional binary definition where information is
either public or private and proposed a utility-based definition where informa-
tion is associated with a positive utility for the querier and a negative utility for
the target of the query. Moreover, further information that the querier might be
able to infer is also associated with a negative utility. With this definition, we
proposed a framework where the system has to decide, at every time instant,
which information should be generalized and how much, such that privacy is
preserved and utility for the querier is maximized.

Our first approach to solve the maximization problem is based on a dis-
tributed simulated annealing algorithm. We implemented our approach in an ex-
isting pervasive space middleware. To realistically instantiate such an approach,
we also had to address the problem of obtaining and representing the utility
functions and obtaining and representing a user’s background knowledge. We
proposed solutions for both problems.

Future directions opened by this paper include considering other types of
applications where aggregated information and other mechanisms beyond gen-
eralization of attributes are relevant. We did not deal here with queries such
as “Select the room with the maximum number of people in it”. Privacy on
these type of information is of a different nature and has its own challenges—
anonymity-based definitions might be more appropriate. Examples of further
mechanisms one might want to explore are generalization of identity and time.
Identity generalization is specially interesting and, again, of a different nature:
a system can only safely generalize “Alice” to “programmer” if the querier is
learning information about other k − 1 programmers and he cannot tell who
they really are. Last, another mechamism would be to trade delay for privacy
to avoid time-and-domain based inferences such as inferring that Alice is still in



the building because she was in its top floor two minutes ago—which could be
a privacy violation if the context had changed over the last two minutes.
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