
A Comparison of Secure Multi-tenancy Architectures
for Filesystem Storage Clouds

Anil Kurmus1, Moitrayee Gupta?2, Roman Pletka1, Christian Cachin1, and Robert
Haas1

1 IBM Research - Zurich
{kur,rap,cca,rha}@zurich.ibm.com

2 Department of Computer Science and Engineering, UCSD
m5gupta@cs.ucsd.edu

Abstract. A filesystem-level storage cloud offers network-filesystem access to
multiple customers at low cost over the Internet. In this paper, we investigate
two alternative architectures for achieving multi-tenancy securely and efficiently
in such storage cloud services. They isolate customers in virtual machines at
the hypervisor level and through mandatory access-control checks in one shared
operating-system kernel, respectively. We compare and discuss the practical secu-
rity guarantees of these architectures. We have implemented both approaches and
compare them using performance measurements we obtained.

1 Introduction

Storage cloud services allow the sharing of storage infrastructure among multiple cus-
tomers and hence significantly reduce costs. Typically, such services provide object or
filesystem access over a network to the shared distributed infrastructure. To support
multiple customers or tenants concurrently, the network-filesystem-access services must
be properly isolated with minimal performance impact.

We consider here a filesystem storage cloud as a public cloud storage service used
by customers to mount their own filesystems remotely through well-established network
filesystem protocols such as NFS and the Common Internet Filesystem (CIFS, also
known as SMB). Such a service constitutes a highly scalable, performant, and reliable
enterprise network-attached storage (NAS) accessible over the Internet that provides
services to multiple tenants.

In general, a cloud service can be run at any of the following increasing levels of
multi-tenancy:

– Hardware level: server hardware, OS, and application dedicated per client.
– Hypervisor level: share server hardware, and use virtualization to host dedicated OS

and application per client.
– OS level: share server hardware and OS, and run a dedicated application per client.
– Application level: share server hardware, OS, and application server among clients.

? Work done at IBM Research - Zurich.

2 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

Intuitively, the higher the level of multi-tenancy, the easier it seems to achieve a resource-
efficient design and implementation; at the same time, though, it gets harder (conceptually
and in terms of development effort) to securely isolate the clients from each other.

In this paper, we investigate a hypervisor-level and an OS-level multi-tenant filesys-
tem storage cloud architecture, and compare them in terms of performance and security.
The hypervisor-level multi-tenancy approach is based on hardware virtualization (with
para-virtualized drivers for improved networking performance). We refer to this ar-
chitecture as the virtualization-based multi-tenancy (VMT) architecture. The OS-level
multi-tenancy approach uses mandatory access control (MAC) in the Linux kernel and is
capable of isolating customer-dedicated user-space services on the same OS. Such an
architecture may also leverage, for instance, OS-level virtualization technologies such
as OpenVZ or Linux Containers (LXC). We refer to this architecture as the operating-
system-based multi-tenancy (OSMT) architecture in the remainder of this paper.

We have implemented both approaches on real hardware in the IBM Scale-out NAS
(SONAS) [1] and the IBM General Parallel Filesystem (GPFS) [2] technologies. We used
open-source components such as KVM [3] with virtio networking for virtualization and
SELinux (http://selinuxproject.org/) for MAC.

Section 3 describes the architecture of a filesystem storage cloud and introduces
the two designs. Section 4 defines an adversary model and discusses the security of
both architectures according to this model. Section 5 presents the implementation and
benchmark results. Related work is discussed in Section 6.

2 Background

One can distinguish the following categories of general-purpose storage clouds (ignoring
storage clouds that provide database-like structures on content):

– Block storage clouds, with a block-level interface, i.e., an interface that allows the
writing and reading of fixed-sized blocks. Examples of such clouds include Amazon
EBS.

– Object storage clouds, composed of buckets (or containers) that contain objects (or
blobs). These objects are referred to by a key (or name). The API is usually very
simple: typically a REST API with create and remove operations on buckets and put,
get, delete, and list operations on objects. Example of such storage clouds include
Amazon S3, Rackspace Cloudfiles, and Azure Storage Blobs.

– Filesystem storage clouds, with a full-fledged filesystem interface, therefore referred
to also as “cloud NAS.” Examples of such clouds include Nirvanix CloudNAS, Azure
Drive, and IBM Scale-Out Network Attached Storage (SONAS).

Application-level multi-tenancy is sometimes also referred to as native multi-tenancy.
Some authors consider it the cleanest way to isolate multiple tenants [4]. However,
achieving multi-tenancy securely is very challenging and therefore not common for
filesystem storage clouds. The reasons lie in the complex nature of this task: unlike
other types of storage clouds, filesystem storage clouds possess complex APIs that have
evolved over time, which leads to large attack surfaces. The vulnerability track record
of these applications seems to confirm this intuition. CIFS servers were vulnerable

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 3

to various buffer-overflows (e.g., CVE-2010-3069, CVE-2010-2063, CVE-2007-2446,
CVE-2003-0085, CVE-2002-1318, see http://cve.mitre.org/), format string
vulnerability leading to arbitrary code execution (CVE-2009-1886), directory traversals
(CVE-2010-0926, CVE-2001-1162), while NFS servers were also vulnerable to similar
classic vulnerabilities as well as more specific ones such as filehandle vulnerabilities [5].
Moreover, adding multi-tenancy support into these server applications would require
significant development (e.g., in order to distinguish between different authentication
servers for specific filesystem exports) which will most likely result in new vulnerabilities.
We discuss in Sections 3 and 4 architectures with lower levels of multi-tenancy. They
effectively restrict the impact of arbitrary code execution vulnerabilities to the realm of a
single tenant: by definition, this cannot be achieved with application-level multi-tenancy.

This paper targets the IBM SONAS [1] platform, which evolved from the IBM Scale-
Out File Services (SoFS) [6]. IBM SONAS provides a highly scalable network-attached
storage service, and therefore serves as a typical example of a filesystem storage cloud.
IBM SONAS currently contains support for hardware-level multi-tenancy according to
the architectures discussed in this work. Adding a higher-level of multi-tenancy is an
important step to reduce the cost of a cloud-service provider.

3 System Description

Section 3.1 gives an overview of the general architecture of a filesystem storage cloud.
Section 3.2 describes the MAC policies which are used in both architectures. Sections 3.3
and 3.4 introduce the two alternatives, detailing the internals of the interface nodes, the
key element of the filesystem storage cloud architecture.

