Cost Integration in Multi-Step Viewpoint Selection for
Object Recognition

Christian Derichs!*, Frank Deinzer?, and Heinrich Niemann®

1 Chair for Pattern Recognition, Department of Computer Science,
Universitit Erlangen-Niirnberg, Martensstr. 3, 91058 Erlangen
{derichs,niemann}@informatik.uni-erlangen.de,
2 Siemens Medical Solutions, Siemensstr. 1, 91301 Forchheim,
frank.deinzer@siemens.com

Abstract. During the last years, computer vision tasks like object recognition
and localization were rapidly expanded from passive solution approaches to ac-
tive ones, that is to execute a viewpoint selection algorithm in order to acquire
just the most significant views of an arbitrary object. Although fusion of multiple
views can already be done reliably, planning is still limited to gathering the next
best view, normally the one providing the highest immediate gain in information.
In this paper, we show how to perform a generally more intelligent, long-run
optimized sequence of actions by linking them with costs. Therefore it will be
introduced how to acquire the cost of an appropriate dimensionality in a non-
empirical way while still leaving the determination of the system’s basic behavior
to the user.

Since this planning process is accomplished by an underlying machine learning
technique, we also point out the ease of adjusting these to the expanded task and
show why to use a multi-step approach for doing so.

Keywords Viewpoint Selection, Active Vision, Reinforcement Learning

1 Introduction

In the last few years, a lot of approaches have been made to add an active component to
the task of combined object recognition and localization, leading to algorithms teaching
an agent which views of an arbitrary object to take. Therefore, most of them apply quite
powerful machine learning techniques to this task, like Reinforcement Learning [7], but
still restrict themselves to just performing a single-step process, that is to always select
the immediate best view to be taken within the next step for increasing the classification
rate. Obviously this behavior might be suboptimal concerning the effort needed for
reaching a certain classification reliability, e.g. if the agent passes by a viewpoint in a
first step it has to take later on anyway.

In light of this drawback, the work of this paper will show how to put a more fore-
sighted component to the viewpoint selection problem by integrating costs to the sys-
tem. While further cost-integrating approaches attempt to control the effort feasible for
improving the classification itself [5] or to teach the agent by introducing costs for
misclassification [4], we do explicitly not aspire at an enhancement in classification.

* This work was funded by the German Science Foundation(DFG) under grant SFB 603/TP B2. Only the authors are
responsible for the content.

Moreover our goal is to gain similar results, but with possibly less effort. Therefore the
components of an agent’s possible action have to be weighted against each other by
introducing those actions’ costs, respectively cost relations, which in turn have to be
adjusted to the learning technique’s reward modeling. Unlike [6], where those costs are
determined empirically, our attention is towards acquiring them as a by-product of the
training performed anyway, namely by learning and directly applying them in parallel
manner to the agent-teaching, main learning process.

Thus section 2 will give a summary of the machine learning technique, namely
Reinforcement Learning, underlying the viewpoint selection task. It will be directly in-
troduced as a multi-step approach since our presented way of cost integration makes
fundamental use of this assumption. As the basics are defined then, section 3 provides
the method for establishing and integrating cost-factors to the already existing learning
algorithms, while section 4 will introduce methods for computing the new target val-
ues more reliably and preferably without extending the processing time of the global
learning process. Results concerning a cost-sensitive solution of the viewpoint selection
problem will finally be shown for a co-operative environment where classification itself
does not make up a critical task.

2 Viewpoint selection without costs

The goal of this work is to provide a solution

; \SttL . . .

Agent: Classifier, to the problem of optimal viewpoint selec-
Camera Jrestt o tion for 3D object recognition without mak-
S =| | . inga priori assumptions about the objects and

= 2| |® . : ;
ke 3 |e the classifier. The problem is to determine
Z 2 («‘/3) the next view of an object given a series of
Viewpoint e previous decisions and observations and can
Selection)« also be seen as the determination of a func-

tion which maps a history of observations to
Fig.1. Principles of Reinforcement anew viewpoint. This function should be es-
Learning applied to viewpoint selec- timated automatically during a training step
tion. and should improve over time. Additionally,

the function should take uncertainty into ac-
count in the recognition process as well as in the viewpoint selection, be classifier in-
dependent and be able to handle continuous viewpoints.

A straightforward and intuitive way to formalizing the problem is given in fig.1. A
closed loop between sensing state s; and performing action a; can be seen. The chosen
actions a;

a; = (at,laat,%---aat,n)T (H
correspond to the movement of the camera at time ¢.

