
FAIDECS: Fair Decentralized Event Correlation?

Gregory Aaron Wilkin, K.R.Jayaram, Patrick Eugster, and Ankur Khetrapal

Department of Computer Science
Purdue University

{gwilkin,jayaram,peugster}@cs.purdue.edu,ankur@alumni.purdue.edu

Abstract. Many distributed applications rely on event correlation. Such
applications, when not built as ad-hoc solutions, typically rely on cen-
tralized correlators or on broker overlay networks. Centralized correlators
constitute performance bottlenecks and single points of failure; straight-
forwardly duplicating them can hamper performance and cause processes
interested in the same correlations to reach different outcomes. The lat-
ter problem can manifest also if broker overlays provide redundant paths
to tolerate broker failures as events do not necessarily reach all processes
via the same path and thus in the same order.
This paper describes FAIDECS, a generic middleware system for fair
decentralized correlation of events multicast among processes: processes
with identical interests reach identical outcomes, and subsumption rela-
tionships among subscriptions are considered for respectively delivered
composite events. Based on a generic subset of FAIDECS’s predicate
language, we introduce properties for composite event deliveries in the
presence of process failures and present novel decentralized algorithms
implementing these properties. Our algorithms are compared under var-
ious workloads to solutions providing equivalent guarantees.

Keywords: event, correlation, fair, reliable, multicast, decentralized

1 Introduction

The abstraction of application events is useful not only for reasoning about
distributed systems [18], but also for building such systems [5,26].

Events: composition and correlation. Event correlation [8] enables higher-
level reasoning about interactions by supporting the assembly of composite events
from elementary events [20,19]. Traditional uses of correlation include intrusion
detection [17]; network monitoring [16] enables the improvement of resource
usage, e.g., in data centers. More recent application scenarios for correlation in-
clude embedded and pervasive systems [13], and sensor networks [22]. Complex
event processing (CEP) is a computing paradigm based on event correlation,
with applications to business process management and algorithmic trading.

? Financial support by NSF grants 0644013 and 0834529, DARPA grant N11AP20014.
Any opinions, findings, conclusions, or recommendations in this paper are those of
the authors and do not necessarily reflect the views of NSF or DARPA.

2 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

Challenges for event correlation middleware. Reasoning about event com-
position is, however, involving. Early work in active databases [6] explored syntax
and semantics of correlation, pinpointing options. Consider a sequence of events
e11 · e12 · e21, where ekl is a the l-th received event (instance) of event type T k. This
sequence can be matched by a “subscription” correlating two event types T1
and T2 as [e11, e

2
1] (first received first) or as [e12, e

2
1] (most recent first). However,

corresponding systems are centralized and consider events to be unicast.
Many theoretical and practical efforts on event correlation in publish/sub-

scribe systems [5] consider decentralized setups and multicast but focus on ef-
ficiency or the number of aggregations, yielding only best-effort guarantees on
event delivery. Consider an online auction where the bidding price of a product
or advertisement slot is event-driven. If two processes participating in the auc-
tion observe the same events in different orders (e.g., one receives the sequence
above, the second one receiving e21 ·e12 ·e11), then the event correlation middleware
might be unfair to the first process if e21 has information that is critical to plac-
ing an optimal bid. Or, consider assembly line surveillance through two monitors
for fault tolerance. If they observe events differently, they might yield contra-
dicting reports or alarms. During decentralized event correlation, one might not
only expect that processes with identical subscriptions deliver identical sets of
events, but also that if the subscription of a first process pi “covers” that of a
second process pj , then pi would deliver anything that pj does. In production
chains, the same complex events triggering alarms can be combined with fur-
ther events for taking actions further down the chain or triggering more specific
alarms. Such subsumption is natural in publish/subscribe systems and even key
to scalability [5]. Of course, correlation-based systems can currently be designed
individually to achieve such properties, e.g., by using proxy processes to merge
and multiplex event streams to replicas to achieve agreement; corresponding so-
lutions are hardly generic though, and can introduce bottlenecks to performance
and dependability.

Contributions. This paper presents FAIDECS (FAI r Decentralized Event
C orrelation System – “Fedex”), a middleware system for fair decentralized cor-
relation of events multicast among processes. Our exact contributions are:

– After presenting related work (Section 2) and introducing the system model
and assumptions (Section 3), we present clear and feasible properties for
aggregated deliveries of sets of events based on a concise and generic event
correlation sub-grammar in FAIDECS (Section 4). While in single event
(message) delivery scenarios, several families of properties have been pro-
posed and investigated (e.g., agreed delivery [14], probabilistic delivery [4],
ordering properties [11]), corresponding properties for the better understand-
ing of correlation-based systems and ensuring “logical correctness and in-
tegrity” [21] are namely still lacking. Our properties provide fairness in the
face of failures of processes responsible for merging events: either all or none
of the depending processes cease to receive the desired events, while com-
mon overlays (e.g., [19]) might continue to deliver differing sets of events

FAIDECS: Fair Decentralized Event Correlation 3

to subsets of interested processes. Our properties also include a notion of
subsumption on correlation patterns.

– We introduce novel pragmatic algorithms implementing our delivery proper-
ties (Section 5). For illustration purposes, we first describe simple algorithms
based on a group broadcast black box. Then we present decentralized solu-
tions implemented in FAIDECS based on a distributed hash-table (DHT),
and present the use of lightweight redundancy mechanisms used for fault
tolerance.

– An implementation of our algorithms in FAIDECS is evaluated under dif-
ferent workloads (Section 6). We quantify the benefits of our decentralized
approach by comparing them with sequencer-based and token-based total
order broadcast protocols providing comparable properties.

We conclude with final remarks in Section 7. Due to space limitations, we refer
to a companion technical report [24] for discussions of alternative properties, or
a formal proof that agreement on composite events requires a total order on
individual events or an equivalent oracle.

2 Related Work

Many early approaches for composite event detection are based on active data-
bases that employ centralized detection of events (e.g., [6]). A composite event
is a pattern of events that a subscriber may be interested in. A composite sub-
scription is a pattern describing the interests of the subscriber.

Event correlation has been vigorously investigated in the context of content-
based publish/subscribe systems. Most such systems rely on a broker network for
routing events to the subscribers (e.g., SIENA [5] and Gryphon [2]). Advertise-
ments are typically used to form routing trees in order to avoid propagating
subscriptions by flooding the broker network. Upon receiving an event e, a bro-
ker determines the subset of parties (subscribers and brokers) with matching
interests, and forwards e to them. Subscription subsumption [5] is used to sum-
marize subscriptions and avoid redundant matching on brokers and redundant
traffic among them. If any event e that matches a first subscription also matches
a second one, then the latter subscription subsumes the former one.

A broker network can be used to gather all publications for the elementary
subscriptions and perform correlation matching. A successful match yields a
composite event which is delivered to interested subscribers, where no guaran-
tees are typically provided on correlation. If the events matching a composite
subscription shared by two subscribers are produced by several publishers, then
unless the subscribers are connected to a same edge broker, they may receive
the events through different routes. This leads to different orders among the
events and consequently to different composite events for the two subscribers.
PADRES [19] performs composite event detection for each subscription at the
first broker that accumulates all the individual subscriptions, providing no global
properties. In the context of Hermes [20], complex event detectors using an inter-
val timestamp model are proposed as a generic extension for existing middleware

4 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

architectures. Hermes uses a DHT to determine rendezvous nodes for publishers
and subscribers; however, this can create single points of failure. The framework
we propose is inspired by Hermes in that our framework uses specific merger
nodes for specific combinations of types, determined by a DHT. However, we
replicate the mergers for availability and connect them such as to ensure agree-
ment, ordering and subsumption on composite events.

