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Abstract. Application servers are subject to varying workloads, which
suggests an autonomic management to maintain optimal performance.
We propose to integrate in the component-based programming model of-
ten used in current application servers the concept of service level adap-
tation, allowing some components to dynamically degrade or upgrade
their level of service. Our goal is to be able, under heavy workloads, to
trade a lower service level of the most resource-intensive components for
a stable performance of the server as a whole. Upgrading or degrading
components is autonomously performed through runtime profiling, which
is used to estimate the application’s hot spots and target adaptations. In
addition to finding the best adaptations, this performance profile allows
our system to characterize the effects of past adaptations; in particular
given the current workload, it is possible to estimate if a service level up-
grade might result in an overload. As a result, by stabilizing the server at
peak performance via component adaptations, we are able to drastically
improve both overall latency and throughput. For instance, on both the
RUBIiS* and TPC-W benchmarks®, we are able to maintain peak perfor-
mance in heavy load scenarios, far exceeding the initial capacity of the
system.

Keywords: Quality of service, service-level degradation, control loop,
performance profile, self-adaptation.

1 Introduction

Autonomic management is increasingly important, especially regarding adap-
tive behaviors in the presence of varying workloads. Application servers openly
available on the Internet are especially subject to such workloads and offer the
incentive to design and evaluate adaptive behaviors. Some of our previous work
has studied autonomic optimization exploiting load balancing in clusters [1].
This work focuses on exploiting application-level adaptations that are naturally
present in Internet applications.

4 http://rubis.objectweb.org/
® http://www.tpc.org/tpcw/



Indeed, it is our experience that components of Internet applications often
contain the opportunity for behavioral adaptations. A common example of such
adaptations can be found in the context of multimedia streaming servers, where
the resolution and encoding of the content can be adapted to control the demand
in CPU and network bandwidth [2]. Limiting the size and precision of search
results is also a well-known and efficient adaptation of Internet applications.
Sorting is always an expensive operation on large results, which may be avoided
or approximated in some cases. Transactions are also a classical source of over-
heads that can be mitigated through smaller transactions, less consistency, or
playing with the granularity of locks.

In our approach, we request component designers to explicit possible behav-
ioral adaptations, in the form of alternative (and generally degraded) service
levels. Each component can be individually moved up or down that sequence,
raising or lowering the level of the provided service. At lower levels, a compo-
nent generally uses less resources to provide its service. Explicit levels of service
offer autonomic managers the opportunity to adapt the overall resource usage
of an application, trading a lower service level of individual components for an
improved quality of service of the application as a whole (i.e. better latency and
peak throughput). We use a dynamic approach in which an autonomic man-
ager decides to degrade or upgrade service levels at runtime, based on workload
fluctuations.

The decision to apply or unapply an adaptation is fully autonomic. We only
request that component designers express service levels. We felt important that
we do not require them to measure or estimate the resource usage of these service
levels. Indeed, such estimates are not only difficult to make accurately for an
individual component but are almost impossible to make when considering all
possible architectures and combinations of service levels for other components.
To estimate resource usage, we rely on a traditional profiling technique based
on request sampling, that we tailor to our component-oriented architecture. In
particular, we abstract the traditional call stack into a more abstract component
stack that provides an execution pattern in the sampled system. For each such
execution pattern, we can estimate its intrinsic cost per resource. Using this
intrinsic cost, we can calibrate the gains of adaptations per component stack
and per resource. Through such gains, we learn about past effects of adaptations,
helping us to optimize future adaptation decisions.

The challenge of this approach is to obtain adaptation gains that are work-
load independent. Indeed, gains are estimated on past workloads and used to
predict effects of adaptation on future workloads. Using our knowledge of the
architecture, we estimate our adaptation gains at the fine-grain level of com-
ponent stacks, achieving enough workload independence. Our experiments show
that effectively, our autonomic manager accurately estimates the effects of adap-
tations and efficiently corrects both overload and underload situations, even in
the presence of varying workloads.

