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Abstract. This paper is concerned with time series of graphs and pro-
poses a novel scheme that is able to predict the presence or absence
of nodes in a graph. The proposed scheme is based on decision trees
that are induced from a training set of sample graphs. The work is mo-
tivated by applications in computer network monitoring. However, the
proposed prediction method is generic and can be used in other ap-
plications as well. Experimental results with graphs derived from real
computer networks indicate that a correct prediction rate of up to 97%
can be achieved.

1 Introduction

Time series, or sequence, data are encountered in many applications, such as fi-
nancial engineering, audio and video databases, biological and medical research,
and weather forecast. Consequently, the analysis of time series has become an im-
portant area of research [1]. Particular attention has been paid to problems such
as time series segmentation [2], retrieval of sequences or partial sequences [3], in-
dexing [4], classification of time series [5], detection of frequent subsequences [6],
periodicity detection [7] and prediction [8–10].

Typically a time series is given in terms of symbols, numbers, or vectors [1].
In the current paper we go one step further and consider time series of graphs.
A time series of graphs is a sequence, s = g1, . . . , gn, where each gi is a graph.
In a recent survey it has been pointed out that graphs are a very suitable and
powerful data structure for many operations needed in data mining in intelligent
information processing [11]. As a matter of fact, traditional data structures, such
as sequences of symbols, numbers, or vectors, can all be regarded as a special
case of sequences of graphs.

The work presented in this paper is motivated by one particular application,
which is computer network monitoring [12, 13]. In this application, graphs play
an important role [14]. The basic idea is to represent a computer network by



a graph, where the clients and servers are modelled by nodes, and physical
connections correspond to edges. If the state of the network is captured at regular
points in time and represented as a graph, a sequence, or time series, of graphs is
obtained that formally represents the network. Given such a sequence of graphs,
abnormal network events can be detected by measuring the dissimilarity, or
distance, between a pair of graphs that represent the network at two consecutive
points in time. Typically an abnormal event manifests itself through a large
graph distance [14].

In the current paper we address a different problem, viz. the recovery of
incomplete network knowledge. Due to various reasons it may happen that the
state of a network node or a network link can’t be properly captured during
network monitoring. This means that it is not known whether a certain node or
edge is actually present or not in the graph sequence at a certain point in time.
In this paper we describe a procedure that is able to recover missing information
of this kind. This procedure is capable to make a decision as to the presence
or absence of such a network node or edge. An information recovery procedure
of this kind can also be used to predict, at time t, whether a certain computer
or a certain link will be present, i.e. active, in the network at the next point
in time, t + 1. Such procedures are useful in computer network monitoring in
situations where one or more network probes have failed. Here the presence, or
absence, of certain nodes and edges is not known. In these instances, the network
management system would be unable to compute an accurate measurement of
network change. The techniques described in this paper can be used to determine
the likely status of this missing data and hence reduce false alarms of abnormal
change.

Although the motivation of our work is in computer network monitoring, the
methods described in this paper are fairly general and can be applied in other
domains as well. Our proposed recovery scheme is based on decision tree learning
as described in [15]. Basically we cast the recovery and prediction task into a
classification framework, where one wants to decide whether a node is present
in the network at a certain point in time or not. Clearly such a decision can be
understood as a two-class classification problem, with one class, Ω0, indicating
the absence of the node in question, and another class, Ω1, representing its
presence in the network at a given point in time.

The rest of this paper is organized as follows. Basic terminology and notation
will be introduced in the next section. Then, in Section 3, we will describe our
novel information recovery and prediction scheme. Experimental results with this
new scheme will be presented in Section 4 and conclusions drawn in Section 5.

2 Basic Concepts and Notation

A labeled graph is a 4-tuple, g = (V,E, α, β), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, α : V → L is the node labeling function, and
β : E → L

′

is the edge labeling function, with L and L
′

being the set of node
and edge labels, respectively. In this paper we focus our attention on a special



class of graphs that are characterized by unique node labels. That is, for any two
nodes, x, y ∈ V , if x 6= y then α (x) 6= α (y). Properties of this class of graphs
have been studied in [16]. In particular it has been shown that problems such as
graph isomorphism, subgraph isomorphism, maximum common subgraph, and
graph edit distance computation can be solved in time that is only quadratic in
the number of nodes of the larger of the two graphs involved.

