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Abstract: Ranked transformations should preserve a priori given ranked rela-
tions (order) between some feature vectors. Designing ranked models  includes 
feature selection tasks. Components of feature vectors which are not important 
for preserving the vectors order should be neglected. This way unimportant di-
mensions are greatly reduced in the feature space.  It is particularly important 
in the case of “long” feature vectors, when a relatively small number of objects 
is represented in a high dimensional feature space. In the paper, we describe de-
signing ranked models with the feature selection which is based on the minimi-
sation of convex and piecewise linear (CPL) functions.  
Key words: ranked linear models, feature selection, convex and piecewise lin-
ear (CPL) criterion functions, linear separability of data sets 

1 Introduction 

Special tools for data exploration are based on a variety of methods includ-
ing: mulitivariate data analysis [1], data mining [2], pattern recognition [3], fuzzy sets 
[5], rough sets [6], or machine learning [7].  

Data exploration goals may include trends for extraction on the basis 
of a known order between selected objects represented as feature vectors in a data set. 
For example, we could know that some objects are older (more developed, more effi-
cient, more expensive, ...) than any object from the first set and they are younger (less 
developed, less efficient, less expensive, ...) than any object from the second set. This 
kind of a priori information about the order relation between selected pairs of objects 
can be the basis for ranked model designing. We assume here the ranked model is 
such a linear transformation, which preserves in an satisfactory manner the a priori 
knowledge on a line in the form of the order relations between selected pairs of fea-
ture vectors. The process of ranked model designing can be seen as trend induction 
from data sets which is based on a priori information about the data ordering.  

The procedure of the ranked models design which is based on the minimisa-
tion of the convex and piecewise linear (CPL) criterion functions is described in 
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the paper. These criterion functions are the sums of the positive and the negative CPL 
penalty functions which are defined through differences between the feature vectors 
constituting referencing dipoles [8]. This way, the task of the ranked model design 
can be linked to the problem of the linear separability of two sets in a given feature 
space. The enlargement of the criterion function by the feature cost functions allows 
one to include the feature selection into the procedure of designing ranked models [9]. 

2 Feature vectors and ranked relations 

We are taking into consideration the data set C built from m feature vectors 
xj with the fixed indexing j 

C = {xj}  ( j  =  1,.......,m) (1) 

The components (features) xji of the vector xj = [xj1,......,xjn]T are numerical 
results of the j-th  object Oj examinations (i =1,...,n). The feature vectors xj are often 
of a mixed type, because they represent different types of measurements (e.g.  
xi∈{0,1}) or (xi∈R)). 

Let the symbol “ ” mean the ranked relation “follows” which may be ful-
filled between selected feature vectors xj and xk:  

xj  xk ⇔ xk  follows xj (2) 

The relation “ ” between the feature vectors xj and xk means that the pair 
{xj,xk} is ranked. The ranked relations between particular feature vectors xj and xk 
could result from additional information about the objects Oj and Ok.  

Our aim is to design such a transformation of feature vectors xj on the ranked 
line y = wTx, which preserves the relation “ ” (2) as precisely as possible  

yj = yj(w) = wTxj (3) 

where w = [w1,......,wn]T is the vector of parameters.   
The relation “ ” (2) is preserved on the line (3) if and only if the following 

implication holds: 

(∀(j,k))   xj  xk ⇒ yj(w)  <  yk(w) (4) 

The procedure of the ranked line design can be based on the concept of  posi-
tively and negatively oriented dipoles {xj,xj′}[8]. 
 
Definition 1: The ranked pair {xj,xj′} (j<j′) of the feature vectors xj and xj′ constitutes 
the positively oriented dipole {xj,xj′} (∀(j, j′) ∈I+) if and only if xj  xj′ 

 
(∀ (j,j’) ∈ I+)    xj  xj′ (5) 



Definition 2: The ranked pair {xj,xj′} (j<j′) of the feature vectors xj and xj′ constitutes 
the negatively oriented dipole {xj,xj′} (∀(j, j′) ∈I-), if and only if xj′  xj. 

