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Abstract. In this paper, a new feature transformation method is introduced to 
decrease misclassification rate. Linear classifiers in general are not able to clas-
sify feature vectors which lie in a high dimensional feature space. When the 
feature vectors from difference classes have underlying distributions which are 
severely overlapped, it is even more difficult to classify those feature vectors 
with desirable performance. In this case, data reduction or feature transforma-
tion typically finds a feature subspace in which feature vectors can be well 
separated. However, it is still not possible to overcome misclassifications which 
results from the overlapping area. The proposed feature transformation in-
creases the dimension of a feature vector by combining other feature vectors in 
the same class and then follows typical data reduction process. Significantly 
improved separability in terms of linear classifiers is achieved through such a 
sequential process and is identified in the experimental results. 

1   Introduction 

The purpose of pattern classification is to decide the class of the data which is as-
sumed to consist of (C, x) pairs where C is the class to which x, which is an r-
dimensional feature vector, belongs. There are many traditional and modern ap-
proaches to estimate the underlying distributions. Some of them [1], [8] attempt to 
estimate the class conditional probability distribution of a feature vector x by assum-
ing specific distributional form of underlying distributions. On the contrary, other 
approaches [2], [4], [5], which are typically called nonparametric methods, try to 
estimate the probability distributions without assuming any distributional form. 

Once the distributions are estimated in either method, feature space is separated by 
a selected classifier. In fact, the selection of classifier is strongly related with the 
estimation method since the classifier is built upon the estimated underlying distribu-
tions. 

In a high dimensional feature space, classification process may suffer from so 
called curse of dimensionality. Most of the approaches for feature classification in-
volve a data reduction or feature transformation step. This step basically reduces the 
dimension of feature space so that feature vectors can be well separated in the new 
lower dimensional feature space. 



Various methods have been proposed in literature for feature transformation/data 
reduction; Fisher’s approach [3], [6], [12], [13], removal classification structures [15], 
adaptive linear dimensionality reduction [16], linear constrained distance-based clas-
sifier analysis [17] and others [7], [8], [9], [10], [11]. These approaches consistently 
try to transform feature vectors into a feature space of lower dimension. 

In this paper, a new feature transformation is proposed and its effect is investigated 
in terms of linear classifiers. The paper is organized as follows: In Section 2, basic 
idea of the proposed feature transformation is introduced. In Section 3, a new feature 
transformation is explained in detail with mathematical derivation and its effect on 
the underlying distributions is analyzed. Unsupervised image classification process 
incorporating a new feature transformation is described in Section 4 as an application. 
The experimental results are presented in Section 5, which is followed by the conclu-
sions in Section 6. 

2   Basic Idea 

For solving multidimensional classification problems, Fisher [3] suggested a method, 
which projected the data from d dimensions onto a line with specific direction for 
which the projected data were well separated. The projected value was obtained by 
linear combination of the components of x, thus every multidimensional data was 
converted to a scalar by this linear combination. 

Such a linear combination turned out to be the product of the difference of the 
means of classes and the common inverse covariance matrix. This process is equiva-
lent to maximizing the ratio of between-class variation to within-class variation. 

Fisher’s main idea would rather be interpreted as how to linearly reduce the di-
mension of the feature space so that linear classifiers can give the best classification 
result. In this paper, the proposed method takes an opposite direction. Instead of re-
ducing the dimension of the data, we first increase the dimension of the data by com-
bining several feature vectors in the same class and make a new feature space and 
then reduce the dimension of the new feature space. By inserting the process of in-
creasing data dimension, a very interesting fact is found with respect to feature classi-
fication. 

Comparing the distributions between the original feature space and a new feature 
space, a new feature space gives much better separability for classification. That is, 
the distance between the means of existing probability distributions in the feature 
space gets longer compared to the change of their standard deviations. This in turn 
reduces the overlapping area between the probability distributions. Such an augmen-
tation of the dimension of the feature space will be called a feature transformation 
hereafter. 

Feature transformation requires a couple of assumptions. One of them is that the 
probability distributions of classes in the feature space should be normally distributed 
and the other is that those distributions have a common covariance. 

In the following section, the proposed feature transformation will be derived 
mathematically and shows how the feature transformation changes the class condi-
tional probability distributions so as to be suitable for linear classifiers. 