Stream processing is a paradigm closely related to event correlation and much
investigated in the last few years. Research around database-backed systems
like Aurora [1] or Borealis [23] has led the path. These systems, however, focus
on correlation over streams of events with respect to single destinations and
do not consider multicasting. Straightforwardly merging two same streams at
two different nodes leads to different outcomes. StreamBase1 is a commercial
offspring of these efforts. Cayuga [8] is a generic correlation engine supporting
correlation across streams and is based on a very expressive language but is
centralized. The Gryphon publish/subscribe systems has similarly added support
for streams [26]. Again, the focus is efficiency, leaving properties unclear.

3 Preliminaries

We assume a system Π of processes, Π={p1, ..., pu} connected pairwise by reli-
able channels [3] offering primitives to send (non-blocking) and receive (receive)
messages. We consider a crash-stop failure model [14], i.e., a faulty process may
stop prematurely and does not recover. We assume the existence of a discrete
global clock to which processes do not have access and that an algorithm run
R consists in a sequence of events on processes. That is, one process performs
an action per clock tick which is either of a (a) protocol action (e.g., receive),
(b) an internal action, or (c) a “no-op”. A process is faulty in a run R if it fails
during R, otherwise correct.

A failure pattern F is a function mapping clock times to processes, where
F (t) gives all the crashed processes at time t. Let crashed(F) be the set of
all processes ∈ Π that have crashed during R. Thus, for a correct process pi,
pi ∈ correct(F) where correct(F) = Π − crashed(F) [14].

For brevity and clarity, we adopt in the following a more formal notation for
properties than common. Consider, for instance, the well-known problem of Total
Order Broadcast (TOBcast) [14] defined over primitives to-broadcast and to-
deliver, which will be used for comparison later on. We denote to-deliveri(e)t
as the TO-delivery of a message conveying an event e by process pi at time t,
and similarly, to-broadcasti(e)t denotes the TO-broadcasting of e by pi at
time t. We elide any of i, t, or e when not germane to the context. We write ∃a
for an action a (e.g., send, to-broadcast) as a shorthand for ∃a ∈ R. The
specification of Uniform TOBcast thus becomes:

TOB-No Duplication: ∃to-deliveri(e)t ⇒ @to-deliveri(e)t′ | t′ 6= t

TOB-No Creation: ∃to-deliver(e)t ⇒ ∃to-broadcast(e)t′ | t′ < t

1 http://www.streambase.com/.

http://www.streambase.com/

FAIDECS: Fair Decentralized Event Correlation 5

TOB-Validity: ∃to-broadcasti(e) ∧ pi ∈ correct(F)⇒ ∃to-deliveri(e)

TOB-Agreement: ∃to-deliveri(e)⇒ ∀pj ∈ correct(F)\{pi},∃to-deliverj(e)

TOB-Total Order: ∃to-deliveri(e)ti ,to-deliver
i(e′)t′i ,to-deliver

j(e)tj ,

to-deliverj(e′)t′j ⇒ (ti < t′i ⇔ tj < t′j)

4 FAIDECS Model

In this section, we specify composite events in FAIDECS and the properties
achieved for corresponding deliveries (deliver) with respect to individually
generated (multicast) events. In contrast to traditional settings, deliver is
parameterized by a “subscription” Φ and delivers ordered sets of typed mes-
sages representing events.

4.1 Predicate Grammar

Sets of delivered events — relations — represent events aggregated according to
specific subscriptions. Subscriptions are combinations of predicates on events in
disjunctive normal form based on the following grammar (extended BNF):

Disjunction Ψ ::= Φ | Φ ∨ Ψ Operation op ::= < | > | ≤ | ≥ | = | 6=
Conjunction Φ ::= ρ | ρ ∧ Φ Predicate ρ ::= T[i].a op v | T[i].a op T[i].a

| T[i] | >
T[i].a denotes an attribute a of the i-th instance of type T (T[i]) and v is a

value. As syntactic sugar, we can allow predicates to refer to just T , which can
be automatically translated to T [1]. We may use this in examples for simplicity.
A type T is characterized by an ordered set of attributes [a1, ..., an], each of
which has a type of its own – typically a scalar type such as Integer or Float.
An event e of type T is an ordered set of values [v1, ..., vn] corresponding to the
respective attributes of T . We assume that types of values in predicates conform
with the types of events (e.g., through static type-checking [9]). T (e) returns the
type of a given event e. It is important to note that we do not introduce a set of
uniquely identified types {T 1, ..., Tw} as we do for processes. This keeps notation
more brief in that we can use [T 1, ..., T k] to refer to an arbitrary ordered set of
k types, as opposed to something of the form [Tj1 , ..., Tjk].

To later simplify properties, we introduce the empty predicate >, which triv-
ially yields true. A predicate that compares a single event attribute to a value or
two event attributes on the same event, i.e., on the same instance of a same type
(e.g., Tk[i].a op Tk[i].a′), is a unary predicate. When two distinct events (two
distinct types or different instances of the same type) are involved, we speak of
binary predicates (Tk[i].a op Tl[j].a

′, k 6= l∨i 6= j). We also allow wildcard pred-
icates of the form T[i] to be specified; such predicates simply specify a desired
type T[i] of events of interest. T[i] implicitly also declares T[k] ∀k ∈ [1..i − 1] if
not already explicitly declared as part of other predicates in the subscription.

We assume, for presentation brevity, a single subscription per process. The
disjunction representing process pi’s subscription is represented as Ψ (pi). We

6 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

also rule out disjunctions with several identical conjunctions. In practice, we
can simply remove all but one copy. By abuse of notation but unambiguously,
we sometimes handle disjunctions (or conjunctions) as sets of conjunctions (or
predicates). We write, for instance, ρl ∈ Φ ⇔ Φ = ρ1 ∧ ... ∧ ρk with l ∈ [1..k].

For the following, consider an example subscription ΨS for an increase in
three successive stock quotes after a quarterly earnings report:
ΨS = StockQuote[0].time > EarningsReport[0].time ∧

StockQuote[1].value > StockQuote[0].value ∧
StockQuote[2].value > StockQuote[1].value

We would probably want to introduce arithmetic operators on values [15] to
express, e.g., that the local publication time of the first stock quote is within
some interval of that of the earnings report. Our grammar can be easily extended
by such deterministic constructs but is intentionally kept simple for presentation
and to illustrate the independence of our algorithms from specific grammars.

4.2 Predicate Types and Evaluation

We assume that a deterministic order ≺ exists within subscriptions based on the
names of event types, attributes, etc., which can be used for re-ordering predi-
cates within and across conjunctions. This ordering can be lexical or based on
priorities on event types and is necessary for even simplest forms of determinism
and agreement. We consider subscriptions to be already ordered accordingly.

The number of events involved in a subscription is given by the number of
its types and corresponding instances. More precisely, the types involved in a
subscription are represented as sequences as they are ordered, and the same type
can be admitted multiple times. Such sequences can be viewed as the signatures
of predicates, defined as follows:

T(Φ ∨ Ψ) = T(Φ)] T(Ψ) T(T[i].a op v) = T(T[i])
T(ρ ∧ Φ) = T(ρ)] T(Φ) T(>) = ∅
T(T1[i].a1 op T2[j].a2) = T(T1[i])] T(T2[j]) T(T[i]) = [T, ..., T︸ ︷︷ ︸

i×

]

] stands for in-order union of sequences defined below:

∅] [T, ...] = [T, ...] [T, ...]] ∅ = [T, ...]