3.1 General Description

Figure 1 depicts the general architecture of a filesystem storage cloud that consists of the
following elements:

Cloud storage provider

 ...

Storage back-end

Customer 1
in cluster 1

user A ...
 ...

user B

Customer c
in cluster 1

user A ...user B

 ... Customer 1
in cluster m

user A ...
 ...

user B

Customer c
in cluster m

user A ...user B

Interface
node 1

in cluster 1
 ...

Interface
node n

in cluster 1

Interface
node 1

in cluster m
 ...

Interface
node n

in cluster m

Fig. 1. General architecture of a filesystem storage cloud.

4 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

– Customers and users: A customer is an entity (e.g., a company) that uses at least one
network file system. A customer can have multiple individual users. We assume that
multiple customers connect to the filesystem storage cloud and that each customer
has a separate set of users. Data is separated between users from distinct customers,
and user IDs are in a separate namespace for each customer. Hence two distinct
customers may allocate the same user ID without any conflict on the interface nodes
or in the storage back-end.

– Interface nodes and cluster: An interface node is a system running filer services such
as NFS or CIFS daemons. Interface nodes administratively and physically belong to
the cloud service provider and serve multiple customers. A customer connects to the
filesystem storage cloud through the interface nodes and mounts its filesystems over
the Internet. Multiple interface nodes together form an interface cluster, and one
interface node may serve multiple customers. A customer connects only to nodes in
one interface cluster.

– Shared back-end storage: The shared back-end storage provides block-level storage
for user data. It is accessible from the interface clusters over a network using a
distributed filesystem such as GPFS [2]. It is designed to be reliable, highly available,
and performant. We assume that no security mechanism exists within the distributed
filesystem to authenticate and authorize nodes of the cluster internally.

– Customer boarding, unboarding, and configuration: Typically, interface nodes must
be created, configured, started, stopped, or removed when customers are boarded
(added to the service) or unboarded (removed from the service). This is performed
by administration nodes not shown here, which register customer accounts and
configure filesystems. Ideally, boarding and unboarding should consume a minimal
amount of system resources and time.

As an example, a customer registers a filesystem with a given size from the filesystem
storage cloud provider, and then configures machines on the customer site that mount this
filesystem. The users of the customer can then use the cloud filesystem similar to how
they use a local filesystem. Customers connect to the interface cluster via a dedicated
physical wide-area network link or via a dedicated VPN over the Internet, ideally with
low latency. The cloud provider may limit the maximal bandwidth on a customer link.

To ensure high availability and high throughput, a customer accesses the storage
cloud through the clustered interface nodes. Interface nodes have to perform synchro-
nization tasks within their cluster and with the back-end storage, generating additional
traffic. An interface node has three network interfaces: one to the customer, one to other
nodes in the cluster, and one to the back-end storage.

Dimensioning. The size of a filesystem storage cloud is determined by the following
parameters, which are derived from service-level agreements and from the (expected or
observed) load in the system: the number of customers c assigned to an interface cluster,
the number of interface nodes n in a cluster (due to synchronization overhead, this
incurs a trade-off between higher availability and better performance), and the number
of clusters m attached to the same storage back-end.

Customer and user authentication. Describing customer authentication would exceed the
scope of this work; in practice, it can be delegated to the customer’s VPN endpoint in the

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 5

premises of the service-cloud provider. The authentication of users from a given customer
also requires that customers provide a directory service that will serve authentication
requests made by users. Such a directory service can be physically located on the
customer’s premises and under its administration or as separate service in the cloud. In
either case, users authenticate to an interface node, which in turn relays such requests to
the authentication service of the customer.

3.2 Mandatory Access Control Policies

We use mandatory access control on the filer services. In case of their compromise, MAC
provides a first layer of defense on both architectures. For practical reasons, we have used
SELinux. Other popular choices include grsecurity RBAC [7] or TOMOYO. These MAC
systems limit the privileges of the filer services to those required, effectively creating
a sandbox environment, by enforcing policies that are essentially a list of permitted
operations (e.g., open certain files, bind certain ports, fork, . . .).

As an example, the policies on the interface nodes basically permit the filer services
to perform the following operations: bind on their listening port and accept connections,
perform all filesystem operations on the customer’s data directory (which resides on
a distributed filesystem), append to the filer log files, and read the relevant service
configuration files.

The protection provided by these policies can be defeated in two ways. One possibil-
ity is if the attacker manages to execute arbitrary code in kernel context (e.g., through a
local kernel exploit), in which case it is trivial to disable any protections provided by the
kernel, including MAC. The second possibility is by exploiting a hole in the SELinux
policy, which would be the case, for example, if a filer service were authorized to load a
kernel module.

An important example of the benefit of these policies is the restriction of accessible
network interfaces to the customer and intra-cluster network interfaces only. Another
example is the impossibility for processes running in the security context of the filer
services to write to files they can execute, or to use mmap() and mprotect() to get
around this restriction. In practice, this means, for example, that an attacker making use
of a remote exploit on a filer service cannot just obtain a shell and download and execute
a local kernel exploit: the attacker would have to find a way to execute the latter exploit
directly within the first exploit, which, depending on the specifics of the vulnerabilities
and memory protection features, can be impossible.

Note that, because of the way MAC policies are specified — that is, by white-listing
the permitted operations — these examples (network interface access denied, no read
and execute permission) are a consequence of the policy and do not have to be explicitly
specified, which encourages policies to be built according to the least privilege principle.

3.3 VMT Architecture

We now introduce the first architecture, called the virtualization-based multi-tenancy
(VMT) architecture. It is based on KVM as a hypervisor and implements multi-tenancy
by running multiple virtual interface nodes as guests on the hardware of one physical
interface node. Such a filesystem storage cloud has a fixed number of physical interface

6 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

 Interface Node 1 Interface Node n
 Guest 1 Guest c

ctdbd

smbd

 ...

Client 1 Client c
 ...

