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Abstract. In this paper, we present a linked-list based encoding scheme
for multiple objectives based genetic algorithm (GA) to identify clusters
in a partition. Our approach obtains the optimal partitions for all the
possible numbers of clusters in the Pareto Optimal set returned by a
single genetic GA run. The performance of the proposed approach has
been tested using two well-known data sets, namely Iris and Ruspini.
The obtained results are promising and demonstrate the applicability
and effectiveness of the proposed approach.
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1 Introduction

In this paper, a new scheme is proposed for encoding clustering solutions into
chromosomes. The proposed representation forms a linked-list structure for ob-
jects in the same cluster. The genetic operators modify the chromosomes by
altering the links. Also, we deal with the partitional clustering problem by using
a multi-objective GA [15] to minimize Total Within Cluster Variation (TWCV),
together with the number of clusters. TWCV [17] is a measure which denotes
the sum of the average distance of cluster elements to cluster center. If this
measure is used as the sole objective in the search, GA will tend to reduce the
size of the clusters and eventually will form clusters with single elements where
the variation turns out to be zero. Hence, traditionally, a prior specified number
of clusters is needed for GA based k-clustering approaches treating TWCV as
the single objective function. The other objective (minimizing the number of
clusters) effectively handles this.



The new representation proposed in this paper is able to encode the solution
space in fixed-length chromosomes. It enables an efficient exploration of the
solution space. Together with the use of multi-objective GA, this approach can
be extended to deal with the general clustering problem where the optimum
number of clusters is unknown. The Pareto Optimal set [15], obtained at the
end of the run provides solutions with the optimum TWCYV for various potential
numbers of clusters.

Two well-known data sets Iris [3] and Ruspini [22] have been used in the
experiments to demonstrate the applicability, usefulness and effectiveness of the
proposed approach. These data sets have been widely used as benchmark prob-
lems for testing different techniques, and their corresponding optimal clustering
is known. Hence, it is easy to evaluate the performance of a clustering method
by using these data sets.

The rest of the paper is organized as follows. The objective functions used
are discussed in Section 2. A closer look at the proposed approach is presented
in Section 3. The experimental results obtained on two well-known data sets are
reported in Section 4. Section 5 is conclusions.

2 The Objective Functions

Many optimization problems are multi-objective by nature. The classical ap-
proach to such problems is to use a single objective function which is obtained by
a linear combination (weighted sum) of multiple objectives. Another approach
is to treat different objectives as different constraints and use thresholds and
penalties during the search. However, the usage of weights and penalties has
been clearly proved problematic in the domain of GA. In our approach, the
Niched Pareto Genetic Algorithm described in [15] is used in order to minimize
the following two objectives.

1. Total within cluster variation (TWCV), which has been effectively used for
the k-clustering problem.
2. Number of clusters.

The formal definition of TWCYV is given in [17] as follows. Let the clustering
problem be partitioning n objects, each has d different properties, into k different
groups. So, each object can be represented as a vector with dimension d, and
the collection of these objects would be a matrix X, where entry =;; denotes the
4" property of the i*" object. Then, another matrix W can be defined as:

o — 1,if it pattern belongs to k' cluster. (1)
* = 0, otherwise

The following two properties will hold for the new matrix; w;; € {0,1} and
Eszl w;; = 1, where K is the total number of clusters.
Let ¢ = {ck1, Ck2--., cka} denote the center of the k*" cluster, then
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The within-cluster variation (WCV) of the k' cluster can be defined as
n d
SPW) = win Y (x5 — cxy)? (3)
i=1 j=1
Lastly, TWCYV is defined as

(wij — cxj)” (4)

n d
=1

K K
=
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3 A Closer Look at the Proposed Approach

The most straightforward and the most widely used encoding scheme is Group
Number Encoding [16]. In this scheme, the value of each gene represents the
membership of an object to one of the clusters. Let the set of objects to be
clustered in k groups be O = {01, 02, ..., 0, }. Since one gene is reserved for each
object, the length of the chromosomes will be n. Let V' be a function denoting
the value of a gene in a chromosome. If C = {g1, g2, ..., gn} is a chromosome in
the population, where Vg; € C,1 < V(g;) < k, then V(g;) will denote the cluster
number for object 0;. Two objects, 0; and o; will be in the same cluster if and
only if V(g;) = V(g;).

