Achieving Coordination Through Dynamic
Construction of Open Workflows

Louis Thomas, Justin Wilson, Gruia-Catalin Roman, and Christopher Gill

Department of Computer Science and Engineering
Washington University in St. Louis
{thomasl,wilsonj,roman,cdgill}@cse.wustl.edu

Abstract. Workflow middleware executes tasks orchestrated by rules
defined in a carefully handcrafted static graph. Workflow management
systems have proved effective for service-oriented business automation
in stable, wired infrastructures. We introduce a radically new paradigm
for workflow construction and execution called open workflow to sup-
port goal-directed coordination among physically mobile people and de-
vices that form a transient community over an ad hoc wireless network.
The quintessential feature of the open workflow paradigm is dynamic
construction of custom, context-specific workflows in response to unpre-
dictable and evolving circumstances by exploiting the knowledge and
services available within a given spatiotemporal context. This paper in-
troduces the open workflow approach, surveys open research challenges
in this promising new field, and presents algorithmic, architectural, and
evaluation results for the first practical realization of an open workflow
management system.

1 Introduction

With the development of small, powerful wireless devices, computing must em-
brace the frequent, transient, ad hoc interactions of mobile environments. As
computing and communication become more and more integrated into the fab-
ric of our society, new kinds of enterprises and new forms of social interactions
will continue to emerge. We ask the fundamental question: how can ad hoc com-
munities of people (and their personal devices) coordinate to solve problems?
Application domains that motivate or even require this form of interaction in-
clude low profile military operations, emergency responses to major natural dis-
asters, scientific expeditions in remote parts of the globe, field hospitals, and
large construction sites. These application domains share several key features:
ad hoc interactions among people, high levels of mobility, the need to respond to
unexpected developments, the use of locally available resources, prescribed rules
of operation, and specialized knowhow. For instance, consider a construction
worker discovering a mercury spill. While there is a prescribed response, it is his
supervisor who has the needed expertise and training. She initiates the response,
but access to the spill is made difficult by a support structure whose disman-
tling requires special intervention which only the chief engineer can manage. The

result is a series of frantic phone calls and the dispatching of various workers
and equipment to execute what might be seen as a workflow that is reactive,
opportunistic, composite, and constrained by the set of participants present on
the site along with their knowledge and resources.

Current workflow middleware allows people to initiate complex goal-oriented
activities that leverage services made available by a wide range of service-oriented
portals. In the typical scenario, a user employs a web browser to make a request
to a workflow engine responsible for executing a predefined workflow that can
satisfy the specific user need, e.g., to print photos, reserve tickets, or make a
bid in an online auction. The workflow is a directed acyclic graph with vertices
denoting tasks and edges defining an execution order along with the flow of data
and control. Each task is a specification for a service to be discovered and invoked
by the workflow engine. What makes the workflow paradigm successful is the
high degree of decoupling that it exhibits at multiple levels: between the user’s
need and the workflow required to satisfy it, between the task specifications and
the services that implement them, and between the workflow engine that invokes
a service and the service provider that executes it.

Despite workflow middleware being well established, efforts toward using it
in ad hoc wireless environments are relatively new. Our previous research in
this area includes the development of workflow execution engines targeted to
small portable devices [1], and techniques for executing workflows in mobile
wireless networks [2]. These studies reveal the need for a major reevaluation
of the way one thinks about workflow middleware: hosts may move, service
availability may depend upon which hosts are within communication range, user
needs tend to be situational, and one cannot anticipate the range of responses
demanded by changing circumstances. These observations suggest that in ad hoc
wireless settings it is desirable to tailor or generate workflows dynamically.

Starting with this premise, we pose the question of how workflow middleware
might be reshaped for use in the absence of any wired connectivity. In this paper,
we explore whether workflow middleware can become a coordination mechanism
for activities that are carried out in an ad hoc setting.

We use the term open workflow to denote a workflow specification, construc-
tion, and execution paradigm that is shaped by the dynamics and constraints
of an activity whose underlying infrastructure is a mobile ad hoc wireless net-
work. We assume a set of participants (people and the host devices they carry)
who share a sense of purpose and who can move about and interact with each
other and with the real world. The participants form a transient community
that evolves over time. In our approach, one of the members of a community
identifies a need for action, which then results in the dynamic construction of a
workflow to satisfy the need and the execution of that workflow in a distributed
and cooperative manner. The defining feature of the open workflow paradigm
is the workflow construction process: workflow fragments encoding individual
knowledge distributed across the set of participants are assembled into a custom
workflow both automatically and contextually. In doing so, we also consider the
available resources (expressed as services offered by the participants) along with

the mobility of the participants and their willingness to commit to being present
at a specific place and time and to delivering results to any dependent partici-
pants. The latter highlights another feature of the open workflow paradigm, its
sensitivity to the time and location considerations necessary when performing
activities in the real world.

Exploring the challenges of building a workflow on the fly from available con-
textual knowledge, i.e., the open workflow paradigm, and building a platform
for further experimentation with that approach define the core technical con-
tribution of this paper. We present a formalism for describing open workflow
construction in Section 2. Section 3 explains our algorithms for the collabora-
tive construction, allocation, and execution of open workflows. In Section 4, we
present our open workflow management system and discuss its architecture. In
Section 5, we evaluate its performance and discuss directions for future work.
Section 6 highlights related research and contrasts it with this work. We provide
conclusions in Section 7.