To represent graphs with unique node labels in a convenient way, we drop set
V and define each node in terms of its unique label. Hence a graph with unique
node labels can be represented by a 3-tuple, g = (L,E, β) where L is the set of
node labels occurring in g, E ⊆ L × L is the set of edges, and β : E → L

′

is
the edge labeling function [16]. The terms “node label” and “node” will be used
synonymously in the remainder of this paper.

In this paper we will consider time series of graphs, i.e. graph sequences, s =
g1, g2, . . . , gN . The notation gi = (Li, Ei, βi) will be used to represent individual
graph gi in sequence s; i = 1, . . . , N . Motivated by the computer network analysis
application considered in this paper, we assume the existence of a universal set
of node labels, or nodes, L, from which all node labels that occur in a sequence
s are drawn. That is, Li ⊆ L for i = 1, . . . , N and L =

⋃N

i=1
Li.

1

Given a time series of graphs, s = g1, g2, . . . , gN , and its corresponding uni-
versal set of node labels, L, we can represent each graph, gi = (Li, Ei, βi), in

this series as a 3-tuple (γi, δi, β̂i) where

– γi : L → {0, 1} is a mapping that indicates whether node l is present in gi

or not. If l is present in gi, then γi (l) = 1; otherwise γi (l) = 0.2

– δi : L
′

× L
′

→ {0, 1} is a mapping that indicates whether edge (l1, l2) is
present in gi or not; here we choose L

′

= {l | γi (l) = 1}, i.e. L
′

is the set of
nodes that are actually present in gi.

– β̂i : L
′

× L
′

→ L
′

is a mapping that is defined as follows:

β̂i (e) =

{
βi (e) , if e ∈ {(l1, l2) | δi (l1, l2) = 1}
undefined, otherwise

The definition of β̂i (e) means that each edge e that is present in gi will have

label βi (e). The 3-tuple (γi, δi, β̂i) that is constructed from gi = (Li, Ei, βi) will
be called the characteristic representation of gi, and denoted by χ (gi). Clearly,
for any given graph sequence s = g1, g2, . . . , gN the corresponding sequence
χ (s) = χ (g1) , χ (g2) , . . . , χ (gN ) can be easily constructed and is uniquely de-
fined. Conversely, given χ (s) = χ (g1) , χ (g2) , . . . , χ (gN ) we can uniquely recon-
struct s = g1, g2, . . . , gN .

In the current paper we’ll pay particular attention to graph sequences with
missing information. There are two possible cases of interest. First it may not

1 In the computer network analysis application L will be, for example, the set of all
unique IP host addresses in the network. Note that in one particular graph, gi,
usually only a subset is actually present. In general, L may be any finite or infinite
set.

2 One can easily verify that {l | γi (l) = 1} = Li.



be known whether node l is present in graph gi or not. In other words, in χ (gi)
it is not known whether γi (l) = 1 or γi (l) = 0. Secondly, it may not be known
whether edge (l1, l2) is present in gi, which is equivalent to not knowing, in
χ (gi), whether δi (l1, l2) = 1 or δi (l1, l2) = 0. In this paper, we focus on the case
of missing node information. To cope with the problem of missing information
and in order to make our notation more convenient, we extend function γ in
the characteristic representation, χ (g), of graph g = (L,E, β) by including the
special symbol ? in the range of values of each function to indicate the case of
missing information. That is, we write γ (l) =? if it is unknown whether node l

is present in g or not.

3 Recovery of Missing Information Using Decision Trees

Our goal is to construct a function that computes γt (l) for a node, l, given some
data extracted from time series g1, g2, . . . , gt as input. In the approach proposed
in this paper the function that computes γt(l) will actually use only information
extracted from gt. However, graphs g1, . . . , gt−1 will be used as a training set,
i.e. they are used to learn this function.