We prototyped our autonomic adaptation system in the context of Internet
application servers based on the Java EE model (Java Enterprise Edition). This



prototype is an extension of the open-source JOnAS middleware. The modifica-
tions are minimal and incur no significant overhead. In particular, our continu-
ous 10Hz sampling incurs no measurable overhead in both RUBIiS and TPC-W
benchmarks. Our sampling rate is enough to compute component stack costs
with good precision and thereby measure reliable adaptation gains. Our exper-
iments show that our system consistently improves the overall performance of
JEE applications under heavy workloads, both reducing latency and increasing
throughput. Our experiments also show that our system is not prone to oscilla-
tions and adapts quickly to changing workloads.

The rest of this paper is organized as follows. In Section 2, we present the
design of our autonomic adaptation system based on techniques from control
theory. In Section 3, we details our sampling techniques and how we approach
workload-independent gains. In Section 4, we present a simple example illus-
trating our performance metric and simple adaptive behaviors. In Section 5, we
discuss the adaptive behavior obtained on the RUBiS and TPC-W benchmarks.
In Section 6, we discuss related work. In Section 7, we conclude.

2 Autonomic Adaptation

Our autonomic adaptation system uses techniques from control theory, which has
become a common practice in autonomic systems [3][4][5]. The configuration of
our control loop is composed of two thresholds defined for each resource. The
overload threshold is the usage ceiling above which the controller looks for a
service degradation to lower the usage of the overloaded resource. The underload
threshold is the usage floor upon which the controller may consider a service
upgrade.

Our adaption system follows the simple state machine depicted in Figure 1.
The adaptation system has a regulation mode and a calibration mode. In reg-
ulation mode, the control loop monitors the load of each resource. It reacts to
overload situations by selecting the most efficient adaptation that is not yet
applied and applies it. It reacts to underload situations by selecting amongst
already applied adaptations which one is the most effective to unapply. After
each regulation, the adaptation system steps into calibration mode for a fixed
calibration period. During this calibration period, further regulations are inhib-
ited.

In calibration mode, the autonomic adaptation system measures the impacts
on resource usage of the adaptation it just applied. The calibration period has
been experimentally fixed to 10 seconds, which is neither too short nor too long.
Too short, we would not be able to accurately estimate the effects of a regula-
tion on resource usage. Too long, changes in workloads could interfere with our
estimate. Moreover, a long calibration delay hinders regulation since regulations
are inhibited during calibration. Calibration will be detailed in Section 3.

Regarding regulation, one of the main challenges is stability, which we address
using an asymmetrical selection of adaptations. In the overload case, the control
loop looks for an adaptation ¢ to apply with a high effect on resource usage
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(noted AsUg) and a low degradation on the level of service, noted ws. This
wgs is provided by component designers who annotate their adaptations with
their relative impact on the quality of service of their component. The AsUpg is
automatically estimated by our system, which is detailled later on. This overload
goal is captured by the following definition where F(67) is the efficiency of
applying the adaptation d:

AsUr

Ws

E(@") =

In the underload case, the control loop looks for an adaptation to unapply
with a low effect on resource usage and a high improvement of the level of service.
This goal is captured by the following definition where E(67) is the efficiency of
unapplying the adaptation J.

ws

~ AsUn

E(67)

It is important to point out that these definitions imply, through AsUg, a
mean to estimate the effects of adaptation d on resource usage. Also, estimating
impact on resource usage is important to make sure that an adaptation targeting
a particular resource will not overload another resource (in the case of adapta-
tions intended to find a trade-off between several resources). To estimate AsUg,
we define characteristics called adaptation gains, which are evaluated based on
the observed effects of the past regulations that used adaptation §.



3 Adaptation Gains

The gain of an adaptation captures the effects on resource usage of that adap-
tation. We estimate the gain of an adaptation when it is applied under a certain
workload but we want to predict the effects of applying or unapplying that same
adaptation at some later time under a potentially unrelated workload.

The challenge is therefore to characterize the gain in a way that is as much
workload independent as possible. We compute the gain when we calibrate by
measuring the usage delta of a resource R which results from applying adaptation

0:

AsUg = Ut —Up

U; is the usage of resource R sampled and averaged during the calibration
delay, after adaptation 0 is applied. Uy is the usage of resource R sampled and
averaged right before adaptation ¢§ is applied.