The sensed states sy, actually probability densities (2), are estimated by the em-
ployed classifier. In this paper we use a classifier [2, 3] that is able to perform a fu-
sion of multiple acquired images. In active object recognition, a series of observed
images f¢, ft—1,..., fo of an object are given together with the camera movements
a;_1,...,ao between these images. Based on these observations of images and move-
ments one wants to draw conclusions for a non-observable state g, of the object. This

state of the object consists of its class and pose relative to the camera. In the context of a
Bayesian approach, the knowledge on the object’s state is given in form of the a poste-
riori density p(q:|f+, at—1, ft—1,- .., ao, fo) that is calculated by the classifier. In [2]
it is discussed how to represent and evaluate this density with particle filter approaches.
From the viewpoint selection’s perspective, this density contains all the necessary in-
formation, so that the following density definition meets the Reinforcement Learning
requirements:

s¢ = p(qi| fe,ai—1, fi—1,..., a0, fo))

Additionally, the classifier returns a so called reward r;, which measures the quality
of the chosen viewpoint. For a viewpoint that increases the information observed so
far, the reward should have a large value. A well-know measure for expressing the
informational content that fits our requirements is the entropy

Tt :_H(St):_H(p(qt|ftaa't—17ft—17"'aa'07f0)) . (3)

It is important to notice that the reward should also include costs for the camera move-
ment and object classification. This topic will be discussed in section 3.

At time ¢ during the decision process, i.e. the selection of a sequence of viewpoints,
the goal will be to maximize the accumulated and weighted future rewards, called the
return

R; = Z V' Tepnt1 = — Z Y"H(st4n+1) withy € [0;1]. 4)
n=0 n=0

The weight v defines how much influence a future reward at time ¢ + n + 1 will have
on the overall return R;. So, to meet the demands of this paper, a v > 0 is required
since we make use of a multi-step approach. Of course, the future rewards cannot be
observed at time step . Thus, the following function, called the action-value function
Q(s, a)

Q(s,a) :E{Rt|5t = S,0a :a} (5)

is defined, which describes the expected return when starting at time step ¢ in state s
with action a. In other words, the function Q(s, @) models the expected quality of the
chosen camera movement a for the future, if the classifier has returned s before.

Viewpoint selection can now be defined as a two step approach: First, estimate the
function Q(s, @) during training. Second, if at any time the classifier returns s as result,
select that camera movement which maximizes the expected accumulated and weighted
rewards. This function is called the policy

7(s) = argmax Q(s,a) . (6)
a

The key issue of course is the estimation of the function Q(s, @), which is the basis
for the decision process in (6). One of our demands is that the selection of the most
promising view should be learned without user interaction. Reinforcement Learning
provides many different algorithms to estimate the action value function based on a
trial and error method [8]. Trial and error means that the system itself is responsible for
trying certain actions in a certain state. The result of such a trial is then used to update
Q(-,-) and to improve its policy .

In Reinforcement Learning, a series of episodes are performed: Each episode k
consists of a sequence of state/action pairs (sf,af),t € {0,1,...,T}, with T steps

at most. Each performed action a; in state s; results in a new state s;4;. During the

episode, new returns ng) are collected for those state/action pairs (s¥, a¥) which have

been visited at time ¢ during the episode k. At the end of the episode the action-value

function is updated. In our case, so called Monte Carlo Learning [8] is applied and the

function Q(-, -) is estimated by the mean of all collected returns Rgi) for the state/action

pair (s, a) for all episodes.

As a result for the next episode one gets a new decision rule 741, which is now
computed by maximizing the updated action value function. This procedure is repeated
until 71 converges to the optimal policy. The reader is referred to a detailed introduc-
tion to Reinforcement Learning [8] for a description of other ways for estimating the
function Q(-, -). Convergence proofs for several algorithms can be found in [1].

Since most of the algorithms in Reinforcement Learning treat the states and ac-
tions as discrete variables, a way to extend the algorithms to continuous Reinforcement
Learning is to approximate the action-value function @(s, a) which can be evaluated
for any continuous state/action pair (s, a). Basically, this approximation is a weighted
sum of the action-values Q(s’, a’) of all previously collected state/action pairs. All the
collected action-values Q(s’, a’) are referred as (Q-base throughout this paper. For the
exact calculation of Q(s, a) please refer to [3].