GPFS
filesystem c

storage

GPFS cluster 1 GPFS cluster c

 Guest 1 Guest c

ctdbd

smbd

GPFS
filesystem c

storage

ctdbd

smbd

GPFS
filesystem 1

storage

ctdbd

smbd

GPFS
filesystem c

storage

ctdbd

smbd

GPFS
filesystem c

storage

ctdbd

smbd

GPFS
filesystem c

storage

ctdbd

smbd

GPFS
filesystem 1

storage

(a) VMT architecture

ctdbd

 Interface Node 1 Interface Node n

 Container 1 Container c

GPFS filesystem

storage

smbdsmbd smbd

ctdbd ctdbd

smbd

ctdbd

Client 1 Client c ...

storage

 Container 1 Container c

(b) OSMT architecture

Fig. 2. Two architectures for multi-tenancy, shown for one interface cluster of each architecture.

nodes in every cluster, with each interface node running one guest for each customer.
All guests that belong to the same customer form an interface-node cluster, which
maintains the distributed filesystem with the data of the customer (labeled GPFS cluster
in Figure 2(a), as explained below). Each virtual machine (VM) runs one instance of
the required filer-service daemons, exporting the filesystems through the CIFS or NFS
protocols, and has three separate network interfaces.

In terms of isolation, MAC can be applied at two levels in this architecture. The
first level is inside a guest, for protecting filer services exposed to the external attackers,
using the exact same policies as in the OSMT architecture3 described below. The second
level is on the host, with the idea of sandboxing guests (i.e., QEMU processes running
on the host, in the case of KVM) by using multi-category security. Policies at this level
do not depend on what is running inside the guests, therefore they can be applied to
many virtualization scenarios. Such policies already exist and are implemented by sVirt
(see http://selinuxproject.org/page/SVirt).

Figure 2(a) shows one of m clusters according to the VMT architecture, in which
the distributed filesystem is GPFS and the daemons in each virtual machine are smbd
(the Samba daemon, for CIFS) and ctdbd (the clustered trivial database daemon, used
to synchronize meta-data among cluster nodes). They work together to export customer
data using the CIFS protocol. The customers are also shown and connect only to their
dedicated VM on each interface node. In terms of the dimension parameters from
Figure 1, for every one of the m interface clusters, there are c GPFS clusters, each
corresponding to a GPFS filesystem, and c · n guest virtual machines (n per customer)
in this architecture.

3 Except for the use of the multi-category security functionality (see Section 3.4): categories are
not required in the VMT architecture as only one customer resides in each guest.

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 7

When a new customer is boarded, it is assigned to a cluster and a configuration script
automatically starts additional guests for that customer on all the physical interface nodes
within this cluster. Furthermore, a new GPFS filesystem and cluster are created for the
customer on the new virtual guests. Customer data can then be copied to the filesystem
and accessed by users.

3.4 OSMT Architecture

The second architecture, called the operating-system-based multi-tenancy (OSMT) ar-
chitecture, is based on a lightweight separation of OS resources by the kernel. OS-level
virtualization of this form can be achieved using containers, such as LXC, OpenVZ or
Zap pods [8] for Linux, jails [9] for FreeBSD, and zones [10] for Solaris. Containers do
not virtualize the underlying hardware, and thus cannot run multiple different OSes, but
create new isolated namespaces for some OS resources such as filesystems, network in-
terfaces, and processes. Processes running within a container are isolated from processes
within other containers, thus they seem to be running in a separate OS. All processes
share the same kernel, hence, one cannot encapsulate applications that rely on kernel
threads in containers (such as the kernel NFS daemon).

In our implementation, isolation is performed using SELinux multi-category-security
(MCS) policies [11] for shielding the processes that serve a particular customer from all
others. It is then sufficient to write a single policy for each filer service that applies for
all customers by simply adjusting the category of each filer service and other related
components inside a container (e.g., configuration files, customer data). This ensures
that no two distinct customers can access each other’s resources (because they belong to
different categories). In comparison to the VMT architecture, the policies in the guest
that contain the filer services, and the policies in the host that isolate the customers are
now combined into a single policy which achieves the same goals.

In addition, a change-root (chroot) environment is installed, whose only purpose is
to simplify the configuration of the isolated services and the file labeling for SELinux.
We refer to such a customer isolation domain as a container in the remainder of this
work. A container dedicated to one customer on an interface node consists of a chroot
directory in the root filesystem of the interface node, which contains all files required to
access the filesystem for that customer. All required daemons accessed by the customer
run within the container. Because of the chroot environment, the default path names,
all configuration files, the logfile locations, and so on, are all the same or found at the
same locations for every customer; this is implemented through read-only mount binds,
without having to copy files or create hard links. This approach makes our container-
based setup amenable to automatic maintenance through existing software distribution
and packaging tools.

This form of isolation does not provide new namespaces for some critical kernel
resources (process identifiers are global, for instance); it does not allow a limitation of
memory and CPU usage either. However, it causes a smaller overhead for isolation than
hypervisor-based virtualization does.

Figure 2(b) shows an interface cluster following the OSMT architecture, in which the
distributed filesystem is GPFS, shared by all containers within a cluster. Each container
runs a single instance of each of the smbd and ctdbd daemons, accessed only by the

8 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

corresponding customer. In the terms of the dimension parameters from Figure 1, for
every one of the m interface clusters, there exists one GPFS filesystem (only one per
cluster), n kernels (each kernel is shared by c customers), and c · n containers (n per
customer).

Customer boarding is done by a script that creates an additional container on every in-
terface node in the cluster, and a data directory for that customer in the shared distributed
filesystem of the interface cluster. The daemons running inside the new containers must
be configured to export the customer’s data directory using the protocols selected. No
changes have to be made to the configuration of the distributed filesystem on the interface
nodes.

4 Security Comparison

In this section, we discuss the differences between the VMT architecture and the OSMT
architecture from a security viewpoint. Because we aim to compare the two approaches,
we only briefly touch on those security aspects that are equal for the two architectures.
This concerns, for instance, user authentication, attacks from one user of a customer
against other users of the same customer, and attacks by the service provider (“insider
attacks” from its administrators). These aspects generally depend on the network filesys-
tem and the user-authentication method chosen, as well as their implementations. They
critically affect the security of the overall solution, but are not considered further here.

4.1 Security Model

We consider only attacks by a malicious customer, i.e., attacks mounted from a user
assigned to one customer against the service provider or against other customers. In
accordance with the traditional goals of information security, we can distinguish three
types of attacks: those compromising the confidentiality, the integrity, or the availability
of the service and/or of data from other customers.

Below we group attacks in two categories. First we discuss denial-of-service (DoS)
attacks targeting service availability in Section 4.3. Second, we subsume threats against
the confidentiality and integrity of data under unauthorized data access and discuss them
in Section 4.4.