A simple approach to modeling the gain of adaptation § on resource R could
be to define the gain Gs(R) as follows:

+
Gs(R) = %

R

However, this simple approach does not adequately isolate the effects of the
adaptation §. This gain captures the usage delta of the resource R due not only
to tasks executing within the adapted component but also due to tasks whose
executions are never touching the adapted component. Changes of workload, un-
related to the adaptated component, happening during calibration, could affect
our gain estimate. In particular, the more the adapted component is involved in
the workload, the higher the impact on resource usage. A better approach is to
focus our gain estimation solely on tasks whose executions involve the adapted
component.

We therefore need to separately account resource usage depending on the
components involved in the tasks, which we achieve through a profiling tech-
nique called statistical sampling [6][7]. The traditional approach periodically
captures the call stacks of active threads in a system. In our approach, we ex-
tract component stacks from call stacks as depicted in figure 2. In this example,
we have a simple assembly of components in the architecture: a component A
connected to two components B and C. We show the call stack of one active
task, making function calls in component A and B. The corresponding com-
ponent stack, noted A — B, abstracts away from the individual stack frames,
providing an execution pattern (or signature) for the currently executing tasks
from an architectural point of view.

Once we have component stacks, we can link them to resources as follows.
Typically, we start by modelling the processor as a CPU resource and 1/0 sub-
systems as I/0 resources. In a sample, we relate each component stack appearing
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Fig. 2. From call stacks to component stacks

in that sample with one and only one resource. Given the component stack of
an active task, we associate that component stack with an I/O resource R if
the corresponding task is explictely waiting for I/O on that resource R when
sampled. Otherwise, the component stack is associated with the CPU resource.

Once component stacks are associated with resources, we define for each
sample the hit rate of a component stack. The hit rate of a component stack
S, noted H(S), is the percentage of component stacks S in the sample that are
associated with the same resource R. Once we have the hit rate of component
stacks, we compute for each sample the usage of the associated resource R by a
given component stack .S, which defined as follows:

Ur(S) = H(S).Ur

Up is the overall usage of the resource R given by the operating system at
the time of the sample. Having the resource usage per component stacks offers
a better gain estimate, defined as follows:

_U(s)
Ur (5)

GR(S)

In practice, we experienced too much volatility when considering a single
sample. In our empirical tests, we have found that averaging the samples over a
fixed window (simple moving average) yields good results. Even using averaged
Ugr(S), the previous gain is not workload independent enough. We certainly
made progress since we focus our estimation on gains per component stacks on
a resource R. However, this gain is still sensitive to the actual execution count
of each component stack, which may vary from one workload to another.

To illustrate this variability, we assume that we have an adaptation § that
improves by 50% the CPU usage. With a constant workload, applying this adap-



tation would produce an estimated gain close to 0.5 for all stacks using the
adapted component. Other stacks would see a gain close to one. However, a
varying workload would affect these gain estimates. Indeed, if we assume that
we have many queued requests when we regulate (a common case in an overload
situation), the idle CPU time that our regulation just freed is likely to be used
to process some of the pending requests, right during our calibration. If these
processed requests trigger the pattern S, H(S) will increase since we have more
executions of the stack S. This may yield a G%(C'PU) that could be much higher
than 0.5, i.e. the adaptation appears less efficient than it actually is. To remove
this variability, we need to measure the execution rate of component stacks and
introduce the cost of a stack S on a resource R, noted Cgr(S) and defined as
follows:

_ Ur(S)
- W(S)

Cr(S)

W (S) captures the execution rate (or workload) of the component stack
S, computed during each sample. W (S) is obtained by counting the number
of times a task enters a component with stack S. Using the cost rather than
the resource usage of stacks, we can measure a gain that remains fine grain at
the level of a single execution pattern and that becomes fairly independent of
workload changes. Thus, the final definition of our gain is as follows:

GR(S) =

C’E (S) is the cost of the stack S estimated right after we apply the adaptation
5. CR(S) is the cost of the stack S right before we apply the adaptation d.