The approach proposed in this paper is based on decision trees. Decision
tree classifiers have often been used for the purpose of object classification. An
object, x, is given in terms of the values of d different features and represented
by means of a d-dimensional vector, i.e. x = (x1, . . . , xd). The feature values, xi,
1 ≤ i ≤ d, can be numerical or non-numerical. It is possible that one or several
feature values are unknown. To classify an object means to assign it to a class,
Ωi, out of a number of given classes, Ω1, . . . , Ωc. For all further technical details
we refer the reader to [15].

Assume we want to make a decision as to γt (l) = 0 or γt (l) = 1, given
γt (l) =?. Actually, this decision problem can be transformed into a classification
problem as follows. The network at time t, gt, corresponds to the unknown
object to be classified. Network gt is described by means of a feature vector,
x = (x1, . . . , xd), and the decision as to γt (l) = 0 or γt (l) = 1 can be interpreted
as a two-class classification problem, where γt (l) = 0 corresponds to class Ω0

and γt (l) = 1 corresponds to class Ω1. As features x1, . . . , xd that represent the
unknown object x, i.e. graph gt, one can use, in principle, any quantity that
is extractable from graphs g1, . . . , gt. In this paper we consider the case where
these features are extracted from graph gt exclusively. Assume that the universal
set of node labels is given by L = {l0, l1, . . . , lD}, and assume furthermore that
it is node label l0 for which we want to make a decision as to γt (l0) = 0 or
γt (l0) = 1, given γt (l0) =?. Then we set d = D and use the D-dimensional
binary feature vector (γt (l1) , . . . , γt (lD)) to represent graph gt. In other words,
x = (γt (l1) , . . . , γt (lD)). This feature vector is to be classified as either belonging
to class Ω0 or Ω1. The former case correspond to deciding γt (l0) = 0, and the
latter to γt (l0) = 1. Intuitively, using (γt (l1) , . . . , γt (lD)) as a feature vector for
the classification of gt means we make a decision as to the presence or absence



of l0 in gt depending on the presence or absence of all other nodes from L in gt.
3

For the implementation of the classification procedure described in the last
paragraph, we need a training set. For the training set we can use all previous
graphs in the given time series, i.e. g1, . . . , gt−1. From each graph, gi, we extract
the D-dimensional feature vector

xi = (γi (l1) , . . . , γi (lD)) (3.1)

So our training set becomes L = {x1, . . . ,xt−1} . We do need to assign the
proper class to each element of the training set. This can be easily accomplished
by assigning class Ω0 to xi if γi (l0) = 0; otherwise, if γi (l0) = 1, we assign class
Ω1 to xi; i = 1, . . . , t − 1.

Given such a training set, constructed from g1, . . . , gt−1, we can now apply
any known procedure to infer a decision tree from training set L. In the experi-
ments described in Section 4, we have used C4.5 [15]. Once the decision tree has
been produced, it is straightforward to classify feature vector xt (see Eq. (3.1)),
which describes gt, as belonging to Ω0 or Ω1.

Decision tree classifiers are able to deal with unknown attribute values. This is
important in our application because we must expect that not only information
about node l0 in gt is missing, but also about other nodes, li, in gt, where
i ∈ {1, . . . ,D}. Similarly, when building the decision tree from training set L =
{x1, . . . ,xt−1}, there may be graphs, gi, i ∈ {1, . . . , t − 1} where it is not known
for some nodes whether they are present or not in gi. Hence some of the γi (lj)
may be unknown. Fortunately, decision tree induction methods are able to cope
with such cases of missing data [15].

The procedure described in this section is based on two assumptions. The
first assumption is that there is some kind of correlation between the occurrence
of a node, l, in graph gt, and the occurrence of some (or all) other nodes in
the same graph. In other words, we assume that the behaviour of node l is
dependent, in some way, on the behaviour of the other nodes. Note, however,
that we don’t need to make any assumptions as to the mathematical nature of
this dependency. Our second assumption is that there is some stationarity in
the dependency between l and the other nodes. Using graphs g1, . . . , gt−1 as a
training set to derive a classifier that makes a decision pertaining to graph gt

will work well only if the dependency between l and the other nodes in gt is of
the same nature as in g1, . . . , gt−1.