We assume that the cloud service provider is trusted by the customers. We also
disregard customer-side cryptographic protection methods, such as filesystem encryp-
tion [12] and data-integrity protection [13]. These techniques would not only secure the
customer’s data against attacks from the provider but also protect its data from other
customers. Such solutions can be implemented by the customer transparently to the
service provider and generally come with their own cost (such as key management or
the need for local trusted storage).

4.2 Comparison Method

An adversary may compromise a component of the system or the whole system with a
certain likelihood, which depends on the vulnerability of the component and on properties

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 9

of the adversary such as its determination, its skills, the resources it invests in an attack
and so on. This likelihood is influenced by many factors, and we refrain from assigning
numerical values or probabilities to it, as it cannot be evaluated with any reasonable
accuracy [14, Chap. 3–4].

Instead we group all attacks into three sets according to the likelihood that an attack
is feasible with methods known today or the likelihood of discovering an exploitable
vulnerability that immediately enables the attack. We roughly estimate the relative
severity of attacks and vulnerabilities according to criteria widely accepted by computer
emergency readiness teams (CERTs), such as previous exploits or their attack surfaces.
Our three likelihood classes are described by the terms unlikely, somewhat likely and
likely.

In Section 4.4 we model data compromise in the filesystem storage cloud through
graphical attack trees [15]. They describe how an attacker can reach its goal over various
paths; the graphs allow a visual comparison of the security of the architectures.

More precisely, an attack tree is a directed graph, whose nodes correspond to states
of the system. The initial state is shown in white (meaning that the attacker obtains
an account on the storage cloud) and the exit node is colored black (meaning that the
attacker gained unauthorized access to another customer’s data). A state designates a
component of the system (as described in the architecture) together with an indication of
the security violation the attacker could have achieved or of how the attacker could have
reached this state.

An edge corresponds to an attack that could be exploited by an attacker to advance
the state of compromise of the system. The intermediate nodes are shown in various
shades of gray, roughly corresponding to the severity of the compromise. Every attack is
labeled by a likelihood (unlikely, somewhat likely, or likely), represented by the type of
arrow used.

4.3 Denial-of-Service Attacks

Server crashes. An attacker can exploit software bugs causing various components of
an interface node to crash, such as the filer services (e.g., the NFS or CIFS daemon)
or the OS kernel serving the customer. Such crashes are relatively easy to detect and
the service provider can recover from them easily by restarting the component. Usually
such an attack can also be attributed to a specific customer because the service provider
maintains billing information of the customer; hence the offending customer can easily
be banned from the system.

Both architectures involve running dedicated copies of the filer services for each
customer. Therefore, crashing a filer service only affects the customer itself. Although
the attack may appear likely in our terminology, we consider it not to be a threat because
of the external recovery methods available.

Note that non-malicious faults or random crashes of components are not a concern
because all components are replicated inside an interface cluster, which means that the
service as a whole remains available. Crashes due to malicious attacks, on the other hand,
will affect all nodes in a cluster as the attacker can repeat its attack.

Furthermore, any server crash has to be carried out remotely and therefore mainly
affects the network stack. It appears much easier for a local user to crash a server, in

10 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

contrast. For this, the attacker must previously obtain the privilege to execute code on
the interface node, most likely through an exploit in one of the filer services. However,
when attackers have obtained a local account on an interface node, they can cause much
more severe problems than simply causing a crash (Section 4.4). Therefore we consider
a locally mounted DoS attack as an acceptable threat.

In the VMT architecture, a kernel crash that occurs only inside the virtual machine
dedicated to the customer does not affect other customers, which run in other guests —
at least according to the generally accepted view of virtual-machine security. However,
the effects on other guests depend on the kind of the DoS attack. A network attack
that exploits a vulnerability in the upper part of the network stack (e.g., UDP) most
likely only crashes the targeted guest. But an attack on lower-layer components of the
hypervisor (e.g., network interface driver), which run in the host, can crash the host and
all guests at once. Moreover, additional vulnerabilities may be introduced through the
hypervisor itself.

In the OSMT architecture, an attacker may crash the OS kernel (through a vulner-
ability in the network interface driver or a bug in the network stack), which results in
the crash of the entire interface node and disables also the service to all other customers.
Thus, the class of DoS attacks targeted against the OS kernel has a greater effect than in
the VMT architecture.

Resource exhaustion. An attacker can try to submit many filesystem requests to exhaust
some resource, such as the network between the customers and the interface nodes, the
network between interface nodes and the resource cluster, or the available CPU and
memory resources on the interface nodes. Network-resource exhaustion attacks affect
both our designs in the same way (and more generally, are a common problem in most
Internet services); therefore, we do not consider them further and discuss only the
exhaustion of host resources.

In the VMT architecture, hypervisors can impose a memory bound on a guest OS and
limit the number of CPUs that a guest can use. For example, a six-CPU interface node
may be shared by six customers in our setup. Limiting every guest to two CPUs means
that the interface node still tolerates two malicious customers that utilize all computation
power of their dedicated guests, but continues to serve the other four customers with two
CPUs.

The impact of a resource-exhaustion attack with a container setup in the OSMT
architecture depends on the container technology used and its configuration.

In our study, we use a container technology (SELinux and chroot environment) that
cannot restrict the CPU used or the memory consumed by a particular customer. Given
proper dimensioning of the available CPU and memory resources with respect to the
expected maximal load per customer, however, a fair resource scheduler alone can be
sufficient to render such attacks harmless.

With more advanced container technology, such as LXC (based on the recent cgroup
process grouping feature of the Linux kernel), it is possible to impose fine-grained
restrictions on these resources, analogously to a hypervisor. For instance, the number of
CPUs attributed to a customer and the maximally used CPU percentage can be limited
for every customer.

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 11

4.4 Unauthorized Data Access

We describe here the attack graphs in Figures 3 and 4 as explained in Section 4.2. Some
attacks are common and apply to both architectures; they are described first. We then
present specific attacks against the VMT and OSMT architectures. Each attack graph
includes all attacks relevant for the architecture.