Viewpoint selection, i.e. the computation of the policy 7, can now be written, ac-
cording to (6), as the optimization problem

7(s) = argmax Q(s, a) . @)

This problem (7) can be solved by global optimization techniques. In this work we use
the Adaptive Random Search algorithm (ARS) [9] combined with a local simplex.

3 Integration of costs

Referring to the previous sections we first have to integrate the costs of an action into
the reward of Reinforcement Learning. This is done by adding a cost term C'(a;) to the
reward in (3) yielding

rip1 = —H(si41) — Clay) (8)

It is now necessary to take a closer look at the detailed modeling of those costs to be
able to understand its influence on the system-determining reward and its interaction
with H (s¢11). In general, the description is

. At g

Clay) = ZZ Ki Ty =K -x; with x4, = . 9)
where index ¢ provides a handle to the ith element of an action a an agent is actually
able to perform within a given environment. Next to this, every action component a; ;
can be split into an amount of z; ; unit actions a;, for every time step. Latter ones have

to be linked with a specific cost-factor x; in order to determine (9).
While now a;, as well as x; can take influence on the cost of an action we decided
to let the user choose all a;, in a meaningful way beforehand, whereas ~; will be the

crucial, variable parameter for affecting the system behavior via C(a;). Here the user
is asked for ¢ values of absolute type which might be difficult to acquire in a real world
environment since they might be influenced by various conditions. But what is essential
to be provided is at least a constant relation 7+ between all involved cost-factors, which
are likely to be achieved appropriately, as they might compare intuitive aspects like
the time two different unit action components will use to execute or the energy use of
moving compared to that of zooming, for example. Doing so, (9) is no longer dependent
on kK, but just on a single x;, typically 1, and the given relations m;.
i
1 Zz mg - Tt 3 m; = K1 (]O)
The problem occurring here is the theoretically unlimited range of x; combined
with its independency of H (s;41) in general. So just choosing the first cost-factor ran-
domly or by sense of proportion would mostly lead to an imbalance between the terms
of the sum in (8), that is the system is either almost exclusively influenced by the curve
of —H (s¢+1) or just trying to reduce added costs without regarding the entropy based
reward. While the user might be able to choose a sufficient value for x; in a simple
environment beforehand, he will surely fail when actions and rewards become more
complex. So the only way, apart from gaining it empirically, is to learn a cost-factor
fitting the entropy based reward’s order of magnitude and then integrate it into the Re-
inforcement Learning process.
Consequently, we have to introduce a criterion for rating different x; while naturally
not integrating s into this criterion directly. Regarding our demands we are eager for a
cost-factor leading the agent to acquire an entropy based reward as high as possible on
the one hand, while causing as little cost as possible on the other. To be more precise,
we do not seek to reduce the costs themselves but the mixed and weighted amount of
the various cost generating unit actions a;, . Doing so, the x; under testing has no direct
influence on its own rating. It just affects the decision process of the Reinforcement
Learning regarding (10), resulting in eventually different actions to be taken. So using

a rating function H() H()
—11(S¢4+1 —L1(St41
f(“l) = Z'wti'mi = Clar) an

such a change in behavior will affect the denominator directly and usually also the
nominator, leading to a different rating for the appropriate ~ .

While (11) is laid out for a single-step task, the intention of this paper requires ex-
panding it to work with multi-step problems up to episode length 7'. Therefore using the
information content’s difference of consecutive views A(—H (s¢41)) = —H (S¢41) +
H (s;), the equation is changed to

K1

Y ACHGw)) X A-H(si)

flir) = E5— == =CBR . (12)
PIDIEL 3, o
t=0 i=1 t=0

At this point, it becomes obvious why to use a multi-step approach. Instead of cal-
culating a conjoint, single sum of the nominator and denominator in (12) for each time

step this is done separately since we would like to find one 1 that maximizes the nom-
inator over an entire episode while minimizing the denominator over an entire episode
at the same time. So actually we do not care about the ratings of every single time step,
what a combined sum would imply. Furthermore, matching this demand we need to pro-
vide a multi-step approach for Reinforcement Learning with v > 0, because otherwise
calculating such a conjoint sum would always result in the same rating as in (12).