3   Multivariate Feature Transformation 

Suppose there are two classes and the ith class is represented as 
( )N , ,  1, 2i i iπ =µ Σ∼ . It is assumed that all the classes have a common covariance 

matrix Σ. We would like to assign a sample data x, which is an r-dimensional random 
vector, to the most probable class among the two classes. 

Let us define a new random vector x* which consists of a certain number of ran-
dom vectors in the same class. In other words, a new random vector is a composite 
random vector whose elements are random vectors from the same class. For example, 
take (s + 1) random vectors around a neighborhood of the centered random vector x0, 
{ }( ) : 0, ,i

j j s=x …  in the ith class and make a new random vector x0
(i)* which has r(s + 

1) dimension in proportion to the number of component vectors. The random vector 
x0

(i)* is regarded as an extended random vector of x0
(i) and is represented as follows: 

T( )* T T T
0 1

i
s= ⎡ ⎤⎣ ⎦x x x x"  (1) 

Note that the subscript of x(i)* is omitted for brevity. Unless otherwise specified, 
the subscript of the extended random vector is the same as that of the first component 
vector. The mean vector of x(i)* whose component random vectors are from the ith 
class becomes 

*
i i= ⊗µ 1 µ  (2) 

, where the operator ⊗  denotes a direct product in matrix operation. In addition, a 
covariance between two random vectors (xj

(i), xk
(i)) can be defined as 
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j k jkρ=x x Σ  (3) 

, which generate the covariance matrix of x(i)* in (4). For simplicity, the superscript 
for labeling the class from which the random vectors come is omitted, therefore, xj is 
substituted for xj

(i) and x* is substituted for x(i)* as needed. 
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As a result, a new multivariate normal random vector x* whose mean vector is µ* 
and covariance matrix Σ* is obtained. 

( )* * *N ,x µ Σ∼  (5) 

Now, discriminant function Di
* [18] for the random vector x(i)* is written compared to 

Di for x(i). 
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After some mathematical expansions, Li
* can be described in terms of Li in (7). The δ 

in (7) is a vector whose elements are the sum of elements of each row vector of the 
inverse of correlation coefficient matrix C* in (4). 
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The discriminant function Di
* is finally represented in (8) and is described in terms of 

the random vector x. In other words, the discriminant function of composite random 
vector x* is characterized by the terms in the discriminant function of the random 
vector x. 

* T ( )

0 0

1
D

2

s s
i

i i n n i n
n n

δ δ
= =

= −⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑L x µ  (8) 

Now, we define a new random vector G in (9) as a linear combination of (s + 1) 
number of random vector x’s. 
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Eq. (9) corresponds to the proposed feature transformation. The coefficients of the 
linear combination are derived from the correlation coefficient matrix of random 
vector x. Once the expectation µG and the covariance matrix ΣG are obtained, the 
discriminant function of G is described in (10). Comparing (10) with (8), it is recog-
nized that the results are equivalent, which means that the discriminant function Di

* 
can be considered as the discriminant function Di(G). 
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Since a linear combination of the normal random vectors also follows a normal distri-
bution, the distribution of the random vector G will be 
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In summary, a multivariate random vector x is transformed into a multivariate ran-
dom vector G by means of creating a composite random vector x*. The mean vector 
of G simply becomes k times larger than the mean vector of x and the covariance 
matrix becomes also k times larger than that of x. This is a very important observation 
to indicate how feature transformation changes the class conditional probability dis-
tributions and achieves better separability. Since the distance between the means 
becomes k times larger while the spread of the distributions becomes k times larger, 
the distributions get farther away after feature transformation and it gives better sepa-
rability. 

4   Unsupervised Image Classification 

In the previous section, we have seen that the linear combination of an extended ran-
dom vector whose component random vectors came from the same class produced a 
new random vector and the separability of new random vectors between different 
classes was significantly improved in terms of linear classifiers. 

One of the applications for the proposed method would be image classification. In 
general, objective of image classification is the separation of the regions or objects in 
the image which have different characteristics. Due to the characteristics of image, 
most of the homogeneous objects or regions occupy a certain area in an image and 
feature vectors from the same object are located in the neighborhood. Thus, determi-
nation of classification of a feature vector can be made associated with the determina-
tions of the neighboring feature vectors. 