In a practical setting it may be computationally too demanding to infer a
decision tree at each point of time, t. Hence it may be preferable to do an
update of the actual decision tree only after a certain period of time has elapsed.
Moreover, in the decision tree updating process it is possible to use only part
of the network history. This means that for the construction of the decision
tree for gt, we don’t use g1, . . . , gt−1, but focus on only the M most recent

3 Note that in principle also information about edges could be incorporated in the
feature vector. However such an extension would increase the space complexity from
O(D) to O(D2).



S1 S2 S3 S4

Number of graphs in sequence 102 292 202 99

Size of smallest graph in sequence 38 85 15 572

Size of largest graph in sequence 94 154 329 10704

Average size of graphs in sequence 69.7 118.5 103.9 5657.8

Table 1. Characterisation of the graph sequences used in the experiments

graphs gt−M , . . . , gt−1. This is particularly advisable if there is evidence that
the behaviour of the network is not perfectly stationary, but changing over time.

4 Experimental Results

The method described in Section 3 of this paper has been implemented and
experimentally evaluated on real network data. For the experiments four time
series of graphs, S1, S2, S3 and S4, acquired from existing computer networks
have been used. Characteristics of these graph sequences are shown in Table 1,
where the size of a graph is defined as the number of its nodes. All four series
represent logical communications on the network. Series S1, S2 and S4 were
derived from data collected from a large enterprise data network, while S3 was
collected from a wireless LAN used by delegates during the World Congress for
Information Technology (WCIT2002). The nodes in each graph of S1 and S2

represent business domains in the network, while in S3 and S4 they represent
individual IP addresses. Note that all graph sequences are complete, i.e. there
are no missing nodes and edges in these sequences.

For the experiments described in this section each time series is divided into
two disjoined sets of graphs. The first set, G1, consists of all graphs gi with
index i being an odd number (i.e. graphs g1, g3, g5, . . .), while the other set,
G2, includes all graphs with an even index i (i.e. graphs g2, g4, . . .). First, set
G1 is used as the training set for decision tree induction and G2 serves as the
test set. Then G1 and G2 change their role, i.e. G1 becomes the test and G2

the training set. In the learning phase an individual decision tree is build for
each node, i.e. for each label, l, belonging to the universal set of node labels,
L, as described in Section 3. Once all decision trees have been learned, testing
takes place by assuming, for each graph gi from the test set and each node label
l ∈ L, that γi(l) =?. The decision tree learned for label l is used to decide either
γi(l) = 0 or γi(l) = 1. Then the predicted value is compared to the real value.
For each graph, gi, in the test set we count the number of nodes that have been
correctly predicted and divide this number by the total number of nodes in g.
Splitting the considered time series of graph, S, into disjoined sets, G1 and G2,
is equivalent to performing a two-fold cross-validation, where each graph in time
series S serves one time as a training and one time as a test sample. Clearly,
a number of alternative scenarios for testing the proposed method are feasible.



Fig. 1. Percentage of correctly predicted nodes in sequence S1, using both pruned and
non-pruned decision trees

For example, instead of performing just a two-fold cross-validation, one could
split the dataset into n > 2 disjoint subsets and do an n-fold cross-validation.

Fig. 1 shows the correct prediction rate for each graph in time series S1. Two
different versions of the decision tree induction procedure were applied. The first
version generates a tree without any pruning, while the second version applies
pruning, as described in [15].

For each of the two versions the percentage of correctly predicted nodes in
the corresponding graph is shown. We observe that the correct prediction rate is
around 89% on the average. This is a remarkably high value taking into consider-
ation that for a two-class classification problem, such as the one considered here,
random guessing would give us an expected performance of only 50%. There are
some obvious drops in prediction performance in Fig. 1, for example between
time 20 and time 25, and around time 65. These drops correspond to abnor-
mal events in the underlying computer network where major changes in network
topology take place. Obviously these abnormal events don’t follow the normal
network behaviour represented in the training set. But the correct prediction
rate is still quite high (more than 75% in any case).