Using the measured gains G%(S ) of adaptations that we applied in the past,
we can make a good estimation of the future effects of these adaptations even if
the workload changes. Through runtime sampling, we know the complete per-
formance profile of the managed system: all resource usages (VR, Ug), the active
stacks, their hit rate (H(S)), and their costs per resource (Cr(S)). Figure 3
summarizes these metrics and their meaning.

Using the current performance profile, our control loop can estimate the
variation (AsUg) on resource usage of applying or unapplying a given adaptation
6 as the sum over all stacks in the current profile of the effects on the usage of
the resource R:

AU = S (U5(8) ~ U (9))
VS

Since we have:



Metric| Name Definition Unit
H(S) |Hit ratio Proportion 9f tasks with stack S

in the profiling samples
Proportion of time the resource R is used
by a task with stack S
W (S) |Execution rate |Frequency at which tasks call the stack S|Hertz
Usage duration of resource R each time
the stack S is called by a task

None

Ur(S) |Resource usage None

Seconds

CRr(S) |Cost

Fig. 3. Metrics used to define and measure adaptation gains

We then have:

AsUr =Y (CH(S).W(S) = CR(S).W(S))
VS

We can express in this formula C}, (S) with both C' (S) and G%(S). However,
we have to consider the overload and underload case separately. In the case of
an overloaded resource R, we expresss CE(S ) as follows:

CH(S) = GR(S).CR(S)
‘We therefore have:

AsUr =Y (GR(S) —1).CL(S).W(S) (1)
VS

In the case of underloaded resource R, we estimate C;(S) differently from
Cr(S) and G%(S):

CH(S) = =&
We therefore have:

2l
AsUR = W.C,;(S).W(S) (2)
VS

Using formula (1) or (2), our system can estimate accurately the effects of
applying or unapplying the adaptation ¢ in the current workload. The estimate



is accurate because the metrics are obtained at the fine granularity of individual
stacks and we only sum the estimated effects for the relevant stacks. The rele-
vant stacks are the very stacks identified in the last performance profile, which
characterizes the current workload.

4 Example

Figure 4 represents a simple architecture with a resource R and three components
A, B, and C. The table represents a possible performance profile for this system,
showing our metrics H(S), Ur(S), W(S) and Cg(S). In this performance profile,
the usage of resource R, Ur(S), is 80%. The performance profile also shows the
active component stacks associated with R: stack A — B and stack A — C.

A performance profile allows to observe how a system uses its resources. For
instance, the resource usage metric Ur(S) shows that stack A — B causes the
same usage of R as stack A — C. Furthermore, the execution rate and cost W (S)
and Cr(S) show that the cost of A — B is lower than the cost of A — C since
both stacks cause equal resource usage, while A — B receives an higher workload.

(D=

T 40%

S [Ur(S)W(S)|Cr(S)
A-B| 40% [10 Hz[40 ms
A-C| 40% |5 Hz | 80 ms

Fig. 4. Example of a performance profile

Based on this performance profile, we now illustrate the results of several
possible adaptations. Suppose that if we degrade component B, the degradation
produces the effects described in the performance profile shown in figure 5. We
see that the service degradation mechanism provided by B lowers the cost of
stack A — B from 40ms down to 20ms, but has no effect on the cost of stack
A — C. This illustrates that adapting a component usually does not impact the
stacks that are not involved with the adapted component.

Instead of degrading B, suppose that if we degrade the service level of A, this
produces the effects described in figure 6. We see that the service degradation
mechanism provided by A lowers the cost of stack A — C' from 80ms down to
40ms, but has no effect on the cost of stack A — B. This illustrates that adapt-
ing a component does not always impact all component stacks equally, i.e. an
adaptation can affect only some of the tasks involving the adapted component.
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Fig. 6. Adapting component A, constant workload

Notice that we have no variation of workload in the above example. However,
consider the case shown in figure 7, which depicts the effects of the same adap-
tation on component A but as the execution rate increases because of request
queueing. We see that if our gain estimates were based on resource usage only,
the adaptation gains would be incorrectly estimated. By using the cost metric,
these estimations are protected from workload fluctuations.