2 Problem Definition

2.1 Motivating Example

To highlight the possibilities and advantages of the open workflow paradigm,
consider how a corporate catering facility might use open workflow to organize
meals for a meeting of corporate executives. Suppose an executive assistant calls
the manager at the catering office and requests breakfast and lunch for the
upcoming meeting. The manager adds the request to the open workflow system
on her mobile device to schedule the activities necessary to prepare the meals for
the meeting. The open workflow engine begins by collecting knowledge contained
on other mobile devices owned by the employees in the catering office, which
include a master chef, kitchen staff, wait staff, and other personnel. For example,
the master chef’s PDA contains a workflow fragment consisting of tasks and
conditions that describe how to serve omelets for breakfast. Figure 1 shows the
collection of workflow fragments obtained from the office community.

Using the available knowledge, the open workflow engine searches for a sub-
graph that meets the conditions and requirements given by the manager. As-
suming breakfast and lunch ingredients are available, we see that setting up
an omelet bar and cooking omelets will result in breakfast being served, and
preparing a soup and salad and setting them out as a buffet will result in lunch
being served. Thus, this sub-graph constitutes a workflow that meets the re-
quirements. The open workflow engine then searches for participants that are
able to perform the activities indicated by the sub-graph. The system schedules
the kitchen staff to set out the ingredients for breakfast and an appointment is
added to the master chef’s PDA to cook the omelets. Similarly, the kitchen staff
must later cook lunch and set out the buffet. The manager’s work is complete,
and the members of the staff go about their scheduled activities.

Clearly, changes in the requirements will affect the generated workflow. For
example, if lunch was not requested, then no lunch activities will be included

bfeekfa& i ngredlems doughnuts ordered lunch ingredients box lunches ordered

make pancakes ‘ ’ set out |ngred|ents

pick up doughnuts

prepare soup and salad ‘ pick up box lunches ‘

buffet items prepared doughnuts available lunch prepared box lunches available

’ serve breakfast huffet ’ set out doughnuts ’ servetables ‘ ’ serve buffet ‘ ’ set out box lunches ‘

breskfast served

Fig. 1. Available knowledge in a corporate catering facility.

omeiel bar setup

cook omelets

in the final workflow. Consider a scenario where the master chef is out of the
office. The workflow fragment concerning the preparation of omelets will never
be collected and considered by the workflow engine. Consequently, one of the two
alternatives (coffee and doughnuts or a breakfast buffet) will be chosen instead.
A similar scenario where the wait staff are absent demonstrates how changes in
the set of available capabilities can affect the construction of the workflow. The
master chef knows that lunch can either be served with buffet service or with
table service but the open workflow engine must select buffet service since no
one in the available community is capable of serving tables.

Consider the difficulties of using a traditional static workflow to manage the
catering facility. To be sensitive to the variety of catering requests and the indi-
vidual capabilities and dynamic availability of the employees, the workflow would
contain a large number of conditional branches which must be carefully crafted
and assiduously maintained. Such a static workflow cannot respond rapidly to
new resources or changes in the environment. Sensitivity to context, in the form
of knowledge, capabilities, and availability, is the driving force behind the cre-
ation of our open workflow system.

2.2 Formalization

A workflow is defined as a collection of interlinked abstract tasks. A task repre-
sents a single abstract behavior or accomplishment without completely specifying
how it must be performed. A service is a concrete implementation of a task and
may involve a computation by the device, an activity performed by the user, or
some combination of the two. Execution of a task thus consists of the invoca-
tion of a service satisfying the respective task specification. Within a workflow,
different tasks may be performed in sequence or in parallel by one actor or by
multiple actors. Each task has preconditions that must be met before the task
can be performed, and postconditions that describe the results of performing the
task. Abstractly, we can enable the performance of a given task by performing
one or more preceding tasks whose postconditions taken together ensure the pre-

conditions necessary for the given task. The order, timing, and executors of the
preceding tasks are unconstrained so long as the given task’s preconditions hold
when it is to be performed.

We assume that each input (precondition) and output (postcondition) of a
task is represented by a label, where each label has a distinct meaning. We also
assume that a task is either conjunctive, requiring all of its inputs, or disjunctive,
requiring only one of its inputs, and that a task produces all of its outputs. Tasks
are joined by matching the labels on inputs and outputs exactly. Labels and tasks
within a workflow thus may be considered nodes in a bipartite directed acyclic
graph. We assume that each node has a semantic identifier; nodes with the same
identifier are equivalent.

A workflow has the additional constraints that (1) all sources (nodes without
any incoming edges) and all sinks (nodes without any outgoing edges) are labels,
(2) a label can have at most one incoming edge, and (3) there are no duplicate
nodes in the graph. This definition allows us to compose two workflows by merg-
ing (a) identical sinks from one workflow with the corresponding sources from
the other workflow and (b) identical sources in both workflows. Two workflows
are composable if and only if matching sinks and sources yields a valid work-
flow. For instance, a workflow W1 with sources {a, b, c} and sinks {d,e, f} and
a workflow Wy with sources {c,d, e} and sinks {g,h} can be composed into a
new workflow W with sources {a,b,c} and sinks {f, g, h}. Workflow fragments
are merely small workflows (possibly even a single task) that are intended to be
composed into larger workflows at a later time. In the example graph in Figure 1,
the boxes are tasks and the ovals are labels. The graph represents the available
knowledge of the catering facility but is not a valid workflow because some labels
have multiple incoming edges.

A workflow is constructed in response to an expressed need. In general, this
need is stated in terms of a specification S: a predicate that indicates whether
or not a workflow is satisfactory. The inset and the outset of a workflow are its
sources and sinks respectively. We assume S is of the form

S € P(Labels) x P(Labels) — Boolean

A workflow W with inset W.in and outset W.out then satisfies a specification S
if and only if S(W.in, W.out) is true.