When finally applying each k1 to be tested to several episodes within the training
phase of Reinforcement Learning, the one resulting in the highest values for (12) on
average is regarded to be the optimal one. A further assumption made in our approach
is the permanent existence of an action component a; ,, in (1) related to taking views.
This turns out to be quite useful since our demand always is to solve the task with the
minimal amount of views if additional costs allow to do so. Moreover (12) will be called
the CBR for cost-benefit ratio in the following due to its appearance.

4 Learning an appropriate cost-factor

So far, the two main issues of our viewpoint selection approach were described. On the
one hand, it is necessary to learn a cost-factor 1, and on the other hand a regular im-
provement of the (Q-base, influenced by the costs, is needed. Therefore, a consequential
first thought is to just perform a whole training phase with a fixed x; and to repeat this
for all cost-factors one would like to examine. Then comparison could simply be done
by using (12) in a global way, i.e. by calculating the average of all episodes’ CBR. As
this process would result in a maximal CBR for a certain x;, it is just a question of
iterations to get closer to the global maximum. Although this would work for sure, the
drawback is obvious since we would have to perform a multiple of training episodes,
which becomes unbearable soon. For this reason, the following three subchapters will
introduce mainly independent approaches for keeping the amount of necessary episodes
within the training phase as small as possible.

4.1 Expanding the QQ-base

So, a mostly parallel procedure for - and Reinforcement Learning had to be found
while handling the occurring interdependencies at the same time. Regarding this, the
main problem turned out to be the fact that a Q(s’, a’) learned with k1, usually does
not provide a good strategy when using ~1,. Thus already executed episodes might store
information in the (Q-base that is completely useless or even harmful for later evaluation
if k1 is completely different. This consequently results in a lot of episodes executed for
nothing and finally missing for providing a more reliable set of reference values.

To reduce this drawback in a first instance an expansion was added to all the Q(s’, a’)
in the ()-base. While so far just storing state s;, action a; and Q(s’, a’) itself, addition-
ally all actions a;,, temporally following time ¢, all afflicted single-step entropy based
rewards —H (s;4,,) and the k1 those steps were performed with earlier, will now be
linked to and stored with their Q(s’, a’). Those elements L’ at n time steps after fol-
lowing a} in s} are then accessible via

L'(Q(sy,a),t+n) =Ly, with L' € {a,—H(s),k1}. (13)

Please note that regarding the convergence criterion of Reinforcement Learning,
episodes’ steps are performed randomly (e = 0) at the beginning of the training phase
and get an increasingly higher probability € of being performed greedily by applying (7)
when training lasts. If now a time step is only followed by random actions, we can find
out the stored, but actually not agent-influencing history information L;__,, and replace
it with the currently valid parameters, e.g. the current . Thus, random episodes, which
mainly appear at the beginning of a training phase, can be used as a common database
for all k; to be tested. Of course, even greedy steps or whole episodes of an earlier
evaluated k1, can serve as such a random base for each k1.

4.2 Demands on parallel learning

Having a commonly usable base of random actions and ratings this way, the actual
search for k1 can begin. To do so, an optimized search within a theoretically unlim-
ited, but actually generously chosen, range of x; is performed via an Adaptive Random
Search algorithm [9]. But an enormous problem occurring here again refers to the inter-
dependencies in - and Reinforcement Learning since the latter needs to have greedy
steps as well as random steps within one episode. On the other hand «-learning would
prefer to rate only episodes performed completely greedily in order to achieve the true
CBR. Since the demand is to parallelize the learning algorithms, a compromise has to be
found. So what is done is that each first step in an episode is performed greedily, while
each following step might be either greedy or random. This proceeding turns out to be
acceptable, because first steps should be evaluated well enough within the preceding,
all-random training phase, resulting in no drawback for the Reinforcement Learning.

If then an episode’s ith step is eventually random we apply an originally Reinforce-
ment Learning sub-strategy to the x-learning, namely the Q-Learning [10], which is
called an off-policy strategy but has been shown to converge to the results of the com-
mon on-policy calculation. The method is to just replace the rewards and costs that
would have been gained if finishing the episode greedily, by those that are stored in
the one Q(s’, a’) providing the most influential component when calculating Q(s, a),
if continuing greedily. This Q(s’, a’) will be called Q(s', a’) from now on. Since each
Q(s', a’) stores an array of experienced rewards and actions over time (see section 4.1),
these rewards can now be accessed with the help of (13), leading to (14, 15) where the
approximative calculations of the components in (12) are shown. Doing so forces the al-
gorithm to calculate one extra action finding optimization step even though proceeding
in a random way actually, but assures we do not lose the whole episode, i.e. not having
performed all the episode’s eventually preceeding optimization iterations for nothing
and also gaining an at least approximative CBR.