Common attacks. Filer service compromise. Various memory corruption vulnerabilities
(such as buffer overflows, string format vulnerabilities, double frees) are notorious for
allowing attackers to execute arbitrary code with the privileges of the filer service. How-
ever, protection measures such as address space layout randomization, non-executable
pages, position-independent executables, and stack canaries, can render many attacks
impossible without additional vulnerabilities (e.g., information leaks). This is especially
true for remote attacks, in which the attacker has very little information (e.g., no ac-
cess to /proc/pid/) and less control over memory contents (e.g., no possibility of
attacker-supplied environment variables) than for local attacks. For these reasons, we
categorize these attacks as “somewhat likely.”

Complementing the aforementioned attacks that permit arbitrary code execution,
confused deputy attacks [16] form a weaker class of attacks. In such an attack, the attacker
lures the target application into performing an operation unauthorized to the attacker
without obtaining arbitrary code execution. Directory traversal, whereby an attacker
tricks the filer service into serving files from a directory that should not be accessible, is
a famous example of such attacks in the context of storage services (e.g., CVE-2010-
0926, CVE-2001-1162 for CIFS). Clearly, such attacks leverage the privileges of the
target process: a process that has restricted privileges is not vulnerable. Therefore, they
form a weaker class of attacks: preventing unauthorized data access to an attacker who
has compromised the filer service through arbitrary code execution also prevents these
attacks. Furthermore, confused deputy attacks are very unlikely to serve as a stepping
stone for a second attack (e.g., accessing the internal network interface), which would be
required to access another tenant’s data in both architectures here. Consequently, we do
not consider confused deputy attacks any further.

Kernel compromise. We distinguish between remote and local kernel attacks. The
reasoning in the previous paragraph concerning the lack of information and memory
control is essentially also valid for remote kernel exploits. However, for the kernel, the
attack surface is much more restricted: typically network drivers and protocols, and
usually under restrictive conditions (e.g., LAN access). Recently, Wi-Fi drivers have been
found to be vulnerable (CVE-2008-4395), as well as the SCTP protocol (CVE-2009-
0065) both of which would not be used in the context of a filesystem storage cloud. For
these reasons, we categorize these attacks as “unlikely.” In contrast to remote exploits,
we categorize local kernel exploits as “somewhat likely” given the information advantage
(e.g., /proc/kallsysms) and capabilities of a local attacker (e.g., mapping a fixed
memory location). Many recently discovered local kernel vulnerabilities confirm this
view.

SELinux bypass. The protection provided by SELinux can be bypassed in two ways.
One of them is by leveraging a mistake in the security policy written for the application: if
the policy is too permissive, the attacker can find ways to get around some restrictions. An

12 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

External
network

-
obtain
account

Filer
service

-
compromise

Guest
SELinux

-
bypass

Guest
Kernel

-
compromise

KVM
-

escape
Host

SELinux
-

bypass

Host
Kernel

-
compromise

GPFS
-

access
data from
back-end

unlikely
somewhat likely
likely

Unauthorized customer data access

Fig. 3. Attack graph for the VMT architecture.

example of such a policy vulnerability was found in sVirt [17]: an excessively permissive
rule in the policy allowed an attacker in the hypervisor context to write directly to the
physical drive, which the attacker can leverage in many ways to elevate his privileges. The
second option for bypassing SELinux is by leveraging a SELinux implementation bug in
the kernel. An example of such a vulnerability is the bypass of NULL pointer dereference
protections. The Linux kernel performs checks when performing mmap() to prevent
a user from mapping addresses lower than mmap min addr (which is required for
exploiting kernel NULL pointer dereferences vulnerabilities). SELinux also implemented
such a protection (with the additional possibility of allowing such an operation for some
trusted applications). However, the SELinux access control decision in the kernel would
basically override the mmap min addr check, weakening the security of the default
kernel (CVE-2009-2695). For these reasons, we categorize these attacks as “somewhat
likely.”

Attacks against the VMT architecture. VM escapes. Although virtual machines are
often marketed as the ultimate security isolation tool, it has been shown [18, 19] that
many existing hypervisors contain vulnerabilities that can be exploited to escape from a
guest machine to the host. We assume these attacks are “somewhat likely”.

Filer service compromise: NFS daemon and SELinux. Apart from the helper daemons,
which represent a small part of the overall code (e.g., rpc.mountd, rpc.statd,
portmapd), most of the nfsd code is in kernel-space. This means it is not possible to
restrict the privileges of this code with a MAC mechanism in the sense that a vulnerability
in this code might directly lead to arbitrary code execution in kernel mode. The authors
of [20] tried to implement such a protection within the kernel but this approach cannot
guarantee sufficient isolation of kernel code simply because an attacker with ring 0
privileges can disable SELinux. We categorize this attack as “somewhat likely.”

Attacks against the OSMT architecture. Container escapes. As mentioned in 3.4, we
have implemented what we refer to as containers using a chroot environment. As is widely
known, a chroot environment does not effectively prevent an attacker from escaping

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 13

External
Network

-
obtain
account

Filer
service

-
compromise/
transversal

Container
-

escape SELinux
-

bypass Kernel
-

compromise
GPFS

-
access

data from
back-end

Unauthorized customer data access

unlikely
somewhat likely
likely

Fig. 4. Attack graph for the OSMT architecture.

from the environment and provides limited isolation. For completeness, we include
a container-protection layer which corresponds to the chroot environment (without
SELinux) in Figure 4, and marked it as “likely” to be defeated. However, containers such
as LXC do implement better containment using the cgroups feature of Linux. While these
technologies have a clean and simple design, it is still likely that some vulnerabilities
allowing escapes can be found, especially because they are very recent (one such current
concern regards containers mounting a /proc pseudo-filesystem).

4.5 Conclusion

A high-level comparison of Figures 3 and 4 shows that the VMT architecture has many
more layers and could lead to the conclusion that the VMT approach provides better
security. However, we also have to take into account the various attacks: most notably, it
is possible that an attacker uses the internal network interface effectively for customer
data access, and that this network interface is accessible from within the guest VMs
(which is required, because the distributed filesystem service runs in the guest). The
possibility of this attack renders other layers of protection due to VM isolation much
less useful in the VMT architecture.

In other words, a likely chain of compromises that can occur for each scenario is

– for VMT:
1. attacker compromises filer service, obtaining local unprivileged access,4

2. attacker exploits a local kernel privilege escalation vulnerability that can be
exploited within the MAC security context of the filer service,

3. attacker accesses files of a customer through the distributed filesystem (assuming
no authentication or authorization of nodes and no access control on blocks).