[T1, ..., T1︸ ︷︷ ︸
i×

, T ′1, ...]

] [T2, ..., T2︸ ︷︷ ︸
j×

, T ′2, ...]

=



[T1, ..., T1︸ ︷︷ ︸
i×

]⊕ ([T ′1, ...]] [T2, ..., T2︸ ︷︷ ︸
j×

, T ′2, ...]) T1 ≺ T2

[T2, ..., T2︸ ︷︷ ︸
j×

]⊕ ([T ′2, ...]] [T1, ..., T1︸ ︷︷ ︸
i×

, T ′1, ...]) T2 ≺ T1

[T1, ..., T1︸ ︷︷ ︸
max(i,j)×

]⊕ ([T ′1, ...]] [T ′2, ...]) T1 = T2

Above, ⊕ represents simple concatenation. In the previous example, the types
involved are thus [EarningsReport, StockQuote, StockQuote, StockQuote].

Any subscription Ψ thus involves a sequence of event types T(Ψ)=[T1, ..., Tn],
where we can have for i, j ∈ [1..n], i < j such that ∀k ∈ [i..j], Tk = Ti = Tj . That

FAIDECS: Fair Decentralized Event Correlation 7

is, we can have subsequences of identical types. Such a subsequence represents a
stream of events of the respective type of length j− i+ 1 (Tk[1], ..., Tk[j− i+ 1]).

A subscription is correspondingly evaluated for an ordered set of events
[e1, ..., en], where ei is of type T i. The evaluation of a conjunction Φ on a rela-
tion is written as Φ[e1, ..., en]. For evaluation of an attribute a on an event ei,
we write ei.a. Evaluation semantics for predicates are defined as follows:

(Φ ∨ Ψ)[e1, ..., en] = Φ[e1, ..., en] ∨ Ψ[e1, ..., en] (T)[e1, ..., en] = true

(ρ ∧ Φ)[e1, ..., en] = ρ[e1, ..., en] ∧ Φ[e1, ..., en] (>)[e1, ..., en] = true

(T[i].a op v)
[e1, ..., en] =


ek+i−1.a op v T (ek) = T ∧ (T (ek−1) 6= T

∨ (k − 1) = 0)

false otherwise

(T1[i].a1 op T2[j].a2)
[e1, ..., en] =


ek+i−1.a1 op el+j−1.a2 T (ek) = T1 ∧ (T (ek−1) 6= T1

∨ (k − 1) = 0) ∧ T (el) = T2

∧ (T (el−1) 6= T2 ∨ (l − 1) = 0)

false otherwise

For brevity we may write simply Φ[...] for Φ[...] = true.
A process pi delivers events in response to its subscription Ψ (pi) through

deliver. We consider this primitive to be generically typed, i.e., we write de-
liverΦ([e1, ..., en]) to deliver a relation [e1, ..., en], where ej is of type T j such
that T(Φ)=[T1, ..., Tn]. deliveriΦ([e1, ..., en])t denotes a delivery on process pi in

response to Φ at time t, and multicasti(e)t defines the multicast of an event e
by pi at time t. Again i, t, etc. may be omitted when not germane to the context.

4.3 Properties

We now present properties for composite events in FAIDECS defined over primi-
tives multicast and deliver. From here on, deliver refers to deliver (vs. TO-
deliver for to-deliver), and multicast refers to multicast (vs. TO-broadcast).
See [24] for detailed discussions of alternative properties.

Basic safety properties. The basic safety properties for FAIDECS are MDM-
No Duplication, MDM-No Creation and Admission as shown below:

MDM-No Duplication: ∃deliveriΦ([..., e, ...])t ⇒ @deliveriΦ([..., e, ...])t′ | t′ 6= t

MDM-No Creation: ∃deliverΦ([..., e, ...])t ⇒ ∃multicast(e)t′ | t′ < t

Admission: ∃deliveriΦ([e1, ..., en]) | T(Φ) = [T1, ..., Tn] ⇒ Φ ∈ Ψ(pi) ∧ Φ[e1, ..., en] ∧
∀k ∈ [1..n] : T (ek) = Tk

The MDM-No Duplication property implies that a same event is deliv-
ered at most once for a given conjunction, which may be opposed to certain
systems that allow a same event to be correlated multiple times. Our property
could easily be substituted to allow a delivery for every instance of a type in a
given conjunction. We omit this for simplicity of the presented properties and
algorithms. MDM-No Creation is similar to TO-broadcast specifications [14]

8 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

in that an event may only be delivered if multicast. Admission ensures type
safety and that all events in a relation match the subscription.

Liveness. Admission can trivially hold while not delivering anything. We have
to be careful about providing strong delivery properties on individually multicast
events though, as events may depend on others to match a given conjunction.
Nonetheless, we want to rule out bogus implementations which simply discard
all events. We thus propose the following complementary liveness properties:

Conjunction Validity: ∃multicast(ekl), k ∈ [1..n], l ∈ [1..∞] ∧ pi ∈ correct(F) ∧
∃Φ ∈ Ψ(pi) |Φ[e1l , ..., e

n
l] ⇒ ∃deliveriΦ([...])tj | j ∈ [1..∞]

Event Validity: ∃multicasti(ex),multicastk,l(ekl), k ∈ [1..n]\x, l ∈ [1..∞]
{pi, pj , pk,l} ⊆ correct(F) |Φ ∈ Ψ(pj) ∧ T(Φ) = [T1, ..., Tn] ∧ ∀z ∈ [w..y],
Tz = T (ex) ∧ @(T (ex)[x− w + 1].a1 op T[r].a2) ∈ Φ | (T 6= T (ex)∨ r 6= x−w+ 1) ∧
Φ[e1l , ..., e

x−1
l , ex, ex+1

l , ..., enl]⇒ ∃deliverjΦ([..., ex, ...])

These two properties handle the two possible cases that can arise. The first
property deals with dependencies across events and can be paraphrased as fol-
lows: “If for a correct process pi, there is an infinite number of relations of
matching events that are successfully multicast, then pi will deliver infinitely
many such relations.” This property is reminiscent of the Finite Losses prop-
erty of fair-lossy channels [3]. It allows matching algorithms to discard some
events for practical purposes such as agreement and ordering, yet ensures that
when matching events are continuously multicast, a corresponding process will
continuously deliver. From the example presented in Section 4.1, as long as events
of both types are inifinitely published such that infinitely often, three successive,
increasing stock quotes are multicast after an earnings report, there will be an
infinite number of delivered relations.

Event Validity provides a property analogous to validity for single-message
deliveries (e.g., TOBcast): If an event is multicast by a correct process pi, and
its delivery in response to a conjunction on some correct process pj is not con-
ditioned by binary predicates with other event types, then the event must be
delivered by pj if matching events of all other types are continuously multicast.
This latter condition is necessary because the delivery of the event, even in the
absence of binary predicates, requires the existence of other events (by nature of
correlation). The condition also ensures that any unary predicates on the respec-
tive event type are satisfied. Note that in the case of multiple instances of that
type, for each of which there are only unary predicates that match, the property
does not force an event to be delivered more than once as the position of the
event is not fixed in the implied delivery. The example in Section 4.1 does not
present a unary predicate, and thus would not be affected by this property. If
the subscription ΨS were extended to trigger only if the value of the U.S. dollar
is below some value v as in Ψ ′S = ΨS ∧ USDollar.value < v, then any event
matching this predicate will be delivered with the entire relation given by ΨS .