Composing workflow fragments may produce a workflow that cannot satisfy
a specification S only due to the existence of extra sinks or sources. We can
prune a workflow to remove unnecessary data flows, subject to the following
constraints which ensure the result remains a valid workflow: (1) task outputs
that are sinks can be pruned so long as every task has at least one output, (2)
task inputs that are sources can be pruned for disjunctive tasks so long as every
task has at least one input, and (3) tasks can be pruned so long as any task
inputs that are sources and any task outputs that are sinks are also pruned.

Once a problem has been identified and a specification given, the knowhow
(in the form of workflow fragments) and capabilities (in the form of services) of
the local community are synthesized to form a plan by constructing a workflow.

The construction problem is defined as follows. Given a workflow specification
S and a set of workflow fragments K, find a set of workflow fragments in K
which may be composed (subject to pruning) into a workflow W that satisfies
S — we say that W is feasible given S and K. It is important to note that
the defining features of the open workflow paradigm rest with the fact that
the specification S can be generated dynamically in response to a new need,
context change, or other event, and that the set K represents the combined
knowledge of the community as a whole. K is distributed and dynamic. As
participants move around in space, the knowledge available to the community
changes with its membership and their experiences. For the same specifications,
different communities may respond differently or may be unable to construct an
appropriate workflow.

As the plan is formed, tasks must be allocated to participants who will even-
tually ezecute corresponding services. The availability of services and resources
within the community determines to whom tasks are allocated. Service avail-
ability is determined by whether any participant can commit to providing a
service: that is, (1) whether the participant is capable of performing the service,
(2) whether the participant has time available, (3) whether the participant can
travel to the necessary location to perform the service, (4) whether the partic-
ipant can gather the necessary inputs and distribute any outputs in a timely
manner, and (5) whether the participant is willing (according to their prefer-
ences) to perform the service. If the community is stable and all participants are
mutually reachable, it is easy to guarantee that the participants supporting the
execution of tasks that depend upon each other are able to communicate the
needed results in a timely fashion. More sophisticated routing techniques and
analysis [3] may be needed if the movement of participants results in temporary
disconnections. Once a participant has made a commitment, it is responsible for
ensuring the service is executed as agreed. A participant is thus free to move
about and requires no further communication with the community except possi-
bly for previously agreed upon meetings to gather inputs or distribute outputs.
As individual participants execute their assigned services from the dynamically
constructed workflow, the community as a whole thus performs the activities
necessary to satisfy the specification and achieve the original goal.

3 Collaborative Construction, Allocation, and Execution

3.1 Construction

We begin this section by introducing a construction algorithm for open work-
flows. We assume a participant has identified a need for action and generated a
specification S of the form

W.in CoAW.out =w

where ¢ and w are sets of labels with ¢ being the labels that represent the trig-
gering conditions and w being the labels that represent the goal. The participant

is in contact with the other members of a community and can collect from each
a set of workflow fragments. For the purposes of illustration, we start with the
simplifying assumption that the participant initially collects all the fragments
in the community to create the set K. Using the gathered information, the par-
ticipant runs our algorithm to find a feasible workflow — a workflow composed
of fragments from K (subject to pruning) that satisfies S — if one exists. We
only consider here the issue of generating one feasible workflow, although there
are potentially many ways of combining fragments in K to satisfy S. While our
algorithm chooses arbitrarily among equivalent options, any heuristic may be
incorporated to direct the search toward more favorable solutions.

Our algorithm is based on graph traversal and graph coloring, and takes its
inspiration from spanning tree algorithms and routing algorithms such as AODV
[4]. Our strategy is to combine all workflow fragments from K into one large
graph, henceforth called the workflow supergraph G. The supergraph represents
a unified view of all possible actions represented in the set K, however it is
not necessarily a valid workflow since it may have cycles, outputs produced by
multiple tasks, unavailable inputs, or undesired outputs. We use a node coloring
process on the supergraph G to identify one feasible workflow within this graph.
We start by coloring the nodes corresponding to set ¢ of the specification S.
Following the data flows, we explore the graph, growing the colored section as
we identify which tasks and labels are reachable from ¢. We call a label reachable
when it is in ¢ or when it denotes the output of a reachable task; a task is
reachable when all necessary input labels are available for its execution via some
path starting from .

Once we have reached all the elements of w, we prune the reachable set down
to a valid workflow. Working backwards with a new color, we identify only those
paths which are actually required to reach w. The pruning phase removes cycles,
ensures only one task produces each output, and excludes undesirable outputs.
Once the second color has swept all the way back to ¢, we have fully identified
W, a valid workflow that satisfies specification S and that is composed only of
fragments in K that have been pruned of unneeded outputs and paths.

With this general strategy in mind, we present the full pseudo-code in Algo-
rithm 1. For purposes of the algorithm, we annotate every node and edge in G
with a color (initially uncolored) and every node with a distance (initially co)
from a source on the graph. Nodes are marked green for reachability during the
exploration phase and blue for workflow membership during the pruning phase;
purple identifies nodes on the boundary of the blue region. Label nodes are con-
sidered disjunctive. The algorithm selects nodes nondeterministically; any node
may be processed next so long as it matches the guard condition.