– for OSMT:
1. attacker compromises filer service, obtaining local unprivileged access,
2. attacker exploits a local kernel privilege escalation vulnerability that can be

exploited within the MAC security context of the filer service,

4 In the case of a kernel NFS daemon, it is possible that the attacker directly obtains ring 0
privileges and can therefore skip the next step, however this is less likely.

14 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

3. attacker accesses files of a local co-tenant, or through the distributed filesystem
for other customers.

Although it is expected that hypervisor-level multi-tenancy can, in general, be a
better security design than OS-level multi-tenancy, we have seen in this section that in the
case of a filesystem storage cloud and under our assumptions (i.e., that in a distributed
filesystem, each individual node is trusted), no solution was clearly more secure than the
other. Both solutions could be used to achieve an acceptable level of security.

5 Performance and Scalability Evaluation

In this section, we present a performance evaluation comparing the VMT and OSMT
architectures for given customer workloads. Our experimental filesystem storage cloud
setup is based on the IBM SONAS [1] product, on which we implemented the two multi-
tenant architectures in the interface nodes, using the same physical infrastructure. We
ran the benchmarks on both setups using the same customer workload based on the CIFS
protocol, and measured various system metrics. Besides measuring the performance
of the two architectures, the evaluation allows us to compare the scalability of the
architectures.

In this section, we use the term client to refer to a single user belonging to a customer
(each customer has one user, and we refer to it as client).

5.1 Experimental Setup

We experiment with two storage back-end configurations in our benchmark.

1. RAM-disks directly on the interface node. This allows us to observe the performance
of the systems in the absence of bottlenecks due to physical disk-access limitations,
which is useful for analyzing the scalability of the interface node itself.

2. Actual disk-based storage, in the form of a direct-attached DS3200 storage subsys-
tem, which allows us to evaluate performance in a realistic setup.

The experimental setup consists of two interface nodes forming a two-node GPFS
cluster, and one client node. All network connections are 1 GbE links. To measure the
performance of a single interface node, we connect the client node to only one of the
interface nodes. Thus, all client traffic goes to a single interface node over a single 1 GbE
link. Although the second interface node receives no direct client traffic, it is included in
the benchmark setup to have a realistic 2-node GPFS cluster setup.

Figure 5 shows the setup and the server configurations. All servers run RHEL Server
5.5 with kernel version 2.6.18-194. The IBM SONAS version used on the interface nodes
is 1.5.3-20. On the DS3200 storage subsystem, we use a single 5+1 RAID5 array with a
total capacity of 2 TB using 15k RPM SAS drives. The storage subsystem is attached to
only one of the interface nodes — the same node that is connected to the client.

In the VMT setup, we use KVM and libvirt [21] to create and manage virtual machines
on the interface nodes. Each interface node has one virtual machine for each customer,
and all the virtual machines belonging to a specific customer across all the interface

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 15

Interface node 1

Interface node 2

 Client

GbE

GbE

Interface Node 1: X3650, 6 HT cores, 2.27 GHz, 16 GB RAM

Interface Node 2: X3550, 4 cores, 2.83 GHz, 4 GB RAM

Client Node: X355, 4 cores, 2.90 GHz, 2 GB RAM

Fig. 5. Experimental setup.

/c1root
/bin
/dev
/etc
/lib
/lib64
/proc
/sbin
/tmp
/usr
/var

eth0:1

eth1:1smbd

ctdbd

cust1 custn

/cnroot
/bin
/dev
/etc
/lib
/lib64
/proc
/sbin
/tmp
/usr
/var

eth0:n

eth1:nsmbd

ctdbd

...

Container 1 Container n

GPFS filesystem mounted at /cust

Fig. 6. Setup of containers in an interface node.

nodes are clustered together, with a single filesystem containing that customer’s data.
Each virtual machine has two virtual Ethernet interfaces assigned, which are bridged
to the corresponding interfaces on the host; one interface is used for GPFS-cluster
synchronization traffic, and the other for client traffic. In the RAM-disk configuration,
the total RAM-disk allocation on each interface node is evenly divided between all the
virtual machines running on that node. Each virtual machine uses a single RAM-disk for
the creation of the distributed filesystem. We make sure that the total physical memory
allocation in the VMT setup is exactly the same as in the OSMT setup. In the disk-based
configuration, the 2 TB SAS array is evenly divided into partitions, which are then
exposed to the virtual machines as raw devices through virtio interfaces. Each virtual
machine uses the raw device for the creation of the distributed filesystem.

The OSMT setup on the two interface nodes consists of dedicated “chroot directories”
for each container in the root filesystems of the interface nodes. Each container is
assigned two aliased Ethernet interfaces: one for GPFS-cluster synchronization traffic
and the other for client traffic. All the network interfaces assigned to the containers are
created as aliases of the host interfaces. We use aliases to simulate an environment in
which each customer has a dedicated secure access channel to the interface cluster. In
an actual customer environment, this secure channel would take the form of a VPN.
Figure 6 shows the OSMT setup for a single interface node. The interface node shown
here is part of a GPFS cluster. The GPFS filesystem extends to the other interface nodes
that are part of the same cluster. For the RAM-disk configuration, a single RAM disk is
used on each interface node and a single GPFS filesystem is created using the RAM disks
from both interface nodes. This filesystem is used by all the containers, with specific
data directories allotted to each customer. For the disk-based configuration, the entire
disk array is used to create a single filesystem, which is then used in the same way as in
the RAM-disk setup.

16 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

5.2 Tools Used in the Benchmarks

The standard fileserver benchmark used widely to evaluate the performance of Windows
fileservers is Netbench. However, Netbench runs only on the Windows platform and
requires substantial hardware for a complete benchmark setup. Under Linux, the Samba
software suite provides two tools that can be used to benchmark SMB servers using
Netbench-style I/O traffic, namely dbench and smbtorture BENCH-NBENCH. Both
tools read a loadfile provided as input to perform the corresponding I/O operations
against the fileserver being benchmarked. The dbench tool can be run against both NFS
and SMB fileservers, the smbtorture tool is specific to SMB fileservers. We used the
smbtorture BENCH-NBENCH tool because it offers more control over various aspects
of the benchmark runs than the dbench tool, and also because our benchmark focuses
solely on client access using the CIFS protocol.

The loadfile used in our benchmark consisted mainly of file creation operations,
4 KiB reads, 64 KiB writes, and some metadata queries.