Note also that none of these properties is impacted by the presence of multiple
instances of a same type in a conjunction. An infinite flow of events of some type
implies a multiple (a finite number) of infinite flows of that type.

FAIDECS: Fair Decentralized Event Correlation 9

Agreement. The properties so far ensure that as long as matching events are
being multicast, processes will eventually deliver relations. We are, however, in-
terested in stronger properties for these delivered relations, which ensure fairness
for relations delivered across processes. We define Covering Agreement:

Covering Agreement: ∃deliveriΦ∧Φ′([e1, ..., en, ...]) | ((T(Φ) = [T1, ..., Tn])∩T(Φ′)) =

∅ ⇒ ∀pj ∈ correct(F)\{pi} | Φ ∈ Ψ(pj) : ∃deliverjΦ([e1, ..., en])

Subsumption only allows “extending conjunctions to the right” as deter-
minism requires some given order for matching. Intuitively, subsumption in the
presence of binary predicates is limited since, when comparing two subscriptions
with same types, an event of a first type might match both subscriptions without
implying that the same holds for a second event.

Note that Covering Agreement is not defined in a symmetric way (with
Φ ∧ Φ′′ ∈ Ψ(pj)), as the presence of a matching set of events for a conjunction
Φ′ does not imply a timely or even eventual occurrence of a matching set for
another sub-relation Φ′′ conjoined by pj with Φ.

Thus, the example subscriptions ΨS , as defined in Section 4.1, and Ψ ′S , defined
in 4.3, would exhibit the necessary conditions for Covering Agreement. That
is, the common predicates over the EarningsReport and StockQuote types
would yield the same (sub)-relations for ΨS and Ψ ′S , where Ψ ′S would deliver
relations containing the above with an additional event of type USDollar.

4.4 Total Order

Intuitively, and as we will illustrate in the following sections, a total order on
individual events can be used to achieve agreement on relations. In fact, it is
necessary to do so (see [24] for a formal proof). On the upside, this can be ex-
ploited to provide corresponding relation-level properties. We define three types
of total order properties below:

Event Total Order: ∃deliveriΦ([..., e, ...])ti ,deliver
i
Φ([..., e′, ...])t′i ,

deliverjΦ′([..., e, ...])tj ,deliver
j
Φ′([..., e

′, ...])t′j |T(e) = T(e′) ⇒ (ti < t′i ⇔ tj < t′j)

Conjunction Total Order: ∃deliveriΦ∧Φ′([e1, ..., en, ...])ti ,
deliveriΦ∧Φ′([e

′
1, ..., e

′
n, ...])t′i ,deliver

j
Φ∧Φ′′([e1, ..., en, ...])tj ,

deliverjΦ∧Φ′′([e
′
1, ..., e

′
n, ...])t′j | ((T(Φ) = [T1, ..., Tn])∩T(Φ′)) = ∅ ∧ (T(Φ)∩T(Φ′′)) =

∅ ⇒ (ti < t′i ⇔ tj < t′j)

Disjunction Total Order: ∃deliveriΦ([e1, ..., en])ti ,deliver
i
Φ′([e

′
1, ..., e

′
m])t′i ,

deliverjΦ([e1, ..., en])tj ,deliver
j
Φ′([e

′
1, ..., e

′
m])t′j ⇒ (ti < t′i ⇔ tj < t′j)

None of the properties includes any of the others. Event Total Order
ensures that there is a total (sub-)order on the events of a same type. Con-
junction Total Order ensures that (sub-)relations delivered to identical
(sub-)conjunctions are delivered in a total order. An implementation which never
enforces Conjunction Total Order, i.e., delivers no two same relations on
two processes with identical (sub-)conjunctions, could still ensure Event Total
Order. Perhaps more obvious is that, inversely, Event Total Order does not

10 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

imply Conjunction Total Order. Disjunction Total Order further sets
our model apart from many single-event delivery multicast settings (e.g., tradi-
tional publish/subscribe), where subscriptions are conjunctions, and disjunctions
are viewed as being expressed independently through multiple conjunctions. Our
property strives for total order across relations delivered to distinct conjunctions
in a same disjunction.

5 Algorithms

We now present ways to implement the properties proposed in the previous
section. For illustration purposes, we first outline an approach relying straight-
forwardly on a total order across multicast events of all types. Then, we present
novel decentralized algorithms achieving the same properties, leveraging our no-
tion of subscription subsumption.

5.1 Total Order Broadcast Black Box

A straightforward solution for deterministic event correlation across all pro-
cesses is to rely on a Total Order Broadcast “black box,” with primitives to-
broadcast and to-deliver for individual events, ensuring that all correct
processes eventually TO-deliver all TO-broadcast events in the same order. To
multicast an event e of any type, a process simply performs to-broadcast(e);
a to-deliver(e) is handled in a deterministic manner described shortly. Many
implementations exist, tolerating different failure patterns [7].

Conjunctions. For simplicity, we first focus on single conjunctions for the algo-
rithm in Figure 1 before expounding on generic disjunctions. That is, subscrip-
tion Ψ i of process pi consists in a single conjunction Φi. Disjunction Total
Order, in this case, becomes subsumed by Conjunction Total Order.

The algorithm in Figure 1 uses first received matching semantics and pre-
fix+infix disposal. In short, the former means that events are matched on a
process in the order received by that process. The latter implies the following:
Upon a successful match [e1, . . . , en], for each event ei, all events of the same
type received prior to ei are discarded via the garbage collection mechanism
dequeue. These semantics are further elaborated on below.

Each process pi maintains one queue Q per event type in its conjunction
Φ=Ψ (pi). For example, for a conjunction Φ = ρ1∧ρ2 where ρ1 = T1.a1 < T2.a2
and ρ2 = T1.a1 < 20, the subscriber maintains one queue for events of type T 1

and one for events of type T 2. When TO-delivering an event, pi will loop once
by line 20 and first checks whether the type of the event is in pi’s subscription.
If so, pi attempts to enqueue the event. Q[T (e)] ⊕ e denotes the appending
of event e to the queue of type T (e). The enqueue primitive returns true if
the event has been enqueued, which means that it satisfies all unary predicates
on the respective types in the conjunction. Then pi proceeds to matching. Any
single received event may complete up to one relation. If a match [e1, . . . , en]

FAIDECS: Fair Decentralized Event Correlation 11

Executed by every process pi

1: init
2: Ψ ← Φ1 ∨ . . . ∨ Φo
3: Φl ← ρ1 ∧ . . . ∧ ρm
4: Ql[T]← ∅

5: To multicast(e):
6: to-broadcast(e)

7: function match ([e′1, ..., e
′
n], Φ, Q)

8: T ← Tn+1 | T(Φ) = [T1, ..., Tn+1, ...]
9: l← max(j |Q[T] = e1 ⊕ ...⊕ ej ⊕ ...⊕ eh) |

∃k ∈ [1..n] : ej = e′k
10: for all k = (l + 1)..h do
11: if |T(Φ)| = n+ 1 then
12: if Φ[e′1, ..., e

′
n, ek] then

13: return [e′1, ..., e
′
n, ek]

14: else
15: E ← match([e′1, ..., e

′
n, ek], Φ,Q)

16: if E 6= ∅ then
17: return E
18: return ∅

19: upon to-deliver(e) do
20: for all Φl ∈ Ψ |T (e) ∈ T(Φl) in order do
21: if enqueue(e, Φl, Ql) then
22: [e1, ..., ek]← match(∅, Φl, Ql)
23: if k 6= 0 then
24: dequeue([e1, ..., ek], Ql)
25: deliverΦl ([e1, ..., ek])

26: function enqueue (e, Φ, Q)
27: win← max(j | ∃...T (e)[j].a... ∈ Φ)
28: if ∀j = 1..win ((∃ρ = (T (e)[j].a op v) ∈

Φ | ¬ρ[e]) ∨ (∃(ρ = T (e)[j].a op
T (e)[j].a′) ∈ Φ | ¬ρ[e])) then

29: return false
30: else
31: Q[T (e)]← Q[T (e)]⊕ e
32: return true

33: procedure dequeue([e1, ..., em], Q)
34: for all Q[T] = ...⊕ ek ⊕ e ⊕ ..., k ∈ [1..m]

do
35: Q[T]← e ⊕ ...