5 Evaluation

5.1 Implementation requirements

We have prototyped our autonomic adaptation system in the context of multi-
tier Java EE application servers, which are based around a presentation tier
(Servlets/JSP), a business logic tier (Enterprise Java Beans — EJBs) and a
database tier. To enable adaptation capabilities, we have slightly extended the
Java EE model to allow EJB components to provide alternative runtime modes.
These alternative modes correspond to degraded or improved service levels,
which can be enabled or disabled dynamically, either by the application server
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Fig. 7. Adapting component A, changing workload

(programmatically) or by a human administrator (interactively). This dynamic
configuration is currently done through the JMX API (Java Management Ex-
tensions).

Otherwise, we rely on the standard Java EE concepts of components and
dependencies: capturing Servlets, EJBs and databases as components with ex-
plicit dependencies in the architecture. However, recall that our approach also
requires that physical resources are made explicit in the model, to be able to
link component stacks with resources. We currently do this at a relatively coarse
grain through the application server’s knowledge of the physical machine(s) used
by each tier. For instance, a component stack that corresponds to an EJB com-
ponent will be associated to the machine (or set of machines) running the EJB
tier.

Then, to profile the application, we extend the application server in order
to capture component stacks and count their execution rates. To achieve this,
we associate each request with a profiling context that contains its current stack
and we intercept component calls to update the stacks and execution counts. To
make sure that the stack has a global scope, this context must be propagated
both through local component calls (using a thread-local variable) and through
remote component calls (using serialization mechanisms). Most often, such con-
text propagation facilities are already present in Java EE application servers, for
security and transaction management.

Once this low-level instrumentation is provided, our autonomic management
extension is essentially composed of two services. A profiling service periodically
samples the component stacks of all ongoing requests to produce the metric
H(S), and monitors their execution rates to produce the metric W (S). Then,
by monitoring resource usage, it produces the per-stack resource usage and cost
metrics, Ug(S) and Cr(S). Secondly, an adaptation service implements our au-
tonomic manager, by dynamically reacting to overload and underload conditions,
using the profiling service to select optimal adaptations and estimate adaptation
gains.



5.2 Software environment

Our prototype is an extension of the JOnAS application server. Software versions
are as follows: Java v1.5, JOnAS v4.8, MySQL v5.0 and Fedora Core 6 Linux.
Our test machines have the following specifications: Intel Core Duo 1.66 GHz, 2
GB memory, Gigabit Ethernet network. In our experiments, three machines are
dedicated to the application (one machine per tier) and one machine is dedicated
to load injection (except when running the two benchmarks together, in which
case two machines are used to isolate the load injectors).

Our performance evaluation is based on the RUBIS and TPC-W benchmarks.
RUBIS simulates an online auction application [8]. Load injection in RUBIS is
configured by a transition matrix, and two specific matrices are generally used
to produce either a read-only workload or a read-write workload. Regarding
TPC-W, we have used the implementation from Rice University, which is based
on Servlets only. Since our prototype is based on adaptable EJB components,
we have modified this implementation, wrapping the JDBC calls with session
beans. An interesting side-effect of this modification is to produce a finer-grained
component-oriented description. Load injection in TPC-W is also configured
by transition matrices. The TPC-W specification defines a read-only matrix
(browsing mix), a write-20% matrix (shopping mix), and a write-50% matrix
(ordering mix).

5.3 Profiling overhead

Our first experiment shows that the overhead of our profiling mechanism is
negligible in the context of these benchmarks. We begin by noting that profiling
overhead is mostly dependent on the following two factors:

— Interception of component calls, proportional to throughput.
— Request sampling, proportional to sampling frequency.