For example, the sample chromosome 2316736211 would encode the cluster-
ing solution where the first object is in cluster 2, the second in 3 and so on.
However, it is possible to have multiple distinct chromosomes for the same solu-
tion with this encoding. In a clustering process, the naming or the ordering of the
clusters is irrelevant. For instance, renaming cluster 2 to cluster 5 in chromosome
2316736211 creates a new chromosome 5316736511. However, both chromosomes
are mapping to the same clustering solution. The drawbacks of this traditional
encoding are presented in [8], and it is pointed out in [20] that this encoding is
against the minimal redundancy principles set for encoding scheme design. The
remedy proposed in [8] is to use a length variable encoding scheme. It reduces
redundancy of chromosome population, but in the meantime it adds redundancy
inside a chromosome; it needs more genes to encode a solution than traditional
encoding. The other deficiency of the length variable encoding is that it cannot
take advantage of conventional simple crossover and mutation operators. This
gives advantage to the Linear Linkage Encoding presented in this section; it is
a fixed length encoding scheme without any type of redundancy.

Under linkage encoding scheme, although each gene still stores an integer,
the value of the gene no longer directly denotes the membership of an object
but its fellowship - this is the fundamental difference between the group num-
ber encoding and the linkage encoding. Each gene is a link from an object to
another object of the same cluster. Given n objects, any partition on them can
be described as a chromosome of length n. Two objects are in the same group
if either object can be directed to the other object via the links. Without any



constraint, the state of redundancy is just as bad as that of the group number
encoding because the number of feasible chromosomes is still n"™.

Linear linkage encoding is a restricted linkage encoding. Let the n genes be
indexed inside a chromosome from 1 to n. The value of each gene in LL chromo-
some denotes the index of a fellow gene where the objects that corresponding
to these two genes would be in the same cluster. We can also treat the stored
index as an out-link from a node, and if a gene stores its own index, it depicts
an ending node. To qualify an unrestricted linkage chromosome as a valid linear
linkage encoding chromosome, there are two constraints the chromosome must
comply to:

1. The integer value stored in each gene is greater than or equal to its index
but less than or equal to n.

2. No two genes in the chromosome have the same value with the exception
that at most two genes can have the same integer value if the integer is the
index of an ending node.

Formally, let the set of objects to be clustered be O = {01, 09, ...,0,} and let
C ={q1,92,-.,9n} be a sample chromosome in the population. Assume V is a
function that denotes the value of a gene and I is the function which returns its
index. Then, the following two properties hold for the LL encoding.

Vgi € ClI(g;) < V(gi) <nl. (5)
Vgi,9; € ClV(g:) =V (g;) = (i =)

V((i > 7)) A (V(gz) = 1(g:)) (6)

V(i < d) A (V(gy) = 1(g)))]-

The boolean function (¢ : OXO +— {True, False}), which would determine if
two given objects are in the same cluster or not, can be recursively defined. If
o0; and o; are two objects where 7 < j, then

o V(gi) = 1(g5)]V
#l0i205) = {ﬂgk[(i <k <j)Ap(oi,or) ANV (gk) = I(g;)] ")

Linear linkage encoding gets its name because objects in a cluster construct a
pseudo linear path with the only loop allowed being a self loop link to mark the
last node. It can be represented by the labeled oriented pseudo (LOP) graph.

A LOP graph is a labeled directed graph G(V, ), where V(G) = {v1,va, ..., U }.
A composition of G is a partition of V(G) into disjointed oriented pseudo path
graphs G1, Go, ..., G,, with the following properties:

L. Disjoint paths: (J;~, V(G,) = V(G) and for i # j,V(G,) N\ V(G;) =
2. Non-backward oriented edges: If there is an edge e directed from vertex v,
to v, then [ < k.
3. Balanced connectivity:
(a) [£(G)] = [V(9)]
(b) Each G; must have only one ending node with a self referencing directed
edge exists. The ending node has an indegree of 2 and an outdegree of 1.



(¢) Each G; must have only one starting node whose indegree is 0 and out-
degree is 1.