Fig. 1: Conjunctions/disjunctions with Total Order Broadcast.

is identified, the corresponding events are discarded (dequeue) and for each
event ei, all preceding events of the same type are discarded from the respective
queue for that type. match iterates through the queues deterministically. The
semantics attempt to find the first instance of the first type in Φ for which there
are events of the remaining types with which Φ is satisfied. Among all such
possibilities, the algorithm recursively seeks for a match with the first instance of
the second type in Φ, etc. until a match is found or all possibilities are exhausted.
For multiple instances of a same type, a first instance is recursively matched
with the first follow-up instance in the same queue until the needed number of
instances is found for that type or the queue is exhausted.

Assuming that the underlying TOBcast primitive ensures TOB-No Cre-
ation and TOB-No Duplication (see Section 3), it is easy to see how the algo-
rithm of Figure 1 ensures the corresponding MDM-No Creation and MDM-
No Duplication properties defined in Section 4.3. An event e, matching all
unary predicates of a conjunction Φ, is successfully added to the corresponding
queue Q[T (e)] in enqueue (line 31, Figure 1). The only way in which e can be
removed (and delivered) is together with a matching set of other events fulfilling
Φ (line 23, Figure 1), thus ensuring Admission. If matching sets of such events
are continuously TO-broadcast, then a match will eventually be determined at
line 12 thus ensuring Event Validity. Conjunction Validity holds by a
similar line of reasoning. The first matching, together with prefix+infix dis-
posal, and the independent handling of events of distinct types ensures Event
Total Order. If two processes pi and pj define conjunctions Φ ∧ Φ′ and Φ
respectively, as long as Φ and Φ′ are type-disjoint, then events that match with
Φ are independent of any events that match with Φ′. Thus, if there is a matching
relation for pi, there is a subset of the relation for which Φ is true. Since garbage
collection is deterministic and is triggered every time an event of a type in T(Φ)
is TO-delivered and in the same order on pi and pj with respect to those de-

12 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

liveries, pi and pj will handle respective events identically, ensuring Covering
Agreement. Similarly, Conjunction Total Order holds as all processes
TO-deliver all relevant events. When pi identifies a match for Φ∧Φ′, with Φ and
Φ′ type-disjoint, pj will have TO-delivered the respective subset of events in Φ
already in the same sub-order and thus delivers the respective sub-relations in
the same order with any events identified for a Φ′′ type-disjoint with Φ.

Disjunctions. When the subscription is a disjunction of several conjunctions, a
process maintains one event queue per event type per conjunction. For example,
for a disjunction Ψ = Φ1 ∨Φ2 where T(Φ1)=T(Φ2)=[T1, T2], a process maintains
two queues for type T 1 and then two queues for type T 2, one each for Φ1 (Q1[T1]
and Q1[T2]) and for Φ2 (Q2[T1] and Q2[T2]).

Figure 1 supports multiple conjunctions in a single disjunction. The primary
distinction is in the response to TO-deliveries. The primitive dispatches events
to conjunctions in order of subscriptions. In contrast to subscriptions of one
conjunction, an event can lead to multiple matches and deliveries.

Because the matching is performed deterministically, as explained previ-
ously for a given conjunction, and all processes enqueue the same sets of events
in the same order, Covering Agreement across any two conjunctions is met
for the same reasons as for single conjunctions. This property would also be
met by any unordered dispatching for multiple conjunctions. The other proper-
ties established for conjunctions remain valid due to the duplication of events
appearing in distinct conjunctions of a same subscription.

Disjunction Total Order is met as any pi and pj defining two identical
separate conjunctions TO-deliver the respective events (possibly interleaved by
those for other conjunctions in Ψ (pi) and Ψ (pj) respectively) in the same order.
Thus, the correlation for respective relations occurs in the same order.

A simple optimization of the algorithm for subscriptions containing several
conjunctions Φ1,...,Φm with a common event type T , omitted for brevity, consists
in sharing the queue for T across conjunctions. An event in a queue is then tagged
by the index k of a conjunction Φk to indicate that the event has previously been
used in a match and delivered for Φk. Earlier events of that type should then
also be tagged with k. Events with tags {1, ..., m} may then be discarded. Also,
the portrayed matching algorithm performs an exhaustive search and is thus
not efficient; however, it suffices to illustrate the relevant properties and can be
represented concisely. More elaborate and efficient matching algorithms exist,
which offer the same semantics. A common approach consists in storing partial
matches in specialized data-structures to avoid matching a given event multiple
times with same events (cf. [9]). In our implementation of FAIDECS and all
evaluated algorithms, we make use of the Rete [10] matching algorithm.

5.2 FAIDECS Decentralized Ordered Merging

One of the simplest and most popular approaches in practice for Total Order
Broadcast consists in a sequencer, which orders all events. As long as the se-
quencer remains available (e.g., through replication), the properties presented

FAIDECS: Fair Decentralized Event Correlation 13

T1 Λ T2

T1 Λ T2 Λ T3

T1 Λ T2 Λ T3 Λ ... Λ Tk

T1 T2 T3 Tk

T1 Λ T2 Λ T4

T4

Fig. 2: T 1∧...∧T j denotes the conjunc-
tion merger for the respective types
t[T1, ...Tj] (single instance per type).

Fig. 3: Small-scale FAIDECS merger repli-
cation. Dotted ovals are “logical” mergers;
circles are processes. L denotes the leader.

earlier hold under respective assumptions on failure patterns. A Consensus-based
textbook Total Order Broadcast [14] yields the same properties with much better
fault tolerance (typically a minority of all processes may fail), yet with a higher
overhead. We now present a decentralized solution implementing the same prop-
erties, yet with much better scalability characteristics than both and inherently
better fault-tolerance than a sequencer-based approach. The solution assumes
a distributed hashtable (DHT) or similar mechanism for uniquely identifying a
process for a given “role.” Lightweight replication mechanisms used for fault-
tolerance of such roles are discussed separately thereafter.

Conjunctions. We first describe an algorithm focusing on single conjunctions,
providing the same properties as that of Figure 1. All processes with conjunctions
on a sequence of event types [T1, ..., Tk] send their subscriptions to a same process,
identified as pj=process(t[T1, ..., Tk]), responsible for handling all conjunctions
on the involved sequence of types without duplicates2:

t[T1, ..., T1, T2, ...] = [T1]⊕ t[T2, ...]

The function process relies on a DHT (e.g., a deterministic lookup facility)
to deterministically identify such responsible processes, called mergers. Lodged
at the root of the thereby created overlay network (see Figure 2) are mergers
responsible for individual event types T 1, T 2, etc. To ensure the properties with
respect to extensions of conjunctions to the right, events undergo an ordered
merge by type where a merger pj=process(t[T1, ..., Tk]) gets events of types
T 1, ..., T k from two processes: those identified as process(t[T1, ..., Tk−1]) and
process([Tk]). We term processes in the role of subscribers/publishers as clients.