To measure the profiling overhead, we first checked that there is no perfor-
mance difference between the baseline system (running the benchmarks in an
unmodified environment) and the instrumented system when profiling is used
with a very low sampling frequency (e.g. 0.1 Hz). Then, we measured the bench-
mark’s peak performance for increasing sampling frequencies, since this param-
eter is crucial in controlling both the profiling precision and its overhead. As
figure 8 shows in the case of the RUBIS benchmark, we have not been able to
detect a significant overhead, even for high sampling frequencies. In practice,
we observed that a frequency as low as 1 Hz provides a reasonable precision for
the purpose of adaptation (although the following experiments were done with a
10 Hz frequency to improve precision). As a side knowledge, this figure also shows
that the CPU of the database tier is the bottleneck in RUBiS. TPC-W yields the
same results as RUBIS (i.e. no overhead and the database is the benchmark’s
bottleneck).
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5.4 RUBIS benchmark

In all experiments, calibration delay is set to 10 seconds and sampling frequency
is set to 10 Hz. We first present the results of profiling RUBIS for a typical sta-
tionary workload: 256 emulated clients and a read-write mix, with 900 seconds
of runtime. All metrics (hit rates, resource usage, workload and cost) were aver-
aged over the entire experiment. We only show the performance profiles for the
database CPU, since we already established that this resource is the bottleneck
and the only one triggering adaptations. The database is about 180 MB for a
little over forty thousands items and one hundred thousands customer records.
The four most database intensive stacks (i.e. those with the highest hit rate)
were:

Stack H(S)| W(S) C(S)
SearchByCategory.Category|64.1 %|6.60 Hz[55.8 ms
SearchByRegion.Category [30.4 %|2.22 Hz|78.4 ms
AboutMe . User 0.95 %(11.4 Hz|0.49 ms
SearchByRegion.Item 0.83 %|16.7 Hz|0.29 ms

These results show that only two component stacks are responsible for most of
the CPU usage on the database tier. These stacks—SearchByCategory.Category
and SearchByRegion.Category, are associated to the search for auctioned items.
Consequently, we have implemented two adaptations, both based on deactivat-
ing sorting—a costly operation on the database side, especially with large ta-
bles. One adaptation is on the SearchByCategory component and the other
is on the SearchByRegion component. Our results show that the adaptation
on SearchByCategory.Category is significantly more effective than the one on
SearchByRegion.Category. This is because the former generally involves sort-
ing more items than the later; the straightforward consequence of a less selective
filter.
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To evaluate our dynamic adaptation, we configure a workload that far exceeds
the normal benchmark capacity (about 650 clients): 1024 emulated clients and
a read-write mix, with 60 seconds of ramping up and 300 seconds of runtime.




We are targeting an agressive goal in terms of CPU usage: overload threshold
of 90% and underload threshold of 80%. The rationale is to show that we can
target a high and narrow window of CPU usage, one that is sufficiently high
for reaching and staying at peak performance but consistently avoiding the trap
of thrashing. Only an automatic approach, with an accurate prediction, can
attempt this; most systems have to be more conservative regarding their CPU
usage target.

Figure 9 shows our results for RUBiS. We can see that our system maintains
the database CPU around 80%, dividing latency by ten and improving through-
put in the order of 75%. We can see that without regulations, the database
CPU is consistently thrashing at about 95%, which explains the large latency
and the poor throughput. With regulations but without calibration, we observe
harmful oscillations since our system cancels adaptations as soon as the resource
usage crosses the underload threshold. These oscillations are especially visible
on latency and throughput where the performance with regulation but without
calibration oscillates between the performance without regulation at all and the
performance with regulation and calibration.

5.5 TPC-W benchmark

We present the results of profiling TPC-W for stationary workload of 256 clients
and a shopping mix. Like RUBIS, our experiments show that the bottleneck
is the database CPU. The database is about 1.1GB, with an extra 2.6GB for
images (stored as static files). The database contains about 28.8 millions clients
and 10,000 books. The four most sampled stacks were:

Stack H(S)| W(S) C(8S)
execute_search.author_search| 39.0 %[1.98 Hz|[119.2 ms
best_sellers 28 % %(1.73 Hz| 97.5 ms
execute_search.title_search | 18.4 %|2.03 Hz| 54.9 ms
buy_confirm 2.5 %[2.25 Hz| 6.75 ms

These results show that three component stacks are almost equally responsible
for most of the CPU usage on the database tier. These stacks—execute_search.
author_search, best_sellers, and execute_search.title_search—are asso-
ciated to the search for books, by authors, by title, or by best sellers. Conse-
quently, we have implemented three adaptations, one for each stack. For the
stacks execute_search.author_search and execute_search. title_search,
the adaptation limits searching by looking for an exact match on titles or authors,
avoiding costly substring matching. For the stack best_sellers, the adaptation
looks for recent sellers as opposed to best sellers.