(∀ (j,j’) ∈ I-)    xj′  xj (6) 

Definition 3: The line y(w) = wTx (3) is fully consistent (ranked) with the dipoles 
{xj,xj′} orientations if and only if      

(∀ (j,j’) ∈ I+)   yj(w) <  yj′(w)           and 
                               (∀ (j,j’) ∈ I-)   yj(w)  > yj′(w)  

(7) 

where I+ and I- are the sets of the positively and negatively oriented dipoles {xj,xj′} 
(j<j′).   

 
                                                                                                                                       y 
       x8  x1                                                                                                     •  y5(w)   
       x1  x6              yj(w) = wTxj                                                     •   y4(w)         
       x6  x5                                                                            •   y6(w)         
       x4  x5                                                                 •   y1(w)         
                                                                        •  y8(w)         
 

Fig. 1. An example of the order relations (2) and the ranked line (7), where I+ = {(1,6), ((4,5)} 
and I- = {(1,8), (5,6)} 

Let us introduce two sets C+ and C- of the differential vectors rjj′ = (xj′ - xj) 
which are given by  

C+ = {rjj′ = (xj′ - xj): (j,j’) ∈ I+}  
C- = {rjj′ = (xj′ - xj):  (j,j’) ∈ I-} 

(8) 

We will examine the possibility of the sets separation C+ and C- by the hy-
perplane H(w), which passes through the origin 0 of the feature space:  

H(w) =  {x: wTx   = 0} (9) 

where w = [w1,......,wn]T is the vector of parameters.   
 
Definition 4: The sets C+ and C- (8) are linearly separable with the threshold equal 
to zero if and only if there exists such a parameter vector w∗ that: 

(∀ (j,j’) ∈ I+)    (w∗)T rjj′ > 0 
(∀ (j,j’) ∈ I-)    (w∗)T rjj′ < 0  

(10) 

The above inequalities can be represented in the following manner: 

(∃w∗) (∀ (j,j’) ∈ I+)    (w∗)T rjj′ ≥   1 
         (∀ (j,j’) ∈ I-)     (w∗)Trjj′  ≤ -1 

(11) 



Remark 1: If the parameter vector w∗ linearly separates (11) the sets C+ and C- (8), 
then the  line yj(w∗) = (w∗)Txj is fully consistent (7) with the dipoles {xj,xj′} orienta-
tion. 

3 CPL criterion functions 

`Designing the separating hyperplane H(w) could be carried out through the minimi-
sation of the convex and piecewise linear (CPL) criterion function Φ(w) similar to the 
perceptron criterion function [2]. Let us introduce for this purpose the positive 
ϕjj′+(w) and negative ϕjj′-(w) penalty  functions (Fig.2 )   

 
(∀ (j,j’) ∈ I+) 

                              1 - wTrjj′              if  wTrjj′  < 1 
  ϕjj′+(w)  = 
                            0                           if  wTrjj′  ≥  1 

(12) 

and  (∀ (j,j’) ∈ I-) 
                             1  + wTrjj′           if   wTrjj′  > -1 
ϕjj′-(w)  =                                                                                                            
                             0                          if   wTrjj′  ≤ -1  

(13) 

 
 

ϕ jj′
+(w ) ϕ jj′

-(w ) 

-1   1 w Trjj′  

 

Fig. 2. The penalty functions ϕjj′
+(w) (12) and ϕjj′

-(w) (13). 

The criterion function Φ(w) is the weighted sum of the above penalty functions 
 

Φ(w)  =  Σ γjj’ 1jj′+(w)  +  Σ γjj’ 1jj′-(w)  

                                         (j,j′)∈I+               (j,j′)∈I-                
(14) 

 
where γjj’ (γjj’ ≥ 0) is a nonnegative parameter (price) related to the dipole {xj,xj′} 
(j<j′).   



The criterion function Φ(w) (14) is the convex and piecewise linear (CPL) 
function as the sum of such type of the penalty functions φjj′+(w) (12) and φjj′-(w) 
(13). The basis exchange algorithms, similar to linear programming, allow one to find 
a minimum of such functions efficiently, even in the case of large, multidimensional 
data sets C+ and C- [10]:  

Φ* = Φ(w*)  = min Φ(w) ≥ 0 (15) 

The optimal parameter vector w* and the minimal value Φ* of the criterion 
function Φ(w) (11) can be applied to a variety of data ranking problems. In particular, 
the vector w* defining the best ranked line y = (w*)Tx  (3) can be found this way.  
 