-1 T-1
Z A(—H(s¢41)) = Z(A(*H(s)))(@(s;,w(s;),t +1) ; a, € random (14)
t=p t—p

T-1 T—1

Z Cl(ibt) _ Z C'F(f) (@(S;,W(s;),t) ; ap € random (15)

t=p t=p

Obviously a rating for x; becomes more reliable when step number p becomes
higher since the approximation is over less steps, but it also depends on the quality of
the (Q-base growing continuously within a training phase.

4.3 Providing comparability

Given the (-base learning supporting feature of complete randomness in choosing each
episode’s starting position, this constitutes another problem when trying to learn x;
simultaneously. So because of having to compare CBRs of episodes with generally
different starting points, x1, might be disadvantaged to 1, right from the start if the
initial position is worse in a global manner, i.e. if reaching best view points at a greater
distance on average. Thus an objectively better x; might be rated worse just because
of the awkward initial position of its associated episode. Since we need to provide
comparability, the character of an initial position has to influence x-learning as well,
leading to the definition of a state quality Z(s;) (16) and its integration to the calculation
of CBR (17).

o, V(st) da =
' tz K—l(Q(S;,a;),t)
=p
CBRpew = CBR - Z(s9) ™" (17)

By integrating over the expected long-run rating of all possible immediate actions
a; in current state s; in (16) one calculates a state dependent rating, while the normal-
ization in the denominator of Z(s;) assures we are able to compare even 1 learned
with different object classes or between episodes occurring at larger distances in the
training phase. Integration into the CBR then has to be done inversely since each x
rated by an episode with a convenient starting position should be devaluated adequately
and vice versa. It is worth annotating that there is no need or benefit in applying Z(s:)
to any other states s¢~(reached within an episode as those are not acquired randomly
but are already part of the strategy followed with the actual «;.

Recalling section 2, fortunately most of the above mentioned work has already be
done. This is because during the ARS-simplex optimization process (7) for finding the
next best action concerning the Q-base, a huge amount of actions has to be evaluated
anyway. Noticing that there is a global optimization first in the ARS-simplex, we can
just take these global actions’ results for calculating Z(s¢) since the range of actions is
sufficiently and almost equally covered, approximately representing the prior integral.

S Experimental results

For showing the resulting effect of cost integration, a comprehensible viewpoint se-
lection task was chosen, having to differentiate four kinds of similar cups with either
letter A or B on the one side and numeral 1 or 2 at the opposing point (fig.2). The
agent is just able to move on a circular line around the cup while each view within
the range of + 60 degrees from a character’s center (90° resp.270°) could be reason-
ably taken for classification, but with decreasing reliability. When applying the intro-
duced algorithms to this problem there is just one cost-factor ratio Z—f to be considered,
where k1 is set to be the cost of moving the agent by one degree and xo represents
the cost of taking another view. The Reinforcement Learning technique was chosen to
be Monte Carlo Learning with v = 0.2 and a maximal episode length of five steps.

Learning was then done with 800
training episodes for each cost-
factor relation in tab.1, whereas
the initial 200 episodes were per-
formed exclusively at random for
acquiring a reliable database. Dur-
ing the following 600 episodes the
probability of greediness was cho-
sen to increase in a linear way
up to e = 1. Taking different ra-
tios m; !, tab.1 shows the actually
learned k1, the averaged resulting
classification rate, the resulting averaged amount of additionally taken views and the
averaged performed move length within an episode. Concerning the classification rate,
it has to be noticed that this environment was chosen to be very accommodating for
keeping the side-effects small in order to bring out the decisive results more clearly. A
pre-limitation of 1 € [0.0001;0.1] was arranged.