Figure 4 presents the algorithm for merging event types and handling sub-
scriptions corresponding to the merged types. Figure 5 presents the algorithm

2 We could use different mergers but deduplication simplifies the algorithm.

14 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

Executed by every process pi=process(t[T1, ..., Tk])

1: init
2: left← process([tT1, ..., Tk−1])
3: right← process([Tk])
4: subs[pj]
5: kids[pj]
6: initparents()

7: procedure initparents()
8: Ψ ′ ←

∨
Ψ∈kids∪subs Ψ\

{ρ ∈ Ψ |T(ρ) 6∈ {[T1], ..., [Tk−1]}}
9: send(con, Ψ ′) to left
10: Ψ ′′ ←

∨
Ψ∈kids∪subs Ψ\

{ρ ∈ Ψ |T(ρ) 6= [Tk]}
11: send(con, Ψ ′′) to right

12: upon receive(con, Ψ) from pj do
13: kids[pj]← Ψ
14: initparents()

15: upon receive(sub, Φ) from pj do
16: subs[pj]← Φ\{ρ ∈ Φ | |T(ρ)| > 1}
17: initparents()

18: upon receive(ev, e) do
19: for all Ψ = kids[pj] do
20: if ∃l, Φ ∈ Ψ | ∀ρ = T (e)[l]... ∈ Φ : ρ[e]

then
21: send(ev, e) to pj
22: for all Φ = subs[pj] do
23: if ∃l | ∀ρ = T (e)[l]... ∈ Φ : ρ[e] then
24: send(ev, e) to pj

Fig. 4: Ordered merging for conjunctions: mergers.

Executed by every pi. Reuses enqueue, match, dequeue of Figure 1

1: init
2: Ψ ← Φ
3: Φ ← ρ1 ∧ . . . ∧ ρm
4: Q[T]← ∅
5: send(sub, Φ) to process(tT(Φ))

6: To multicast(e):
7: send(ev, e) to process([T (e)])

8: upon receive(ev, e) do
9: if enqueue(e, Φ,Q) then
10: [e1, ..., el]← match(∅, Φ,Q)
11: if l > 0 then
12: dequeue([e1, ..., el], Q)
13: deliverΦ ([e1, ..., el])

Fig. 5: Ordered merging for conjunctions: clients.

for client processes. Unary predicates are propagated from subscribers to merg-
ers (line 16, Figure 4), and from mergers to their ancestor mergers in the form of
disjunctions (lines 8-11) since a potential match (i.e., compliant with any unary
predicates) for any merger or subscriber means a potential match for a parent
merger. Forwarding of events received by mergers from their respective parent
mergers (left) or processes for merged event types (right) happens without in-
terruptions by other events and can be achieved by simple local synchronization.

For simplicity, the algorithm in Figure 5 handles event queues at clients. The
use of shared queues on mergers as described at the end of Section 5.1, could lead
to savings in global memory overhead by avoiding redundancies. In practice, we
have observed that this, however, overburdens mergers, just like a propagation
of complete conjunctions instead of only unary predicates to mergers.

Assuming that all subscribers are connected to mergers which are connected
to each other before events are multicast, the properties described in Section 4.3
are also met by the algorithm in Figures 4 and 5 thanks to the type-ordered
merging of events. Covering Agreement and Conjunction Total Order
are ensured as processes with a common “prefix” in their conjunctions, which is
type-disjoint with any conjoined predicates, will receive the same events for the
prefix and in the same order from the corresponding conjunction merger process.

Disjunctions. For disjunctions, we essentially need to solve Total Order Multi -
cast [12] on the event sequences output by conjunction mergers. Using time-
stamps and extending the conjunction algorithm of Figures 4 and 5, order of
events is established for clients as needed for disjunctions. More precisely, con-

FAIDECS: Fair Decentralized Event Correlation 15

Executed by every process pi=process(t[T1, ..., Tk]). Reuses lines 1-11 of Figure 4

18: uponreceive(ev, e) {Rplcs lines 18-24 }
19: for all Ψ = kids[pj] do
20: if ∃l, Φ ∈ Ψ | ∀ρ = T (e)[l]... ∈ Φ : ρ[e]

then
21: send(ev, e) to pj {end for}

22: time← current time {cont frm Line 21}
23: for all Φ = subs[pj] do
24: if ∃l | ∀ρ = T (e)[l]... ∈ Φ : ρ[e] then
25: send(ev, e, time) to pj

Fig. 6: Disjunction-enabled ordered merging for conjunctions: mergers.

Executed by every pi. Reuses enqueue, match, dequeue of Figure 1

1: init
2: Ψ ← Φ1 ∨ . . . ∨ Φo
3: Φl ← ρ1 ∧ . . . ∧ ρm
4: Ql[T]← ∅
5: R← ∅
6: S[T]← 0
7: for all Φl ∈ Ψ do
8: send(sub, Φl) to process(tT(Φl))
9: To multicast(e):
10: send(ev, e) to process([T (e)])

11: upon receive(ev, e, ts) do
12: if ts > S[T (e)] then
13: S[T (e)]← ts
14: R′ ← {〈e′, t′〉 ∈ R | t′ < ts}
15: R′′ ← {〈e′, t′〉 ∈ R | t′ > ts}
16: R← R′ ∪ {〈e, ts〉} ∪ R′′
17: for all 〈e′, t′〉 ∈ R ordered on t′ |

t′ < minT (S[T]) do
18: for all Φl in order do
19: if enqueue(e′, Φl, Ql) then
20: R← R\{〈e′, t′〉}
21: [e1, ..., ek]← match(∅, Φl, Ql)
22: if k > 0 then
23: dequeue([e1, ..., ek], Ql)
24: deliverΦl ([e1, ..., ek])

Fig. 7: Ordered merging for conjunctions and disjunctions: clients.

junction mergers following the algorithm of Figure 6 timestamps all received
messages before passing them to clients which do the actual correlation (Fig-
ure 7). There is no need for specialized disjunction mergers, which are thus
omitted here for simplicity. (If using dedicated disjunction mergers, these can be
arbitrarily connected among each other to cover the respective conjunctions.)

If processes send timestamps with events, to achieve order of delivery for
relations, an event is only enqueued (and correspondingly matched) when a
receiving process has received events for all other types in its subscription, and
the timestamp of that event is less than all the other respective timestamps
of other types. As long as all processes which are multicasting events of the
respective types continue to do so, for any receiving process, an event will even-
tually be enqueued after other events with lower timestamps of other types.
This guarantees that all processes receiving the same events over a set of types
will enqueue and thus perform a match on them one by one in the same order.

If there are any processes which multicast events at a slower rate than oth-
ers, then the approach may not be as efficient with the requirement that each
event of a type (before being enqueued) must wait for events of every other
type with higher timestamps to be received. To solve this problem for the al-
gorithm in Figure 7, if an event has not been received in some time interval
by a conjunction merging process, then an “empty” event e⊥ may be sent to
all processes in subs[pj], indicating that pending events of other types may be
respectively enqueued. Depending on the targeted scenarios (e.g., publication
rate, topology) other information such as rates may be used (additionally).