Lemma 1: The minimal value Φ* (15) of the criterion function Φ(w) (14) is nonnega-
tive and equal to zero if and only if there exists such a vector w that the ranking of the 
points yj(w) on the line (3) are fully consistent (Def. 3) with the relations “ ” (4). 
 
Prove: The function Φ(w) (14) is nonnegative as the sum of the nonnegative compo-
nents ϕjj′

+(w) (12) and ϕjj′
-(w) (13). If there exists such a vector w∗ that the ranking 

of the points yj(w∗) on the line (3) is fully consistent (Def. 3) with the relations “ ” 
(4), then the sets C+ and C- (8) can be separated (10) by the hyperplane H(w∗) (9). In 
this case, the minimal value of the perceptron criterion function Φ(w) (14) is equal to 
zero as it results from pattern recognition theory [2]. On the other hand, if the minimal 
value of the criterion function Φ(w) (14) is equal to zero in the point w∗, then the val-
ues φjj′+(w∗) and φjj′-(w∗) of all the penalty functions 1jj′

+(w) (12) and 1jj′
-(w) (13) 

have to be equal to zero. It means that the sets C+ and C- (8) can be separated (6) by 
the hyperplane H(w∗) (9). As the result, the ranking of the points yj(w∗) on the line (3) 
is fully consistent (Def. 3) with the relations “ ” (4). � 

Let us introduce the below hyperplanes h+
jj′ and h-

jj′ defined in the parameter 
space by the difference vectors  rjj′ = (xj′ - xj) (j<j′) 

 
(∀ (j,j’) ∈ I+)    h+

jj′ = {w: (rjj′)T w =  1}                                
    (∀ (j,j’) ∈ I-)    h-

jj′ = {w: (rjj′)T w = -1} 
(16) 

Definition 5: The parameter vector w is situated on the positive side of the hyperplane 
h+

jj′ if the inequality (w)Trjj′ ≥ 1 is fulfilled. Similarly, the parameter vector w is situ-

ated on the positive side of the hyperplane h-
jj′ if the inequality (w)Trjj′ ≤ -1 holds. 

The penalty functions 1jj′
+(w) (12) and 1jj′

-(w) (13) are equal to zero if and 
only if the parameter vector w is situated on the positive side of the hyperplanes h+

jj′ 

and h-
jj′ (16). The minimal value Φ* = Φ(w*) (15) of the criterion function Φ(w) (14) 

is equal to zero if the optimal parameter vector w* is situated on the positive side of all 
hyperplanes h+

jj′ and h-
jj′. Such a solution w* (Φ(w*) = 0) exists if the sets C+ and C- 

(8) are linearly separable (10). 
Remark 2: Linear independence of the vectors rjj′ constituting the sets C+ and C- (8) is 
the sufficient condition for the linear separability (10) of these sets [9]. 



4 Modified crterion function with feature costs   

The criterion function Φ(w) (14) can be modified by introducing the cost 
function  φi(w) (Fig. 3) for each feature xi  in order to search for the best feature sub-
space Fl

∗[m] [9].  

                                                        - (ei)Tw             if          (ei)T w < 0 
                                   φi(w)  =                               
                                                          (ei)Tw            if          (ei)T w   ≥ 0 

(17) 

where ei = [0,...,0,1,0,...,0]T are the unit vectors (i=1,.....,n) 

.

 

φi(w) 

wi  
Fig. 3. The cost function φi(w) (17) 

The modified criterion function Ψλ(w) can be given in the following form [9]: 

Ψλ(w) =  Φ(w)  + λ Σγi φi(w) 
                    i∈I      

(18) 

where Φ(w) is given  by (14), λ ≥ 0, γi  > 0, and I = {1,....,n}.   
 
The function Ψλ(w) is the sum of the perceptron criterion function Φ(w) (14) 

and the cost functions φi(w) (17) multiplied by the positive parameters γi. The  pa-
rameters γi. represent the costs of particular features xi. These costs γi can be chosen a 
priori, according to our  preferences.  

The criterion function Ψλ(w) (18) is the convex and piecewise linear (CPL) 
function as the sum of the CPL functions Φ(w) (14) and λ γi φi(w) (18). Like previ-
ously in (15), we are taking into account the point wλ

∗ constituting the minimal value 
of the criterion function Ψλ(w):   

Ψλ
* =  Ψλ(wλ

∗) = min Ψλ(w)   
                  w

(19) 

The basis exchange algorithms allow one to solve efficiently also this mini-
misation problem [10].  