Fig.2. Arrangement of the evaluated viewpoint
selection task

| mgl ||1earned K1 * 104|classiﬁcati0n rate [%]|views/episode|move[°]/episode|
without costs - 100 2.47 197.12
1:100000 692.83 100 2.47 198.02
1:10000 937.29 100 2.47 197.33
1:1000 350.23 100 2.48 195.49
1:100 17.23 100 2.51 190.80
1:80 3.30 100 2.55 181.37
1:60 9.46 100 2.59 165.67
1:50 471 100 2.66 141.88
1:40 24.13 89 3.02 112.82
1:30 24.76 41 5.17 30.55
1:10 28.39 39 5.60 7.96

Table 1. Resulting behavior for different cost-factor ratios

Regarding tab. 1, it becomes obvious that the system is able to change its behavior
decisively when applying costs to the agent’s actions. The results show that for this spe-
cial environment we enabled the agent to save up to more than 50 degrees (~ 25%) of its
rotational movement, compared to a former cost-insensitive learning, without reducing
the classification rate. This benefit is due to the fact that the agent now does not reach
for the absolute best view on each side of the cup any more, but founds its classification
on a less reliable, but obviously still satisfying viewpoint if a gain in cost reduction is
available this way. Since doing so is always afflicted with the risk of taking a needless
view, this earning increasingly declines when taking views becomes more expensive.

Furthermore we even got the chance of influencing the system by small ms in a
way that mostly prevents correct classification if this becomes too expensive, which
also appears to be intuitive and meaningful. And without losing any prior abilities we
can still simulate a cost-insensitive system by just taking extremely large values for
ma, as the first lines of tab.1 prove. This is due to reserving a cost component for taking
views in combination with initiating a multi-step approach.

10

6 Summary and future work

In this paper it was shown how to expand an already existing Reinforcement Learn-
ing based viewpoint selection problem to a more foresighted version. Since the task of
object classification could already be solved in an optimal way by taking a minimal
amount of views, attention was towards also considering any kind of costs appearing at
the same time, e.g. the agent’s movement. Integration of those costs to the learning pro-
cess was revealed, where costs need to be settled in an appropriate range in dependency
of the environment’s entropy based reward. To do so, a rating function was introduced
for learning an appropriate single cost-factor the problem could be reduced to.
Therefore, the main attention was on not increasing the effort of pure, cost-insensi-
tive learning, e.g. the amount of episodes, in a significant manner. So parallel strategies
of the basic Reinforcement Learning and the newly introduced cost-factor learning were
developed, regarding the reusability of already obtained values as well as coordinating
the various differing demands of both techniques at steps within a training phase.
Upcoming work should now tend towards approaches for rating arbitrary cost-
factors even by episodes performed with completely different cost-factors, and for even-
tually making use of completely random episodes for rating. The ability to provide a
rating as often as possible is essential, since tasks with broadly higher dimensional ac-
tion spaces call for a more founded and more reliable evaluation of the cost-factor in
order to still find the optimum, while furthermore the cost-factor’s reasonable range
should become barely pre-limitable beforehand, leading to a larger search space.

References

1. Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Bel-
mont, Massachusetts, 1995. Volumes 1 and 2.

2. F. Deinzer, J. Denzler, and H. Niemann. On Fusion of Multiple Views for Active Ob-
ject Recognition. In B. Radig, editor, Mustererkennung 2001, pages 239-245, Heidelberg,
September 2001. Springer.

3. F. Deinzer, J. Denzler, and H. Niemann. Viewpoint Selection — Planning Optimal Sequences
of Views for Object Recognition. In N. Petkov and M. Westenberg, editors, Computer Anal-
ysis of Images and Patterns — CAIP 2003, LNCS 2756, pages 65-73, Heidelberg, August
2003. Springer.

4. C. Elkan. Cost-Sensitive Learning and Decision Making When Costs Are Unknown. In
Proceedings of the 17th International Conference on Machine Learning, 2000.

5. K.S. Hong, K. Ikeuchi, and K.D. Gremban. Minimum Cost Aspect Classification: A Module
of a Vision Algorithm Compiler. In 10th International Conference on Pattern Recognition,
pages 65-69, Atlantic City, USA, June 1990.

6. K. Klein and V. Sequeira. View Planning for the 3D Modelling of Real World Scenes.
In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 943-948, Takamatsu, Japan, 2000.

7. L. Paletta and A. Pinz. Active Object Recognition by View Integration and Reinforcement
Learning. In Robotics and Autonomous Systems, vol. 31, pages 71-86, 2000.

8. R.S. Sutton and A.G. Barto. Reinforcement Learning. A Bradford Book, Cambridge, Lon-
don, 1998.

9. A. Térn and A. Zilinskas. Global Optimization, volume 350 of Lecture Notes in Computer
Science. Springer, Heidelberg, 1987.

10. C. Watkins and P. Dayan. Q-learning. In Machine Learning, 8(3/4), pages 279-292, 1992.