MDM-No Creation and MDM-No Duplication are met as enqueue
and match are only performed on received events, and for a given type, only
events with a higher timestamp than the last event of that type are further

16 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

added to the ordered set R and queue Ql. Since an event is never enqueued
unless its type exists in the process’s subscription, and match is performed over
every received event, Admission holds. As in Section 5.2, Event Validity and
Conjunction Validity are retained here despite the filtering and discarding of
certain events. It is easy to see that the timestamps generated by mergers follow
the observed order of event reception, thus respecting Conjunction Total
Order. Given that events are compared based on timestamps and merged in
order of conjunctions, Disjunction Total Order is also ensured.

Joining. The algorithms presented so far all rely on a consistent set of event
queues across all processes with the same composite subscription if any sub-
scription is issued prior to publications. However, this consistency is violated
when two such related processes subscribe to an event stream at different times
with respect to the multicasting of events. In order to maintain consistency, we
thus employ a simple synchronization algorithm between (a) a joining subscriber
process, (b) the corresponding conjunction merger(s), and (c) one of the exist-
ing subscriber processes with identical conjunctions, if any. This ensures that a
joining process starts with a valid state of the respective queues copied from any
existing subscriber and does not miss any subsequent events from the merger
received also by that existing subscriber after copying the state of its queues.

Fault tolerance. For presentation simplicity, the algorithms described thus far
stipulated single processes returned by function process() as responsible for
given conjunctions, which obviously provides little fault tolerance. In FAIDECS,
process() returns a small fixed number of processes; i.e., the underlying DHT
determines a set of replicas for such merger roles. A membership layer monitors
the merger processes and ensures that their membership is consistent. Figure 3
provides an overview of the replication. A role, or “logical” merger process, is
represented by 3 replicas which are contoured by a dotted line. L represents
a leader process which determines the order between the merged types and
communicates that order (only) to its peers. These receive the actual events
independently as depicted in the figure. When a physical merger process (solid
circles) pi fails, its descendant(s) connect to one of pi’s peers. To ensure that no
events are missed in the meantime, all replicas regularly acknowledge received
and forwarded events to each other; events prior to such acknowledgements are
buffered. If a process lags or fails, its peers will attempt to replace it. Using
majority-based voting, a minority of (suspected) process failures can typically
be tolerated at a time. In addition to benefitting fault tolerance, this small-
scale replication also benefits load distribution, in that down-stream processes,
including subscribers, distribute uniformly over the replicas.

6 Evaluation

To demonstrate the scalability of our decentralized algorithms and explore over-
all performance benefits and tradeoffs, we compare a Java implementation of

FAIDECS: Fair Decentralized Event Correlation 17

FAIDECS to the algorithm of Figure 1 with 3 different JGroups-based3 imple-
mentations for the Total Order Broadcast black box: (1) a sequencer algorithm,
(2) a replicated sequencer (3 replicas) and (3) a token-based algorithm. Figure 10
summarizes our findings. An extended version of this report [25] presents further
descriptions and results.

6.1 Metrics and Experimental Setup

We used two metrics – Throughput: the average number of events delivered per
second by a subscriber, and Latency: the average delay between the multicasting
time of an event and its delivery to a subscriber. The number of subscribers was
increased from 10 to 600, and each subscriber had a randomly generated set of
subscriptions. Each event consisted of 3 integer attributes with values chosen
uniformly at random within [0..1000]. All processes were run on 65 nodes in a
LAN. Each node is equipped with an Intel Xeon 3.2GHz dual-core processor and
2GB RAM, and runs Linux. A maximum of 15 subscriber processes were run on
a single node. The maximum multicast rates varied by setup (e.g., different com-
ponents became the bottleneck, selectivity of subscriptions varied). We tested
scalability of FAIDECS first in terms of conjunctions and then disjunctions.

For conjunctions, we used 3 different distributions of subscriptions, which led
to different workloads for actual routing and filtering of events. In scenarios A
and B, we followed the setup of Figure 8, increasing the maximum number of
conjoined types (and thus the depth) k from 2 to 4. For scenario A, all filtering
occurred at end nodes rather than in mergers through the selectivity of binary
predicates, which differed across conjunctions to achieve the same expected deliv-
ery rates at all subscribers in a respective level. This scenario demonstrated the
limits of the overlay. In scenario B, events were filtered at the mergers through
unary predicates propagated upwards from subscriptions, allowing higher ag-
gregate multicast rates than in scenario A. Scenario C invariably had 4 event
types, and subscriptions were over all 6 possible conjunctions (

(
4
2

)
). This allowed

us to explore the potential of traffic separation. For evaluating scalability with
respect to disjunctions, we used scenario D, which is the merger overlay shown
in Figure 9. The maximum level was also varied (from 2 to 4). Subscribers were
uniformly distributed across all merger processes and throughput/latency values
were averaged for each group of subscribers for a given level.

We expect that the bottleneck in our decentralized algorithms would occur at
the merger process(es) which would merge all involved types, limiting through-
put consistently for all k. All values are normalized with respect to the values
obtained with FAIDECS with 10 subscribers connected to a single merger for 2
types in scenario A, and with respect to the relations with the largest number
of types (independent of the algorithm). Throughput here was approximately
31,400 events/s and latency 150ms. Normalization does not introduce any bias
but makes comparison clear, so that values could be reported independent of
subscriptions, and so that values may be reported for each level independently.

3 http://www.jgroups.org

http://www.jgroups.org

18 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

T1 T2

T1 Λ T2

Tk

T1 Λ T2 Λ T3 Λ ... Λ Tk

T1 T2

T1 V T2

T3 T4

T3 V T4

T5 T6

T5 V T6

T1 V T2 V T3 T3 V T4 V T5 T2 V T5 V T6

T1 V T2 V T3 V T4 T2 V T4 V T5 V T6 T1 V T3 V T5 V T6

Level 2

Level 3

Level 4

Level 1

Fig. 8: Setup for conjunctions (sce-
narios A and B).

Fig. 9: Setup for disjunctions (scenario D).

6000 100 200 300 400 500

0.1

0.3

0.5

0.7

0.9

Number of Subscribers

Ev
en

ts
/s

 (N
or

m
al

iz
ed

)

4 Types
3 Types
2 Types

1.0

(a) Scenario A/B through-
put for conjunctions.

5000 100 200 300 400

0.03

0

0.005

0.01

0.015

0.02

0.025

Number of Subscribers

Ev
en

ts
/s

 (N
or

m
al

iz
ed

)

Sequencer
Sequencer (replicated)
Token-based
total order

(b) Other total order imple-
mentations.

6000 100 200 300 400 500

2.2

0

0.4

0.8

1.2

1.6

Number of Subscribers

Ev
en

ts
/s

 (N
or

m
al

iz
ed

)

6 Conjunction
4 Types,

Mergers

(c) Scenario C throughput
for conjunctions.

6000 100 200 300 400 500

2.7

0

0.5

1

1.5

2

Number of Subscribers

La
te

nc
y

(N
or

m
al

iz
ed

)

2 Types

3Types

4Types

2 Types
3 Types
4 Types

(d) Scenario A latency for
conjunctions.

6000 100 200 300 400 500

0.1

0.3

0.5

0.7

0.9

Number of Subscribers

Ev
en

ts
/s

 (N
or

m
al

iz
ed

)

Level 4
Level 3
Level 2

1.0

(e) Scenario D throughput
for disjunctions.

6000 100 200 300 400 500

2.7

0

0.5

1

1.5

2

Number of Subscribers

La
te

nc
y

(N
or

m
al

iz
ed

)

Level 2
Level 3
Level 4

(f) Scenario D latency for
disjunctions.

Fig. 10: Comparing conjunction/disjunction algorithms to a sequencer based approach.