The below hyperplanes hi in the feature space can be linked to the cost func-
tions φi(w) (17) 

(∀i ∈ I = {1,....,n})    hi = {w: (ei)T w  =  0} (20) 

The cost function φi(w) (18) is equal to zero if the point w is situated 
on the hyperplane hi (20). 

The k-th basis Bk[n] of the n-dimensional feature space F[n] can be consti-
tuted by any set Sk[n]  of n linearly independent vectors rjj′ ((j,j’) ∈ I+∪I-) (16)) and ei 
(i∈ I = {1,....,n}). The basis Bk[n] is the nonsingular matrix with the n rows bl consti-
tuted by the vectors rjj′ or ei. 

BkT[n] = [b1,......, bn] (21) 

where  
bl = rjj′   if   the vector rjj′ constitutes the l- th row of the matrix Bk[n] 

       bl = ei     if   the vector ei constitutes   the l- th row of the matrix Bk[n] 
(22) 

The basis Bk[n] defines the point (the vertex) wk[n] in the feature space 
in accordance with the below equation   

wk[n] = Bk-1[n] ck[n] (23) 

where ck[n] = [c1,......,cn]T is the margin vector with the components cl defined by 
the following conditions  

cl =   1   if   rjj′ ((j,j’) ∈ I+) (8) constitutes the l-th row of the matrix Bk[n]     
cl =  -1   if   rjj′ ((j,j’) ∈ I-) (8) constitutes the l-th row of the matrix Bk[n]    
cl =   0   if   the unit vector ei constitutes the l-th row of the matrix Bk[n]    

(24) 

It could be seen that the vertex wk[n] is the point of intersection of n hyper-

planes h+
jj′ and h-

jj′ (16) or hi (20) in accordance with the conditions of (25). 
It can be proved by applying results of linear programming theory [2], that 

the global minimum (19) of the criterion function Ψλ(w) (18) can be found in one 
of the vertices wk[n]. 

(∃wk
∗[n])  (∀w)   Ψλ(w) ≥ Ψλ(wk

∗[n]) (25) 

The optimal vertex wk
∗[n] and the related basis, the basis Bk

∗[n], can be used in the 
feature selection problem.  

5 Feature selection for the ranked models  

The optimal vertex wk
∗[n] = [w1

∗,…..,wn
∗]T (25) related to the basis Bk

∗[n] 
(23) defines the ranked model (3) in the n-dimensional feature space F[n] 



yj = (wk
∗[n])Txj[n] (26) 

Remark 3: If the unit vector ei constitutes the l-th row (22) of the optimal basis Bk
∗[n], 

then the i-th feature xi can be omitted  from the feature vectors xj without the chang-
ing of the order of the points yj on the line (26). 

In order to justify the above statement let us remark, that the unit vector ei 
in the basis Bk

∗[n], means that the i-th component wi
∗ of the weight vector wk

∗[n] is 
equal to zero. The feature xi related to the weight wi

∗ equal to zero can be omitted 
without the changing of the inner products (26) value.    
 
Remark 4: If the number m of the linearly independent vectors rjj′[n] = (xj′[n] - xj[n]) 
((j, j’) ∈ I+ ∪ I-) (8) is less than the dimension n of the feature space F[n] (m < n),  
then at least n – m features xi can be omitted from the vectors xj[n] without changing 
the points yj order on the line (26). 

Neglecting the features xi related to the unit vectors ei in the basis B∗
k[n] 

of the optimal vertex wk
∗[n] (26) is linked to the reduction of the feature space F[n] 

dimension n. The reduced basis Bk
∗[n′] contains only differential vectors               

rjj′[n′] = (xj′[n′] - xj[n′]) from the feature subspace Fl[n′] of dimension n′. 
 It could be seen, that the vectors rjj′[n′] constituting the basis Bk

∗[n′] are line-
arly separable (11). In result, if the all vectors rjj′[n′] from the sets C+ and C- (8) are 
used in the optimal basis Bk