In our experiments, an iterative unsupervised classification is chosen. This classifi-
cation process does not need a training process. Given that the number of regions (or 
classes) into which an image is supposed to be separated, a simple clustering algo-
rithm is applied to classify the feature vectors and thus a provisional result of classifi-
cation is obtained. 

The purpose of the provisional result of classification by given clustering algo-
rithm is to extract intermediate information about each class and to calculate the coef-
ficient vectors δ for each class for feature transformation, which compose an initial 
iteration. From the second iteration a selected linear classifier classifies the feature 
space resulted from the previous feature transformation. 

As the proposed feature transformation has been mathematically proved in Section 
3, the distributions of feature vectors of the classes becomes farther away each other, 
which results in a smaller misclassification rate from the smaller overlapping area 
between two probability distributions. 

Until the conditions for terminating process are satisfied, the iterative procedure is 
continued. One of the conditions for termination is the size of the value k in (13). If k 
is not larger than one, such a transformation does not give a better separability in the 
feature space. 

Fig. 1 shows the iterative procedure for image classification explained in the 
above. Note that since the main contribution of this paper is the method of feature 



transformation, any other clustering method can be used depending on particular 
need, although, in our experiments, K-means clustering method is used. 

 

 
Fig. 1. Unsupervised classification procedure. 

5   Experimental Results 

We simulate the proposed method with a synthetic data set. The data set is generated 
from multivariate number generator with a mean vector and a covariance matrix. 
Each feature vector is located by given coordinate in an image as Fig. 2(e) according 
to its class. The size of the image is 26x26 so that the total number of feature vectors 
from two classes is 676. Synthetic feature vectors are generated with parameter sets 
whose mean vectors are [-1.0 1.0] and [1.0 -1.0] each, and the common covariance 
matrix whose diagonal elements are 10.0. 

Fig. 2(a) shows the initial distributions of feature vectors from two classes. Since 
the distance from two mean vectors is much smaller than the size of variances in the 
covariance matrix, the feature vectors are heavily overlapped between classes. None 
of the linear classifiers seem to be adequate to classify feature vectors with desirable 
performance. Assuming that feature vectors are independently extracted, the first 
feature transformation is executed with the δ vector having all ones. After first trans-
formation, K-means clustering method is used to make a temporary classification 
map. Fig. 2(b) shows this classification map and the two classes in Fig. 2(b) look 
more separated than in Fig. 2(a). Fig. 2(b) simply represent temporary determined 
classes so that each class may contain feature vectors that are actually misclassified. 

After four iterations, the distributions of feature vectors become more suitable for 
linear classification as in Fig. 2(c). Now, any linear classifiers can be selected to sepa-
rate the transformed feature vectors. Fig. 2(d) shows the error rate at each iteration by 
linear discriminant function and the locations of misclassified feature vectors are 



illustrated in Fig. 2(f) compared to the true classification map in Fig. 2(e). In the light 
of the above simulations, the proposed method indicates a new possibility for image 
classification. 

Now, the proposed method is applied to a practical classification data. Original 
data set is from the UCI Machine Learning Repository [14]. Feature vectors in the 
original data set are extracted from an image which contains seven different regions, 
which are grass, path, cement, sky, brickface, foliage and window. A feature vector 
from each region is characterized by 19 feature components. In our experiments, for 
the sake of visualization, two regions (cement and foliage) are selected and two most 
significant feature components (intensity-mean and value-mean) are chosen in the 
experiments. 

The data seems to be relatively linearly separable. However, as can be in Fig. 3(a) 
and Fig. 3(b), data distributions are not completely separable so that it would not be 
possible to separate the data without misclassification by any linear classifiers. 