Like for our RUBIS experiments, we evaluate dynamic adaptation with a
workload that exceeds the normal benchmark capacity (about 500 clients): 768
emulated clients and a shopping mix, with 60 seconds of ramping up and 300
seconds of runtime. We fixed the same agressive goal in terms of CPU usage,
for the same reasons. Figure 10 shows our results for TPC-W. We can see that
without regulations, the database tier is consistently thrashing with a CPU at



about 95%, which explains the large latency and the poor throughput. We can
also notice two sharp drop in CPU usage at time 100 and 260 seconds, that are
totally avoided with our adaptive approach.

The CPU usage patterns and improvements are entirely consistent across the
two benchmarks. With regulations but without calibration, our system is unable
to predict the effects of applying or unapplying adaptations, which produces
harmful oscillations. These oscillations are again quite visible on latency and
throughput. With calibration, our system maintains the database CPU around
80%, dividing latency by ten and improving throughput in the order of 60%.
Moreover, our system maintains a much more stable level of quality of service.
Notice how much smoother the regulated latency and throughput are compared
to the unregulated ones at 100, 250, and 350 seconds in the experiments. This
is also visible in the much more stable CPU usage when regulated.

5.6 Combining TPC-W and RUBIiS

To evaluate our system under non-stationary workloads, we combined both
benchmarks as follows. We started TPC-W first and we started RUBiS about
200 seconds later. The two benchmarks therefore overlaps for about 200 seconds.
During the final period of 300 seconds, we only have RUBIS. The latency and
throughput results are depicted in Figure 11.
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Fig.11. TPC-W and RUBIS Combined

As expected, the first period shows very similar results to TPC-W alone. Dur-
ing the overlap period, the system is heavily overloaded. Without regulation,
latency increases sharply and throughput drops significantly, for both bench-
marks. With regulation, our system preserves as much overall quality of service
as possible—it divides latency by 4 and almost doubles throughput. Further-
more, it is important to notice that our autonomic management reacts quickly




to workload changes. Indeed, there is no visible period of instability as the work-
load changes, that is, when RUBIS starts at 200 seconds in the experiement and
when TPC-W stops at 400 seconds in the experiment.

CPU Usage (Database)

120

Regufalion and ‘calibration‘ SearéhByCategEry (RUBiS‘) —_—
No regulation «=-«=--- SearchByRegion (RUBIS)
author_search (TPC-W)
best_sellers (TPC-W)

title_search (TPC-W)
c
2
g
Q
&
5=
<

i
1 1 1 1 1 1 N N 1 1 1 1
100 200 300 400 500 600 700 0 100 200 300 400 500 600
Time (s) Time (s)

700

Fig.12. CPU Usage and Adaptation Details

Figure 12 shows when adaptions are applied and unapplied during this ex-
periment, combined with the CPU usage of the database tier. Up to about 300
seconds in the experiment, all available adaptations but one are dynamically
and incrementally applied. Notice some oscillations happen. These oscillations
are however few and sparse since we only have four of them in total, over 700
seconds, even though we consider applying or unapplying adaptations every 5
seconds. This means our prediction works, avoiding the vast majority of oscil-
lations. This is confirmed by the fact that, although the CPU usage is often
just below our 80% threshold, our autonomic manager maintains the adapta-
tions, accurately predicting the CPU overload situation that would result if any
adaptation would be unapplied.