We offer a proof sketch of the correctness of our algorithm by highlighting
several key invariants. First, we claim that every green node is reachable starting
from ¢, and all of its prerequisites have a smaller distance. A node is reachable
when it is in ¢, or when its prerequisites are reachable. The invariant holds after
every step of the algorithm because we start with the nodes in ¢ with distance 0
and we work outward one edge at a time, coloring a node n green only when n’s

Algorithm 1 Workflow Construction (given ¢, w, and K)

— Construct Supergraph —
G+ 0
for all fragments F' € K do
for all nodesn € Fdo if n¢ G then G+ GU{n} end if end for
for all edges e € F do if e ¢ G then G+ GU{e} end if end for
end for

— Eaxploration Phase —
Track the set of greenNodes (initially empty).
for all n € ¢ do (n.color, n.distance) < (green, 0) end for
until w C greenNodes V none of the following cases apply, for some n € G do
if n is disjunctive A any of n’s parents are green then
d + min{p € n’s parents V p.color = green | p.distance}
if (n.color = uncolored V (n.color = green A n.distance > d + 1)) then
(n.color, n.distance) < (green, d + 1)
end if
else if n is conjunctive A all of n’s parents are green then
d <+ max{p € n’s parents V p.color = green | p.distance}
if (n.color = uncolored V (n.color = green A n.distance > d + 1)) then
(n.color, n.distance) < (green, d + 1)
end if
end if
end until
if =(w C greenNodes) then there is no solution — exit.

— Pruning Phase —
Track the set of purpleNodes (initially empty).
for all n € w do n.color < purple end for
until purpleNodes = () for some n € purpleNodes do
if n.distance = 0 then
requiredParents < ()
else if n is disjunctive then
requiredParents < {the parent of n with minimum distance}
else if n is conjunctive then
requiredParents <— n’s parents
end if
for all p € requiredParents do
edge(p, n).color + blue
if p.color = green then p.color < purple end if
end for
n.color < blue
end until
The set of nodes and edges colored blue is the constructed workflow.

prerequisites are already green (reachable) and assigning n a distance greater
than any of its prerequisites.

Second, once w is colored blue, we claim that after every even number of
iterations, the graph of blue nodes and blue edges is a valid workflow. At each
step we choose a node n which is in the inset of the blue portion of the supergraph
as it has no blue parents. Once we color the prerequisites of n blue, n is no longer
a member of the inset but the prerequisite nodes are now members, so n and
thus n’s dependents are still reachable from the inset. On an odd iteration we
color a task, and on the even iteration we color its prerequisite labels. Thus,
after each pair of steps, the sinks and sources of the graph will be labels and the
graph will be a valid workflow.

Finally, we claim that the coloring of blue nodes will eventually terminate,
and upon termination the graph formed by the blue nodes and edges will be a
workflow satisfying specification S. From the first invariant, every node n with
distance greater than 0 must have prerequisites with distance strictly less than
n’s distance. Every time a node n in the inset is replaced with its prerequisites,
the distance of the nodes added to the inset is strictly less than the distance of
the node removed. Eventually the inset will consist solely of nodes with distance
0 (thus nodes in ¢) and the algorithm will terminate. As the inset is a subset
of ¢+ and the outset is equal to w, the workflow consisting of the blue nodes and
edges satisfies S.

While there are many ways to maintain a community and share knowledge
within that community, we chose an approach that places few restrictions on
the members. We define a community as the participants who are within com-
munication range of each other and announce their willingness to participate;
consequently, the community is dynamic as members join and leave at will.

We observe that the coloring process requires only local knowledge. Thus, we
relax the assumption that all of the workflow fragments are collected from the
community before the coloring process begins. In our implementation, the mem-
ber constructing the workflow builds the set of workflow fragments K and thus
the supergraph G incrementally by querying other members of the community
for workflow fragments that can be used to extend G. Members joining after
the algorithm has started can still contribute knowledge, and the departure of a
member does not affect the knowledge already collected in the supergraph.

3.2 Allocation and Execution

After a workflow is constructed, it must be allocated to participants in the
community. The approach we take here is an auction algorithm similar to prior
work done for Collaboration in Ad hoc Networks (CiAN). A more in-depth
discussion may be found in [2].

The participant who constructs the workflow assumes the role of auction
manager. The auction manager begins the allocation phase by computing meta-
data for each task used in allocating and executing the workflow. Next, the
auction manager solicits bids for each task in the workflow from all of the par-
ticipants in the community. The participants compare the task’s required time,

location, and service with their own capabilities and availability. If a partici-
pant can commit to performing a task, it submits a firm bid on that task to
the auction manager. The bid includes ranking information such as the degree
to which the participant is specialized for the task in question. The auction
manager uses this information to select a best-suited participant to perform the
task. A participant which provides fewer services is preferred over a participant
with a wider array of services, because scheduling the more capable participant
removes a larger number of services from the community’s resource pool. Par-
ticipants also submit a deadline for a response from the auction manager based
on their schedule.

The auction manager selects the bid that best matches the selection criterion
and makes a tentative task allocation to that participant. As new bids arrive, the
tentative allocation is continually re-evaluated. A final decision is made when
the deadline given by the participant who has the current tentative allocation
has arrived. The auction manager waits as long as possible to assign a task to a
participant in order to obtain the best possible bid, but once some participant
has been found who can do a task, the task is guaranteed to be allocated. As bids
are firm, a participant cannot cancel a bid, but they can update the deadline for
a bid and force the auction manager to make a decision.