Surprisingly, Fig. 3(c)-(f) show the results of classification using feature transfor-
mation. Taking into account the features in the neighborhood, the proposed method 
changes the data distributions as much as it can be linearly separated. Fig. 3(c) shows 
the last data distributions on which linear discriminant function is to be applied. Fea-
ture vectors are separated without misclassifications and are illustrated in Fig. 3(f). 
As a result, two regions (cement-foliage) which have different natural characteristics 
are completely separated without misclassification through the proposed method. 
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Fig. 2. Result from simulation. (a) Distributions of feature vectors of two classes. (b) Tempo-
rary classification by K-means algorithm. (c) Distributions of feature vectors of two classes 
after the last feature transformation. (d) Error rates on every iteration. (e) True classification 
map. (f) Classification map from the proposed method. 
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Fig. 3. Results from a real data set. (a) Distributions of feature vectors of two classes. (b) Tem-
porary classification by K-means algorithm. (c) Distributions of feature vectors of two classes 
after the last feature transformation. (d) Error rates on every iteration. (e) True classification 
map. (f) Classification map from the proposed method. 

6   Conclusions 

A new feature transformation method is introduced. It increases the dimension of a 
feature vector by combining other feature vectors in the same class and then follows a 
typical data reduction process. The proposed method eventually gives significantly 
improved separability in feature space in terms of linear classifiers and the promising 
experimental results are presented. 

References 

1. W. Chou, “Discriminant-function-based minimum recognition error rate pattern-recognition 
approach to speech recognition,” Proc. IEEE, vol. 88, no. 8, pp. 1201-1223, Aug. 2000. 

 
2. T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neighbor classification,” IEEE 

Trans. Pattern Anal. Machine Intell., vol. 18, no. 6, pp. 607-616, June 1996. 
 
3. R.A. Fisher, “The statistical utilization of multiple measurements,” Annals of Eugenics, vol. 

8, pp. 376-386, 1938. 
 
4. L.J. Buturovic, “Towards Bayes-optimal linear dimension reduction,” IEEE Trans. Pattern 

Analysis and Machine Intelligence, vol. 16, pp. 420-424, 1994. 
 
5. T. Hastie and R. Tibshirani, “Discriminant analysis by Gaussian mixtures,” J. Royal Statis-

tics Soc., B, vol. 58, pp. 155-176, 1996. 
 
6. C.R. Rao, “The utilization of multiple measurements in problems of biological classifica-

tion,” J. Royal Statistical Soc., B, vol. 10, pp. 159-203, 1948. 
 



7. M. Hubert and K.V. Driessen, “Fast and robust discriminant analysis,” Computational Statis-
tics & Data Analysis, vol. 45, Issue 2, pp. 301-320 March 2004. 

 
8. W.L. Poston and D.J. Marchette, “Recursive dimensionality reduction using Fisher's linear 

discriminant,” Pattern Recognition, vol. 31, no. 7, pp. 881-888, 1998. 
 
9. M. Loog, R.P.W. Duin and R. Haeb-Umbach, “Multiclass linear dimension reduction by 

weighted pairwise Fisher criteria,” IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 23, no. 7, pp. 762-766, 2001. 

 
10. L. Rueda and B.J. Oommen, “On optimal pairwise linear classifiers for normal distribu-

tions: The two-dimensional case,” IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 24, no. 2, pp. 274-280, 2002. 

 
11. H. Brunzell and J. Eriksson, “Feature reduction for classification of multidimensional 

data,” Pattern Recognition, vol. 33, pp. 1741-1748, 2000. 
 
12. Duda, R.O., P.E Hart, and D.G.. Stork, pattern Classification, 2ed. John Wiley & Sons, 

New York, Jan. 2000. 
 
13. A.K. Jain, R.P.W. Duin and J. Mao, “Statistical pattern recognition: A review,” IEEE 

Trans. Pattern Analysis and Machine Intelligence, vol. 22, pp. 4-37, 2000. 
 
14. UCI Repository of Machine Learning Databases, 

www.ics.uci.edu/mlearn/mlrepository.html, 2004 
 
15. M. Aladjem, “Linear discriminant analysis for two classes via removal of classification 

structure,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 187-
192, 1997 

 
16. R. Lotlikar and R. Kothari, “Adaptive linear dimensionality reduction for classification,” 

Pattern Recognition, vol. 33, Issue 2, pp. 177-350 2000 
 
17. Q. Du and C.-I. Chang, “A linear constrained distance-based discriminant analysis for 

hyperspectral image classification,” Pattern Recognition, vol. 34, Issue 2, pp. 361-373, Feb. 
2001 

 
18. A.M. Kshirsagar, Multivariate Analysis, M. Dekker, New York, 1972. 