From Fig. 1 it is hard to tell which of the two decision tree induction methods,
including or excluding pruning, gives the better overall result. However if we
average the correct prediction rate over all graphs in the time series, we get
values of 89, 5% and 88, 6% for pruned and non-pruned trees, respectively. Hence
using decision tree pruning gives us a slightly better performance.

Fig. 2 shows the percentage of correctly predicted nodes in sequence S2 for
pruned and non-pruned trees. We observe again a high correct prediction rate,



Fig. 2. Percentage of correctly predicted nodes in sequence S2, using both pruned and
non-pruned decision trees

S1 S2 S3 S4

Pruned trees 89,5 93,4 96,9 89,4

Non-pruned trees 88,6 92,8 96,3 87,4

Table 2. Summary of correct prediction rates for sequences S1 to S4

with the curve showing a bit more jitter than Fig. 1. The correct prediction
rate, averaged over all graphs of Sequence S2, is 93, 4 for pruned and 92, 8 for
non-pruned decision trees.

Results for sequences S3 and S4 are similar. A summary of the correct pre-
diction rates, averaged over all graphs in a sequence, for both pruned and non-
pruned decision trees, is shown in Table 2. From this figure we can conclude that
for all time series used in this study quite high prediction rates were achieved.
Pruned trees are consistently slightly better than non-pruned trees.

5 Conclusions

The problem of incomplete knowledge recovery and prediction of the behaviour
of nodes in time series of graphs is studied in this paper. Formally, this task
is formulated as a classification problem where nodes with an unknown status
are to be assigned to one of the classes ’present in’ (Ω1) or ’absent from’ (Ω0)
the actual graph. A decision tree learning scheme is proposed in order to solve
this classification problem. The motivation of this work derives from the field
of computer network monitoring. However the proposed framework for graph



sequence analysis is fairly general and can be applied in other domains as well.
In computer network monitoring, prediction procedures, as studied in this paper,
are important for patching missing network data in instances where one or more
network probes have failed. Without such procedures, the network management
system would have diminished capability in detecting abnormal change.

The proposed prediction procedure is straightforward to implement using
decision tree induction software tools. Excellent performance with correct pre-
diction rates ranging between about 89% and 97% with pruned trees has been
achieved, using the proposed method on four independent data sets acquired
from real computer networks.

The task in this paper has been cast as a classification problem. Consequently,
not only decision trees, but also any other type of classifier can be applied, for
example, neural network, Bayes classifier, nearest neighbor, or support vector
machine. However, decision trees have at least two advantages. First, they can
cope with missing data in both the training and test set. Secondly, it is possible
to extract, from a trained decision tree, a number of rules that are interpretable
by a human expert. This second aspect has not been stressed in our work yet,
but is interesting to be investigated in future research.

The proposed schemes can be extended in a variety of ways. First of all,
a prediction scheme, similar to the one proposed in this paper for nodes, can
be designed for edges. In both, node and edge prediction, node as well as edge
information can be utilized. That is, feature vectors as described in Section 3 can
be extended to including information about the presence or absence of edges and
they can be used for both node and edge prediction. Dealing with edges, however,
introduces a substantially higher cost from the computational complexity point
of view, because in a graph with n nodes we may have up to O(n2) edges, i.e. the
complexity of our algorithms is going up from O(n) to O(n2).

In the scheme proposed in Section 3 we have used within-graph context
exclusively, i.e. the only information that is used in order to make a decision
as to the presence or absence of a certain node in a graph, g, comes from that
graph, g. One could use, however, also context in time. This means that we
include information about the past behaviour of a network node in order to
decide about its presence in the actual graph. From the conceptual point of
view it is straightforward to integrate information of this kind in the proposed
decision tree learning procedures. A more detailed investigation of this issue is
left to future research.
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