∗[n′], then these sets are linearly separable (10). 
In the case of m linearly independent, “long” vectors rjj′[n] (n >> m) there 

can exist many feature subspaces Fk[m] of dimension m, which assure the linear sepa-
rability (11) of the sets C+ and C- (8) formed by the vectors rjj′[n]. The minimisation 
(25) of the criterion function Ψλ(w) (18)  with a small, positive values of the parame-
ter λ (∀λ∈(0,λ+)) allows one to find the optimal feature subspace Fl

∗[m]. It can be 
proved, that the minimal value Ψλ(wk

∗[m]) (26) of the criterion function Ψλ(w) (18) 
could be expressed in the below manner [11]:    

(∀λ∈ [0, λ+])    Ψλ(wk
∗[m]) =  λ Σ γi | wi

∗| 
                                           i∈I∗

l[m]              
(27) 

where wi* are the components of the optimal, m-dimensional vertex wk
∗[m]) (26) 

and Il
∗[m] is the set of the indices i of such features xi which are included in this ver-

tex. All included features xi have the weights wi
∗ greater than zero  

((∀i∈ Il
∗[m])  wi

∗ > 0).   
If the costs γi are equal to one, then the minimal value Ψλ(wk

∗[m]) (27) 
of the function Ψλ(w) (18) can be expressed as: 

Ψλ
* =  Ψλ(wk

∗[m]) =  λ Σ | wi
∗| = λ ||wk

∗[m]|| L1   

         i∈Il

(28) 



where || wk
∗[m] || L1 is the L1 norm of the vector wk

∗[m]. 
In the case of such sets C+ and C- (8) which are linearly separable (10), 

the minimisation problem (19) with the function Ψλ(w) (18) could by solved by using 
the following formulation [9]    

 
min {||w|| L1:  w separates linearly (11) the sets C+ and C- (8)} 

                 w
(29) 

The above formulation is similar to those used in the Support Vector Machines  
(SVM) method [12]. One of the important differences is such that the SVM method is 
based on the Euclidean norm || w || L2 , where  

|| w || L2 = (wT w) ½ (30) 

The similarity of the expression (29) to the SVM approach allows one to explain in 
a better manner properties of the optimal vector wk

∗[m] which constitutes solution 
of the problem (29).  

An efficient algorithm of the feature subspaces Fl[m] exchange has been de-
veloped in order to find the optimal subspace Fk

∗[m] or solve the problem (29) 
through computations in the m-dimensional parameter spaces Fk[m] instead of the ini-
tial, high dimensional feature space F[n] [11].  

The optimal vertex wk
∗[m] (25) related to the basis Bk

∗[m] defines the 
ranked model y = (wk

∗[m])Tx[m] (26) in the m-dimensional feature subspace Fl
∗[m]. 

Such ranked model allows one to put new objects x[m] on the ranked (trend) line (3) 
and provides additional information concerning features xi (i∈Il

∗[m]) which are the 
most important for preserving the discovered trend.  

6 Concluding remarks  

The concept of ranked linear transformations (2) of the feature space X on 
the line is examined in the paper. Such lines reflect (3), to a possible extent, the rela-
tions “ ” (4) between the feature vectors xj in the selected pairs {xj,xj′} ((j,j’) ∈ I+) or 

(j,j’) ∈ I-). It has been shown that the ranked linear transformations (2) are linked to 
the concept of linear separability of some data sets.  

Designing ranked linear transformations (2) can be based on minimisation of 
the convex and piecewise linear (CPL) criterion function Ψλ(w) (18). The basis ex-
change algorithms, similar to linear programming, allow one to find the minimum of 
this function [10].  

Designing ranked linear transformations allows for sequencing the feature 
vectors xj in a variety of manners, depending on the choice of sets I+ and I- (8) of ori-
ented dipoles {xj, xj′}.Such approach allows for the experimental verification of dif-
ferent sequencing models. The models could be defined on the basis of the selected  
dipoles  sets I+ and I- (8). Next, such a model could be verified on the basis of the di-
poles from the testing sets and used as a tool for sequencing new feature vectors xj. 



The feature selection approach could indicate which features xi are the most important 
in the ranked model.   

The ranked linear transformations may have many applications. One of the 
most interesting applications could be the sequencing of genomic data or phylogenetic 
classification [13]. We are using a similar approach in designing tools for medical di-
agnosis support in the system Hepar [14]. 
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