To collect system metrics from the interface and client nodes during the execution of
the benchmark, we used the System Activity Report (SAR) tool from the Red Hat sysstat
package. The SAR tool collects, reports and saves system activity information, such as
CPU and memory usage, load, network and disk usage, by reading the kernel counters at
specified intervals.

5.3 Benchmark Procedure

We collected and analyzed the following system metrics on the interface nodes (in the
case of the VMT architecture, metrics were collected on the host):

1. CPU usage: We used the %idle values reported by SAR to compute the %used
values in each interval.

2. System load: We used the one-minute system load averages reported by SAR. Note
that on Linux systems, the load values reported also take into account processes that
are blocked waiting on disk I/O.

3. Memory usage: We recorded the memory usage both with and without buffers. In
both cases, we excluded the cached memory. In the VMT setups, we also excluded
the cached memory on the virtual machines running on that host.

In addition to these system metrics, we also recorded the throughput and loadfile
execution time reported by smbtorture on the clients. We performed 10 iterations for
each benchmark run — caches were preconditioned by 2 dry runs. We then computed
95% confidence intervals using the t-distribution for each metric measured.

5.4 Results

The graphs in this section show the variation of a particular system metric on both the
VMT and the OSMT architecture. For each architecture, we show the variation of the
metric on the RAM-disk-based setup as well as the disk-based setup. Note that each
customer is simulated with a single user (one client).

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 17

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6 7 8 9 10 11

C
P

U
 U

s
a

g
e

 (
%

)

Number of Customers

VMT with RAM-disk
OSMT with RAM-disk

VMT with disk
OSMT with disk

(a) CPU usage scaling

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10 11

M
e

m
o

ry
 U

s
a

g
e

 w
it
h

o
u

t
c
a

c
h

e
 (

%
)

Number of Customers

VMT with RAM-disk
OSMT with RAM-disk

VMT with disk
OSMT with disk

(b) Memory usage scaling

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10 11

S
m

b
to

rt
u

re
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Customers

VMT with RAM-disk
OSMT with RAM-disk

VMT with disk
OSMT with disk

(c) Throughput scaling

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9 10 11

S
m

b
to

rt
u

re
 L

o
a

d
fi
le

 E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Number of Customers

VMT with RAM-disk
OSMT with RAM-disk

VMT with disk
OSMT with disk

(d) Variation of loadfile execution time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8 9 10 11

L
o

a
d

Number of Customers

VMT with RAM-disk

OSMT with RAM-disk

VMT with disk

OSMT with disk

(e) System load scaling

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

L
o

a
d

Smbtorture Throughput (MB/s)

VMT with RAM-disk
OSMT with RAM-disk

VMT with disk
OSMT with disk

(f) Variation of throughput with load

Fig. 7. Benchmark results

Figure 7(a) shows the variation of CPU usage as a function of the number of cus-
tomers. The overall CPU usage is much lower in the OSMT architecture, for both the
RAM-disk and the disk setup. In the OSMT architecture, the CPU usage is significantly
lower when we use disk storage and flattens above 5 customers because more cycles are
spent waiting on disk I/O than in the RAM-disk-based setup. Hence, the performance
of the disks dominates the overall throughput. For the VMT architecture, however, the
CPU usage is about the same in both setups and therefore starts impacting the overall
throughput when the number of customers is higher. For 10 customers, this culminates
in a difference of about 77% in CPU usage between the two architectures when disk
storage is used.

The variation of memory usage with the number of customers is shown in Figure 7(b).
In the OSMT architecture, the memory usage remains relatively constant irrespective of

18 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

the number of customers. In the VMT architecture, however, the memory usage grows
almost linearly with the number of customers. We explain the less-than-2% discrepancy
in the increase between the disk- and RAM-disk-based OSMT setup by the varying
buffer size requirements with respect to the latency of the medium: in the disk setup,
access time is slower and the buffers reach their maximum size already for a single
customer. For 10 customers, there is a difference of about 45% in the memory usage of
the two architectures when disk storage is used.

Figures 7(c) and 7(d) show the variation of throughput and loadfile execution time.
As expected, the loadfile execution times are the lowest on the RAM-disk setups. The
throughput reported by smbtorture is also higher on the RAM-disk setups.

Independently of the type of disks used, the VMT architecture clearly gets an
additional penalty from the higher CPU load of the system which results in lower
throughput and higher loadfile execution time than the OSMT architecture.

Figure 7(e) shows the variation of system load with the number of customers. In
both architectures, the system load is higher when disk storage is used because of all
the cycles spent waiting on disk I/O. The system load has a much higher variance in the
VMT architecture. We speculate that this is because of variations in the amounts of disk
activity required to maintain the state of the virtual images on disk during the different
benchmark runs, which resulted in a large variation in the measured load values.

Figure 7(f) shows system load as a function of the throughput. Generally, the lower
the load and the higher the throughput, the better the scalability. Clearly, throughput
scales better with system load in the RAM-disk setup than in the disk-based setup.
Throughput scales best in the OSMT architecture using RAM disks. In the VMT archi-
tecture, the wide variation in system load in the disk-based setup results in a relatively
steep curve, whereas the curve is flatter for the RAM-disk setup. Overall it can be seen
that the OSMT architecture scales better than the VMT architecture.

6 Related Work

Although the designs of some free or open-source object storage cloud solutions [22,
23] are available, to the best of our knowledge no commercial cloud-storage provider
has publicly documented its internal architecture. In this work, we analyze for the first
time, how the technology applied for obtaining multi-tenancy impacts the security of the
customer data.

In this section we discuss alternative techniques that can be leveraged to obtain
similar security goals as the architectures analyzed in this work. Because we target this
study at production environments, our two architectures are restricted to tools that have
achieved a certain maturity and stability. Some of the isolation techniques mentioned in
this section are too recent and do not yet satisfy these conditions.

Micro-kernels [24] and virtual-machine monitors are comparable to some extent [25].
In terms of security isolation, Hohmuth et al. [26] argue that the trusted computing base
(TCB) is usually smaller with micro-kernels than with hypervisors. In particular, the
authors suggest that extending virtualized systems with micro-kernel-like features, such
as inter-process communication, can reduce the overall TCB. Although we do not use
the TCB terminology to capture better the advantages of a layered security design, we

A Comparison of Secure Multi-tenancy Architectures for Filesystem Storage Clouds 19

believe their main argument also applies to some extent in the context of this work. For
instance, in the VMT architecture, isolating the distributed filesystem5 from the guests
running the filer services and establishing a stable and secure way of accessing the
filesystem (e.g., paravirtualizing the distributed filesystem) would significantly improve
the security of this architecture. To the best of our knowledge, the most mature existing
technology for KVM that is close to realizing this goal is VirtFS [27].