Our approach mostly avoids oscillations, but large variations in resource us-
age may temporarily trick our prediction. Notice that no oscillation happens
during the last period where RUBIS runs alone; this is because RUBIS has a
more stable workload than TPC-W. Indeed, we noticed throughout our experi-
ments a relatively higher instability in CPU usage for TPC-W, which we explain
by the fact that TPC-W queries are more complex on a larger working set. While
temporary low CPU usage may trigger a mistake, such mistakes are corrected
quite rapidly. Furthermore, we argue that such mistakes induce an acceptable
volatility in latency and throughput, most of the time within 20%. In particu-
lar, notice that this volatility never resulted in our experiments in the regulated
quality of service dropping below the unregulated quality of service.




6 Related work

6.1 Service-level adaptation

Service-level adaptation provides an efficient mechanism to regulate resource
consumption and avoid overload. However, it has been reserved in the past to
specific types of systems, where adaptations are well-known and can be charac-
terized in advance. For example, service adaptation has been used in the context
of multimedia streaming servers, where increasing compression will save network
bandwidth at the expense of content quality [2]. Another example resides in the
context of security systems, where simpler encryption algorithms might require
less processing while being less secure [9]. Similar examples can be found in the
context of static web servers or distributed monitoring [10]{11][12].

Our work contributes to service adaptation in the context of general dis-
tributed systems, where adaptations often cannot be characterized in advance.
The key point of our approach is the dynamic construction of a performance
profile, based on a component-based representation of the system.

6.2 Performance profiles

Performance profiles are used to locate and analyze the bottlenecks of a com-
puting system [13]. A typical method to build performance profiles consists in
tracking execution to find the code involved in each task, combined with resource
usage measurements to find the most resource-intensive tasks.

Complex distributed systems make it difficult to use OS-level techniques
because not only tasks often involve non-obvious sub-tasks but resources are also
accessed through intermediate abstraction layers. One solution is to introduce
new OS abstractions, but this is a complex and non-generic solution [14][15].

At the other end of the spectrum, another approach is to use statistical
regression techniques to measure correlation between workload and resource us-
age [16][17]. This requires no instrumentation but only works if workload is highly
variable (non-stationary). Furthermore, the system must be observed during a
significant period to compute the regression with reasonable accuracy, which
makes it inapplicable in the context of our work since our adaptation model
requires the ability to observe the immediate effects of applied adaptations.

Our approach is an intermediate solution, based on the work of Chanda et
al. [18][19]. First, a context is attached to each task and is propagated through
the distributed system. This context contains the current path of the task
through the distributed system. Then, statistical sampling is used to indirectly
measure resource usage, and requires no intrusive OS-level instrumentation [20].

However, the contributions of Chanda et al. stop at computing performance
profiles—using profiles for optimization purposes is left to a developer or an ad-
ministrator. Our approach goes farther by considering an autonomic approach
that leverages the knowledge of the component architecture of the observed sys-
tem. Using component stacks, we can estimate gains and make useful predictions
of component-level adaptations that can be used by a closed-loop control [21][22].



7 Conclusion

In this article, we have presented a novel approach to automatically regulate
resource consumption in Internet application servers, such as Java EE servers,
which often use a component-based programming model. Our proposition is to
integrate the concept of service level adaptation to allow for automatically low-
ering the service level of individual components in order to preserve the overall
performance in high-workload situations. By focusing adaptations on costly exe-
cution patterns, our approach optimizes service level while ensuring that resource
usage does not exceed a predefined threshold.

The heart of our approach is a performance profile, which is used to estimate
the effects of component adaptations. The challenge was to characterize these
effects in a workload independent way so that the observation of past adaptation
attempts could be reused to predict the effects of future adaptations, even if the
workload is completely different. Combining runtime sampling and the knowl-
edge of the component architecture, we designed the concept of adaptation gains
at the granularity of component stacks. Our experiments show that our gains are
workload independent enough so that our predictions are accurate and support
our decision making to apply or unapply adaptations. The potentially harmful
phenomenon of oscillations is kept to a minimum and results in no substantial
instability in latency or throughput. Also, even when oscillations occur, the per-
formance of the regulated system is always much higher than that of the baseline
system.
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