When a participant is allocated a task, it adds a commitment to its schedule
that contains all the necessary information to execute the appropriate service as
directed by the auction manger. The participant is free to roam, but is responsi-
ble for meeting its commitments. Thus the execution phase of an open workflow
proceeds in a fully decentralized, distributed manner. To meet a commitment,
the participant must (1) acquire the required inputs for the service from the
executor of the preceding tasks, (2) be at the required location for executing the
service, and (3) execute the service at the required time. The participant moni-
tors these conditions and, based upon their knowledge of their location and the
travel times involved, travels and communicates as necessary to meet the condi-
tions and successfully execute the service. Once the service has been executed,
the participant’s final responsibility is to communicate the service’s outputs to
any other participants that require them.

4 System Architecture

4.1 An Open Workflow Management System

We have designed and implemented a complete open workflow management sys-
tem in Java. Our approach offers an intuitive calendar-like interface, behind
which integrated goal specification, communication, and service invocation fea-
tures combine to enable construction and execution of sophisticated open work-
flows. Source code and executables for the application are available at our web
site [5].

The basic steps in deploying an application using our open workflow man-
agement system are (1) installing the program on the users’ devices, (2) adding

knowhow in the form of workflow fragments, and (3) adding service descriptions.
In our implementation, we use XML configuration files to provide the task and
service definitions for each device. Once this initial configuration has been com-
pleted, any participant can use their device to create a problem specification. In
response, the system will automatically construct, allocate, and (by prompting
the users) execute an appropriate workflow.

< Junior Kitchen Staff
Current Location: Catering Office E| 2009-03-01 08:55 AM

3 Manager BEE

Add Problem Add Problem r Travel Alert
g (JruggeringlConditions 2 View one MonttheekI Day 2009-03-01
% | |Breakfast Ingredients =
2 i 2| gam !
= | [Lunch Ingredients = =
@ @ =
- a =
E E JTraveI from Catering Office to Conference
g Available C dit'lzl El g 9 AM || Set Out Ereakfast Buffet
= o |or_|s = Location: Conference Room 105 =
—{ |Box Lunches Avaliable |~ | — =
| |Box Lunches Ordered = &
o -
'S | |Buffet tems Prepared 2
2 2
2 | IDoughnuts Available = 2 |/10 am
L L
s [~] g <
E Goal Conditions E ?J
£ £ —
g Breakfast Served | | Click a comrmitment ta view details.
& | [Lunch Served Y- || Drag out a period within the timeline to create a new
commitrment.
Add Problem
(a) Add Problem Tab (b) Schedule Tab

Fig. 2. Application Screenshots.

Figure 2 shows two screenshots from community members participating in an
open workflow. The tabs on the left are for reviewing static knowledge. On the
top are tabs for dynamic activities and alerts. Figure 2(a) shows the form that
allows the user to create a problem specification by entering information about
the triggering conditions and goal. In Figure 2(b), the Schedule tab allows the
user to view their schedule of commitments. The necessary travel time is also
blocked out in the schedule, and the system has added an alert tab to notify the
user that they must soon begin traveling to meet their scheduled commitment.
The system supports services that require user action by presenting a form for
data entry or just a button to click when the task is complete. The remaining
tabs allow the user to configure the list of workflow fragments (knowhow), the
list of local services (capabilities), and other system settings.

4.2 Goals, Design Principles, and Architecture

Our goal is a system that will support the coordination and participation of
devices with diverse capabilities. Further, we want to build a system robust
enough and flexible enough to encourage rather than hinder innovations from
future research. Consideration of these goals led us to the following two design
principles. First, the architecture should break apart the major responsibilities
of the system into independent components, allowing each host to provide only
the components that are appropriate to the host’s physical capabilities. Second,
the architecture should isolate and hide the highly variable details of the trans-
ports, protocols, and caching schemes used during communication by providing
an abstract communications layer. Furthermore, passing messages through an
intermediary ensures that local and remote components are accessed uniformly.

Based upon these design principles, we identified the following major respon-
sibilities for our open workflow management system, as illustrated in Figure 3.
We first observe that for a particular open workflow problem, one host acts as
the initiator while all hosts (including the initiator) may act as participants. We
therefore split the system responsibilities into two corresponding subsystems:
the construction subsystem and the execution subsystem. The construction sub-
system is responsible for identifying the problem to be solved, issuing queries to
discover knowhow and capabilities, formulating the plan of action, and assign-
ing work. The execution subsystem is responsible for replying to knowhow and
capability queries, accepting appropriate work assignments, and actually doing
the processing or communicating necessary to complete the work.

.
Execution Subsystem . Construction Subsystem
.
.
.
| Auction Participation . ul Workflow
K . Initiator
.
Schedule . l
. | Workflow |
.
|UI| Locationl | Execution | .
[- Auction
= (Ul
.
Fragment .
Y L]
.
.
.
.
.
.
.
- O
Communications v Inter-service Messages = Auction Messages v
Layer ﬁ =
a = Service Feasibility Messages A2
.
= Fragment Messages v
O

Fig. 3. System Architecture.

Construction Subsystem. The Workflow Initiator is responsible for interacting
with the user to define the trigger conditions and goal for the new problem. The
Workflow Manager is the core component of the construction subsystem. The
Workflow Manager creates and maintains a separate workspace for each open
workflow, allowing it to work simultaneously on multiple isolated and indepen-
dent problems. The Workflow Manager issues queries to discover knowhow and
capabilities, integrates the responses into the graph, and constructs the open
workflow. It then delegates to the Auction Manager the job of allocating each
task to a suitable host.