Better isolation of the filer services and the distributed filesystem can also be achieved
by improving the security of the Linux kernel, especially in the OSMT architecture. Using
virtual machine introspection (VMI), Christodorescu et al. [28] present an architecture
for kernel code integrity and memory protection of critical read-only sections (e.g. jump
tables) to prevent most kernel-based rootkits with minimal overhead and without source
code analysis. With source code analysis, Petroni and Hicks [29] prevent rootkits by
ensuring control-flow integrity of the guest kernel at the hypervisor and therefore also
prevent all control-flow redirection based attacks for the Linux kernel, which represents
a significant security improvement.

Another approach to enhance the security of the kernel is grsecurity PaX [7], which
provides a series of patches that mitigate the exploitation of some Linux kernel vul-
nerabilities with low performance overhead. In particular, it provides base address
randomization for the kernel stack, prevents most user-space pointer dereferences by
using segmentation, and prevents various information leaks which can be critical for
successful exploitation of vulnerabilities. Other grsecurity patches also feature protection
for the exploitation of user-space vulnerabilities.

7 Conclusion

We have presented in this work two alternatives for implementing a multi-tenant filesys-
tem storage cloud, with one architecture isolating different tenants through containers
in the OS and the other isolating the tenants through virtual machines in the hypervi-
sor. Neither architecture offers strictly “better” security than the other one; rather, we
view both as viable options for implementing multi-tenancy. We have observed that the
overhead of the VMT architecture, due to the additional isolation layers, is significantly
higher than that of the OSMT architecture as soon as multiple tenants (and not even a
large number) access the same infrastructure. We conclude that, under cost constraints
for a filesystem storage cloud, the OSMT architecture is a more attractive choice.

References

1. “IBM Scale Out Network Attached Storage.” http://www-03.ibm.com/systems/
storage/network/sonas/.

2. F. Schmuck and R. Haskin, “GPFS: A Shared-disk File System For Large Computing Clusters,”
in Proc. File and Storage Technologies, 2002.

3. A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux Virtual Machine
Monitor,” in Proc. Linux Symposium, vol. 1, 2007.

5 In the sense of Hohmuth et al. [26], the distributed filesystem is in the TCB.

20 Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas

4. H. Cai, B. Reinwald, N. Wang, and C. Guo, “SaaS Multi-Tenancy: Framework, Technology,
and Case Study,” International Journal of Cloud Applications and Computing (IJCAC), vol. 1,
no. 1, 2011.

5. A. Traeger, A. Rai, C. Wright, and E. Zadok, “NFS File Handle Security,” tech. rep., Computer
Science Department, Stony Brook University, 2004.

6. S. Oehme, J. Deicke, J. Akelbein, R. Sahlberg, A. Tridgell, and R. Haskin, “IBM Scale out File
Services: Reinventing network-attached storage,” IBM Journal of Research and Development,
vol. 52, no. 4.5, 2008.

7. “grsecurity.” http://grsecurity.net/.
8. S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The Design and Implementation of Zap: A

System for Migrating Computing Environments,” ACM SIGOPS Operating Systems Review,
vol. 36, no. SI, 2002.

9. P. Kamp and R. Watson, “Jails: Confining the omnipotent root,” in Proc. International System
Administration and Network Engineering, 2000.

10. D. Price and A. Tucker, “Solaris Zones: Operating System Support for Consolidating Com-
mercial Workloads,” in Proc. System administration, 2004.

11. B. McCarty, SELinux: NSA’s Open Source Security Enhanced Linux. 2004.
12. S. M. Diesburg and A.-I. A. Wang, “A survey of confidential data storage and deletion

methods,” ACM Computing Surveys, vol. 43, Dec. 2010.
13. G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in storage: Techniques and

applications,” in Proc. Storage Security and Survivability, 2005.
14. S. Schechter, Computer Security Strength & Risk: A Quantitative Approach. PhD thesis,

Harvard University Cambridge, Massachusetts, 2004.
15. B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, 1999.
16. N. Hardy, “The Confused Deputy,” ACM SIGOPS Operating Systems Review, vol. 22, no. 4,

1988.
17. R. Wojtczuk, “Adventures with a certain Xen vulnerability (in the PVFB backend).” Message

sent to bugtraq mailing list on October 15th, 2008.
18. T. Ormandy, “An Empirical Study into the Security Exposure to Hosts of Hostile Virtualized

Environments,” in Proc. CanSecWest Applied Security Conference, 2007.
19. K. Kortchinsky, “Cloudburst – Hacking 3D and Breaking out of VMware,” 2009.
20. M. Blanc, K. Guerin, J. Lalande, and V. Le Port, “Mandatory Access Control implantation

against potential NFS vulnerabilities,” International Symposium on Collaborative Technolo-
gies and Systems, 2009.

21. “libvirt: The virtualization API.” http://libvirt.org/index.html.
22. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov,

“The Eucalyptus Open-source Cloud-computing System,” in Proc. Cluster Computing and the
Grid, 2009.

23. “OpenStack Swift.” http://swift.openstack.org/.
24. J. Liedtke, “On micro-kernel construction,” in Proc. SOSP, 1995.
25. G. Heiser, V. Uhlig, and J. LeVasseur, “Are Virtual Machine Monitors Microkernels Done

Right?,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1, 2006.
26. M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro, “Reducing TCB size by using untrusted

components: small kernels versus virtual-machine monitors,” in Proc. SIGOPS European
workshop, 2004.

27. V. Jujjuri, E. V. Hensbergen, and A. Liguori, “VirtFS – A virtualization aware File System
pass-through,” in Proc. Ottawa Linux Symposium, 2010.

28. M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and D. Zamboni, “Cloud Security
Is Not (Just) Virtualization Security: A Short Paper,” in Proc. CCSW, 2009.

29. N. L. Petroni Jr and M. Hicks, “Automated Detection of Persistent Kernel Control-Flow
Attacks,” in Proc. CCS, 2007.