6.2 Conjunctions

Figure 10(a) displays the trend in throughput as the system scales to more
subscribers in scenarios A and B with varying number of event types/levels k
(see Figure 8). FAIDECS scales very well compared to the approaches shown
in Figure 10(b), shown separately for a clear relationship among the three im-
plementations since the values start at nearly 3% (about 950 events/s) and
remained consistent in all scenarios. Note that IP-multicast was turned off in
the test environment which could help throughput for both FAIDECS and the
JGroup implementations. In Figure 10(b), the token-based algorithm starts with
a higher throughput than the sequencer-based one as there were few multicas-
ters competing over the token, but its performance degrades faster due to the
inherent cost of its high fault tolerance. Replication helps performance in both

FAIDECS: Fair Decentralized Event Correlation 19

FAIDECS and the replicated sequencer due to the load balancing of replicas
of a same logical merger process, though less and with an initial cost for the
replicated sequencer. The total throughput remained approximately the same in
scenarios A and B since propagation of events by mergers was the bottleneck.

Figure 10(c) illustrates the scalability and the high throughput of FAIDECS
when subscriber interests are in largely disjoint types, following scenario C.
Thus, FAIDECS scales very well with the addition of an arbitrary number of
types to a system, even with transitive correlation across them as in scenario
C, given enough merger process nodes to support them – the high throughput
(about double that of two types for scenario A) occurs because every merger
only handles relatively few subscribers compared to the other scenarios.

Figure 10(d) reports the latency of our algorithms for scenario A. As ex-
pected, increased depth (conjunctions with increasing number of types) leads to
increased latency. Here the “depth” k is fixed to 4, but latency is reported inde-
pendently at different depths. The observed latency, averaged over all subscribers
within each level, was approximately the same with replicated and non-replicated
mergers.

6.3 Disjunctions

Figure 10(e) compares the scalability of FAIDECS with respect to throughput
in scenario D. The 3 curves represent different depths of the hierarchy (between
2 to 4 levels). For each curve, the throughput is averaged at the respective level.
We observe that the impact on throughput is minimal when the disjunctions are
made more complex. As shown in Figure 10(f), the latency for 4 types improves
slightly. This is because disjunctions provide more than one possibility for event
delivery, and the system is no longer throttled by the rate of the slowest upstream
process as with conjunctions.

7 Conclusions

We have presented decentralized algorithms for event correlation implemented
in FAIDECS. Our algorithms provide clear properties, hinging on a novel notion
of subscription subsumption tailored to correlation. The same properties can be
achieved by less specialized solutions such as sequencer-based schemes, yet our
solutions are inherently more scalable and reliable, leading to strong properties
with practical performance; our solutions are also more scalable than peer-based
approaches, e.g., relying on tokens, while still achieving practical fault-tolerance.
We are currently exploring extensions of our algorithms and additional properties
(e.g., causal order).

References

1. D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A New Model and Architecture for Data
Stream Management. VLDB Journal, 2003.

20 G.A.Wilkin, K.R.Jayaram, P.Eugster, A.Khetrapal

2. M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra. Matching
Events in a Content-Based Subscription System. PODC, 1999.

3. A. Basu, B. Charron-Bost, and S. Toueg. Simulating Reliable Links with Unreliable
Links in the Presence of Failures. WDAG, 1996.

4. K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
Multicast. ACM TOCS, 1999.

5. A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evaluation of a Wide Area
Event Notification Service. ACM TOCS, 2001.

6. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite Events
for Active Databases: Semantics, Contexts and Detection. VLDB, 1994.

7. X. Défago, A. Schiper, and P. Urbán. Total Order Broadcast and Multicast Algo-
rithms: Taxonomy and Survey. ACM CSUR, 2004.

8. A.J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W.M. White. Towards Ex-
pressive Publish/Subscribe Systems. EDBT, 2006.

9. P. Eugster and K. R. Jayaram. EventJava: An Extension of Java for Event Corre-
lation. ECOOP, 2009.

10. C. L. Forgy. On the efficient implementation of production systems. PhD thesis,
Carnegie Mellon University, 1979.

11. H. Garcia-Molina and A. Spauster. Message Ordering in a Multicast Environment.
ICDCS, 1989.

12. R. Guerraoui and A. Schiper. Genuine Atomic Multicast in Asynchronous Dis-
tributed Systems. TCS, 2001

13. R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. E. Anderson, B. N.
Bershad, G. Borriello, S. D. Gribble, and D. Wetherall. System Support for Pervasive
Applications. ACM TOCS, 2004.

14. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems.
Distributed Systems, 2nd edition, 1993.

15. G. G. Koch, B. Koldehofe, and K. Rothermel. Cordies: Expressive Event Correla-
tion in Distributed Systems. DEBS, 2010.

16. R. R. Kompella, J. Yates, A. G. Greenberg, and A. C. Snoeren. IP Fault Local-
ization Via Risk Modeling. NSDI, 2005.

17. C. Krugel, T. Toth, and C. Kerer. Decentralized Event Correlation for Intrusion
Detection. ICISC, 2002.

18. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
CACM, 1978.

19. G. Li and H. Jacobsen. Composite Subscriptions in Content-Based Publish/Sub-
scribe Systems. Middleware, 2005.

20. P.R. Pietzuch, B. Shand, and J. Bacon. A Framework for Event Composition in
Distributed Systems. Middleware, 2003.

21. E. Rabinovich, O. Etzion, S. Ruah, and S. Archushin. Analyzing the Behavior of
Event Processing Applications. DEBS, 2010.

22. C. Sanchez, S. Sankaranarayanan, H. Sipma, T. Zhang, D. Dill, and Z. Manna.
Event Correlation: Language and Semantics. EMSOFT, 2003.

23. N. Tatbul, U. Çetintemel, and S. B. Zdonik. Staying FIT: Efficient Load Shedding
Techniques for Distributed Stream Processing. VLDB, 2007.

24. G.A. Wilkin and P. Eugster, Multicast with Aggregated Deliveries. http://www.
cs.purdue.edu/homes/peugster/EventJava/MDMcastTR.pdf, 2010.

25. G.A. Wilkin, K.R. Jayaram, P. Eugster and A. Khetrapal, Fair Decentralized Event
Correlation with FAIDECS. http://www.cs.purdue.edu/homes/peugster/
EventJava/FAIDECSTR.pdf, 2011.

26. Y. Zhao and R.E. Strom. Exploiting Event Stream Interpretation in Publish-
Subscribe Systems. PODC, 2001.

http://www.cs.purdue.edu/homes/peugster/EventJava/MDMcastTR.pdf
http://www.cs.purdue.edu/homes/peugster/EventJava/MDMcastTR.pdf
http://www.cs.purdue.edu/homes/peugster/EventJava/FAIDECSTR.pdf
http://www.cs.purdue.edu/homes/peugster/EventJava/FAIDECSTR.pdf

	Lecture Notes in Computer Science
	FAIDECS: Fair Decentralized Event Correlation
	Introduction
	Events: composition and correlation.
	Challenges for event correlation middleware.
	Contributions.

	Related Work
	Preliminaries
	FAIDECS Model
	Predicate Grammar
	Predicate Types and Evaluation
	Properties
	Basic safety properties.
	Liveness.
	Agreement.

	Total Order

	Algorithms
	Total Order Broadcast Black Box
	Conjunctions.
	Disjunctions.

	FAIDECS Decentralized Ordered Merging
	Conjunctions.
	Disjunctions.
	Joining.
	Fault tolerance.

	Evaluation
	Metrics and Experimental Setup
	Conjunctions
	Disjunctions

	Conclusions