Ezecution Subsystem. The Fragment Manager is responsible for maintaining
a host’s database of workflow fragments and responding to knowhow queries
during workflow construction. The Auction Participation Manager encapsulates
the complex interactions and state tracking needed for the host to bid in task
auctions during the allocation phase. The Schedule Manager is the keystone
component of the execution subsystem. It manages the host’s availability by
tracking the host’s location, schedule, and scheduling preferences. It maintains
a database of all commitments, primarily consisting of scheduled service invo-
cations and their associated location and travel time details, which is the key
data structure for both allocation and execution of an open workflow. The Ex-
ecution Manager monitors the input and temporal conditions required for each
scheduled service invocation during the execution phase. Once an invocation’s
necessary conditions are met, it triggers service execution, and publishes any out-
put messages. Finally, the Service Manager maintains the list of services exposed
by this host and responds to capability queries from the Workflow Manager. It
also provides a uniform service invocation interface to the Execution Manager
by handling parameter marshaling and any other mechanics required to actually
invoke a local service during the execution phase.

Our architecture permits multiple open workflows to be constructed and ex-
ecuted concurrently within the same community and even within the same host.
The Workflow Manager maintains a separate workspace containing construc-
tion state information for each workflow. The remaining components (such as
the Auction Manager, Fragment Manager, Schedule Manager, etc.) act at task
granularity and thus handle two task-based requests from two separate work-
flows no differently than they handle two task-based requests from the same
workflow. While multiple workflows will necessarily compete for utilization of
the same resources (in the form of hosts, their capabilities, and other resources
present in the environment), there is no impedance at an architectural level to
constructing and executing multiple open workflows at once.

5 Evaluation

We use a combination of simulation and empirical evaluation to test our system
and demonstrate the viability of the open workflow paradigm. We focus on char-
acterizing the performance of the system in terms of three variables that have

the greatest impact on the scalability of our architecture: the number of partic-
ipants in the community, the number of tasks known to the entire community,
and the difficulty of the problem being solved which we characterize by the size
of the resulting workflow.

Our experimental set up is as follows. Given the number of hosts, the global
number of tasks, and the length of the workflow as parameters for an experiment,
we configure the hosts, establish connectivity within the community, and then
measure the time taken from when the specification is given to the initiating
host to the time when all tasks of the resulting workflow have been successfully
allocated to some host.

To configure the hosts, we first construct a workflow supergraph of the chosen
size by creating the desired number of nodes and then repeatedly adding edges
between disconnected nodes until the graph is strongly connected. From this
single supergraph we can then draw a large number of guaranteed-satisfiable
specifications by randomly picking any triggering conditions and goal. We use
only disjunctive task nodes in order to maintain the guarantee of satisfiability
during our automated evaluations. Given a supergraph and a chosen number of
hosts, we finish setting up the scenario by distributing the tasks randomly and
evenly amongst the hosts, and independently distributing corresponding services
randomly and evenly amongst the hosts. Each of the n hosts has only %th of
the entire supergraph, so the hosts must cooperate to solve the posed problem.
For each test run, the test driver randomly choses a path of the desired length
through the supergraph, and the initial and final label nodes of the path are
used as the specification for that test run. In all of the figures below, the results
for each path length are the average of one thousand runs.

For the simulations, all the hosts were run within in a single JVM and com-
municate solely through a simulated network. The simulations were run on a
Windows XP workstation with a 2.8 GHz Intel Xeon processor and 2.75 GB of
memory, running the Java 1.6.0_.11 HotSpot Client VM.

In Figure 4, we show the average time for each path length from a supergraph
with 100 task nodes as the number of participating hosts varies from 2 to 15. The
average time grows roughly linearly with the number of hosts as the initiating
host communicates pairwise with every member of the community during the
construction and allocation phases. We note that even if we were to broadcast
requests rather than using pairwise communication, the processing of responses
by the initiating host would still require time linear in the number of hosts in
the community.

In Figure 5, we show the average time for each path length for 2 participating
hosts as the number of task nodes in the supergraph varies from 25 to 500.
The rate of increase grows with the number of task nodes because the Workflow
Manager encounters more nodes during its search through the densely connected
supergraph as the number of tasks increases. The longest path through the graph
also increases as the size of the graph increases, which explains the absence of
timings for path lengths greater than 10 in the small 25 task supergraph.

0.060

—&— 15 host
—#— 10 host
—4A—5 host
0.050 —
—o—4 host
—H8—3 host
—aA— 2 host
0.040
o

Seconds
o
o
I
S

0.020
0.010
0.000 s s
2 4 6 8 10 12 14 16 18 20 22
Path length

Fig. 4. Simulation of 100 task nodes partitioned across different numbers of hosts.

0.060
500 task
0250 task
3100 task
0.050 +—
50 task
025 task

0.040

0.030

Seconds

0.020

0.010

0.000 -

Path length

Fig. 5. Simulation of different numbers of task nodes partitioned across 2 hosts.

After the simulations, we performed empirical evaluation of our applica-
tion using four laptops connected by an ad hoc wireless network using 802.1lg
(54Mbit/s). The first host (which was the initiating host during these tests) was
a MacBook Pro running OS X 10.5.5 with a 2.16 GHz Intel Core Duo processor
and 1 GB of 667 MHz DDR2 memory. The second host was a MacBook Pro
running OS X 10.5.6 with a 2.33 GHz Intel Core 2 Duo processor and 2 GB
of 667 MHz DDR2 memory. The third and fourth hosts were MacBook Pros
running OS X 10.5.6 with 2.4G Hz Intel Core 2 Duo processors and 4 GB of
1067 MHz DDR3 memory. All hosts were running the Java 1.5.0-16 HotSpot
Client VM. Connectivity among the hosts was verified before the measurements
were started. The timing results for workflow graphs with 25, 50, and 100 task
nodes are shown Figure 6.

0.180

— -+ -100 task Max path length Max path length Max path length
for small graph for medium graph for large graph
---a-- 50 task

—=— 25 task -

0.160 +—

0.140 _—

0.120 A -

0.100 =

Seconds

0.080

0.060 -

0.040

0.020

0.000

2 4 6 8 10 12 14 16 18 20
Path length

Fig. 6. Empirical performance of ad hoc wireless networking for different numbers of
task nodes partitioned across 4 hosts.

We can see from this graph that even in a realistic networking environment,
our system shows the potential to solve large problems quickly. For example,
even with a community knowledge base of one hundred tasks to explore, and a
solution path length of twenty, our system finds and allocates a solution in under
two tenths of a second on average.

5.1 Directions for Future Work

These encouraging results demonstrate that our system is ready to be evaluated
against large-scale real-world problems. In order to accomplish this, we will seek

a community to serve as a source of realistic benchmarks. We expect to face
new issues when adapting our system to the rigors and challenges posed by our
sample community.

One such concern for future research is the representation of tasks and spec-
ifications. Weakening our initial assumption that a specification only involves
the inset and outset would allow specifications that include constraints on all
aspects of the workflow graph, such as path length, task preferences, and ex-
ternal temporal and spatial constraints. Furthermore, the specification can be
expanded to influence the allocation and execution phases. A specification, for
example, could minimize the set of participants or restrict the locations of cer-
tain tasks. In order to realize richer specifications, a more expressive formalism
for describing tasks and preconditions and postconditions is necessary. For ex-
ample, an extended formalism may allow associating variables and constraints
with preconditions and postconditions such as type, capacity, and duration, or
propagating constraints from one task to the next. As the sophistication of the
formalism increases, more advanced planning techniques will come into play.

The handling of errors, community dynamics, and changes in the environ-
ment by the open workflow paradigm is another area for future research. For
example, the allocation phase could wait indefinitely for a member with the
needed capability and availability to join the community. During this time, an
alternative workflow that avoids this resource limitation could be constructed. A
failure during execution should result in a revised or repaired workflow, which re-
quires reconstruction, reallocation, and compensating execution. Extending the
current implementation with feedback mechanisms between the construction, al-
location, and execution phases seems like a promising approach. Developing an
appropriate commitment model that allows the participants to accomplish these
activities in a mobile ad hoc setting is a focus for future work.

We also want to investigate relaxing the current restriction that construction
and allocation are performed by a single host. A middleware that supports dis-
tribution of these tasks would allow construction and allocation in the face of
fragmentation of the community and support localized recovery after a failure.
When location constraints prohibit a rendezvous for data transfer, the system
should be extended to consider scheduling participants into the workflow as
couriers.

Finally, as with any application facing the rigors of the real world, security is
critical. In addition to the usual concerns of trust, authorization, and privacy, the
open workflow paradigm presents new challenges as it encourages participation
across multiple administrative domains and social networks. Recognizing and
handling changes in authorization and privacy due to roles and social context
and resolving conflicting and competing specification ontologies are topics for
future research.

6 Related Work

In this paper, we have focused on overcoming the challenges of bringing workflows
to transient communities connected by mobile ad hoc networks. Standard work-
flow management systems, such as ActiveBPEL [6], Oracle Workflow Engine [7],
JBoss [8], and BizTalk [9], are designed to work in fully wired environments, such
as corporate LANs or across the Internet. Reliance on centralized control and
reliable communication mean such solutions cannot successfully operate under
the constraints of dynamic mobile environments.

Several workflow systems have been developed which extend the realms in
which workflows may operate. The work on federating separate execution engines
running independent workflows by Omicini, et al., [10] removes the requirement
of centralized control. Chafle, et al., [11], investigate decentralized orchestra-
tion of a single workflow by partitioning the workflow at build time and using
message passing at run time. Both approaches still assume reliable communica-
tion and a fixed group of participants. MoCA [12] uses proxies for distributed
control and has some design features that support mobile environments while
Exotica/FDMC [13] describes a scheme to handle disconnected mobile hosts.
In AWA/PDA [14], the authors adopt a mobile agent based approach based on
the GRASSHOPPER agent system. WORKPAD [15] is designed to meet the
challenges of collaboration in a peer-to-peer MANET involving multiple human
users, however WORKPAD retains the requirement that at least one member of
the MANET be connected with a central coordinating entity that orchestrates
the workflow and shoulders any heavy computational loads. Sliver [1] brings
a full BPEL execution engine to a single cell phone, however that phone still
acts as the sole coordinator. Finally, CiAN [2] presents a workflow management
system which eliminates the need for a central arbiter by distributing not only
service execution but also the task allocation problem across multiple hosts.

While our system builds upon CiAN’s model of distributed workflow allo-
cation and execution, all these systems assume that a thoughtfully designed
and fully specified workflow already exists. Open workflow is designed for set-
tings where the availability of resources and the range of responses demanded
by changing circumstances cannot be anticipated. The workflow to be executed
must be generated on the fly to match the present situation.

The automatic composition of services has been explored using a variety of Al
planing engines, including Golog [16], Workflow Prolog [17], and PDDL [18]. A
review of further automated service composition methods may be found in [19].
Ponnekanti and Fox create workflows by rule-based chaining in SWORD [20],
and discuss situations in which the resulting workflows may not produce the de-
sired results due to the preconditions and postconditions of each task not being
sufficiently specified. Fantechi and Najm [21] present an approach for ensur-
ing correct service composition by using a more detailed formal specification of
the service behavior. While the initial open workflow construction algorithm we
present is a simplified alternative to the powerful techniques presented in these
papers, it also addresses a new problem specific in the mobile ad hoc environ-
ment. All these systems assume that the knowledge base from which to build

the workflow already exists. We have built upon their work by showing how to
construct both the knowledge base and the derived workflow on the fly based on
the knowhow and capabilities available within the community.

7 Conclusions

In this paper we have introduced the open workflow paradigm and presented
the first algorithm for constructing open workflows in ad hoc wireless mobile
environments. A system for open workflow creation, allocation, and execution
was proposed, implemented, and evaluated.

The open workflow paradigm is novel and enables the development of new
classes of applications that are designed to exploit community knowledge in
solving real world problems that arise unexpectedly and can be addressed only
through the coordinated exploitation of capabilities distributed among the mem-
bers of the community. The open workflow paradigm presents significant new
challenges for the middleware, MANET, workflow, planning, and human-com-
puter interaction research communities. The work presented in this paper is only
the first step toward characterizing and addressing these concerns.

In producing the first practical implementation of an open workflow manage-
ment system, we have affected a major paradigm shift in workflow middleware.
Open workflows are much more than sophisticated scripts that enable one to ex-
ploit available services — they are a coordination vehicle for social and business
activities that allows cooperating participants to construct and execute responses
to needs identified by the participants. The open workflow paradigm enables the
development of an entirely new class of systems that are nimble, mobile, and
supportive of this new style of coordination.

Acknowledgments. This paper is based upon work supported in part by the
National Science Foundation (NSF) under grant No. 1IS-0534699. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of NSF.

References

1. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL workflow
process execution engine for mobile devices. In: LNCS. Volume 4294. (2006) 503—
508

2. Sen, R., Roman, G.C., Gill, C.D.: CiAN: A workflow engine for MANETSs. In
Lea, D., Zavattaro, G., eds.. COORDINATION. Volume 5052 of Lecture Notes in
Computer Science., Springer (2008) 280295

3. Handorean, R., Gill, C.D., Roman, G.C.: Accommodating transient connectivity
in ad hoc and mobile settings. In Ferscha, A., Mattern, F., eds.: Pervasive. Volume
3001 of Lecture Notes in Computer Science., Springer (2004) 305-322

4. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc on-demand distance vector routing.
In: WMCSA, IEEE Computer Society (1999) 90-100

5. Mobilab Group: Open workflow project web site. http://mobilab.wustl.edu/
projects/openworkflow/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Active-Endpoints: ActiveBPEL engine. http://www.active-endpoints.com/
active-bpel-engine-overview.htm

Oracle Inc.: Oracle workflow. http://www.oracle.com/technology/products/
integration/workflow/workflow_fov.html

JBoss Labs: JBoss application server. http://www. jboss.com/docs/index
Microsoft Corp.: The BizTalk server. http://www.microsoft.com/biztalk/

. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordi-

nation artifacts. In Ciancarini, P., Wiklicky, H., eds.. COORDINATION. Volume
4038 of Lecture Notes in Computer Science., Springer (2006) 228-246

Chafle, G., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration of
composite web services. In: Proc. of the 13th Intl. WWW Conference. (2004)
134-143

Sacramento, V., Endler, M., Rubinsztejn, H.K., Lima, L.D.S., Gongalves, K.,
Bueno, G.A.: An architecture supporting the development of collaborative ap-
plications for mobile users. In: Proc. of WETICE ’04. (2004) 109-114

Alonso, G., Gunthor, R., Kamath, M., Agrawal, D., Abbadi, A.E., Mohan, C.: Ex-
otica/FDMC: A workflow management system for mobile and disconnected clients.
Parallel and Distributed Databases 4(3) (1996)

Stormer, H., Knorr, K.: PDA- and agent-based execution of workflow tasks. In:
Proceedings of Informatik 2001. (2001) 968-973

Mecella, M., Angelaccio, M., Krek, A., Catarci, T., Buttarazzi, B., Dustdar, S.:
WORKPAD: an adaptive peer-to-peer software infrastructure for supporting col-
laborative work of human operators in emergency/disaster scenarios. Collaborative
Technologies and Systems, International Symposium on 0 (2006) 173-180
Mecllraith, S., Son, T.C.: Adapting golog for composition of semantic web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning(KR2002). (2002) 482-493

Gregory, S., Paschali, M.: A prolog-based language for workflow programming. In
Murphy, A.L., Vitek, J., eds.. COORDINATION. Volume 4467 of Lecture Notes
in Computer Science., Springer (2007) 56-75

McDermott, D.: Estimated-regression planning for interactions with web services.
In: Proceedings of the 6th International Conference on AI Planning and Scheduling,
AAAT Press (2002) 204211

Rao, J., Su, X.: A survey of automated web service composition methods. In: In
Proceedings of the First International Workshop on Semantic Web Services and
Web Process Composition, SWSWPC 2004, Springer-Verlag (2004) 43-54
Ponnekanti, S.R., Fox, A.: SWORD: A developer toolkit for web service composi-
tion. In: Proceedings of the 11th World Wide Web Conference, Honolulu, Hawaii,
USA (May 2002)

Fantechi, A., Najm, E.: Session types for orchestration charts. In Lea, D., Za-
vattaro, G., eds.. COORDINATION. Volume 5052 of Lecture Notes in Computer
Science., Springer (2008) 117-134