(d) All other |V(G,)|—2 vertexes in G; have both their indegree and outdegree
equal to 1.

Theorem 1: Given a set of objects S, there is one to one mapping between
the chromosomes of LL encoding and the possible partition schemes.

In order to prove this theorem the following lemmas are used.

Lemma 1: Linear linkage encoding is an implementation of the LOP graph.

Lemma 2: Given a set of objects S, there exists one and only one composi-
tion of LOP graph G(V, £) for each partition scheme of S, where |V| = |S].

Note that, there is only one possible ascending order within clusters for a
possible partition scheme. Thus, there exists only one composition of G for each
partition. Reversely, a LOP graph represents only a single partition scheme by
definition. Based on Lemmas 1 and 2, it can be claimed that LL encoding makes
a one-to-one mapping between the chromosomes and clustering solutions.

Corollary : The number of chromosomes corresponding to all possible par-
tition schemes is given by the n** Bell number.

The number of ways a set of n elements can be partitioned into non-empty
subsets is called a Bell number [4]. According to Theorem 1, there is one-to-
one correspondence between the chromosomes of LL encoding and the possible
partition schemes. Hence, the number of chromosomes in consideration would be
denoted by the n'* Bell number B(n), too. Compared to LL encoding scheme,
traditional group number encoding demands GA to work in a solution space of
B”(:L) times larger. When n is 10, % is about 10°.

Although LL encoding keeps only fellowship in genes, it also implies the
membership of each object. Since each cluster must have one starting node and
one ending node, both nodes can be used to identify a cluster. In practice, ending
node is treated as the membership identifier for clusters because it is easier to
detect. Apparently, finding the membership of an object in LL encoding requires
only linear time.

The initial population should include diverse chromosomes. It is intuitive to
achieve this goal by generating random chromosomes, which means each gene
in a chromosome is assigned an integer randomly selected from the range 1 to
n, where n is the number of objects to be clustered. However, the chromosomes
generated this way may violate the restrictions of linear linkage encoding. Based
on the first LL encoding constraint, each integer should be between its index
and the maximum integer index number, inclusive. Therefore, a chromosome
generator for creating each gene based on this constraint would be a better choice
for diversity. Note that, the chromosomes produced this way still would not be
fully complied with the constraints laid for linear linkage encoding. Obviously,
backward links are prevented with this generator, but multiple nodes can link
to the same node, violating the second constraint.

Note that multiple links are allowed during the initialization process. Later,
we will see backward links in a chromosome emerge in the process of the mutation
operation. Therefore, a recovery process is needed after the constructors, and




later other GA operators are employed to rectify a chromosome into its legitimate
format. The Rectifying algorithm used for the recovery process involves two
correction steps. First, backward links are eliminated from a chromosome. Then,
multiple links to a node (except for the ending nodes) are replaced with one link
in and one link out.

The selection process is very similar to that of Niched Pareto GA described
n [15]. A chromosome is said to be fitter or to dominate another one when it is
superior to the latter in terms of all the objective functions used. If only a part
of the objective values of one chromosome are better than the other’s, neither
chromosome is deemed dominant to the other. A chromosome can be compared
to a set of chromosomes. It is dominated by the set if any individual in the set
is fitter than it. Otherwise, the chromosome is not dominated by the set.

When two randomly selected chromosomes competing for a spot in the parent
pool, they are not directly compared with each other. Rather, each is compared
to a comparison set of chromosomes sampled from the current generation. If one
of the competing chromosomes, say A, is dominated by the comparison set and
the other chromosome, say B, is not dominated, then B advances to the parent
pool. However, when both A and B are either dominated or not dominated
by the set, the niche count of each chromosome is compared. The chromosome
with the smaller niche count gets advantage. Niche count is an indicator of the
solution density around a chromosome in a certain solution population. This
approach encourages even distribution of solutions in the GA population [15].

In each generation, the Pareto dominant set is achieved through a search in
the whole population. Every individual is compared with the rest. If a chromo-
some is not dominated by the rest, it is copied to the Pareto dominant set. The
Pareto dominant set of the last generation contains the optimal solution.

In our experiments, one point crossover is adapted. The operation both allows
different clusters to exchange partial contents and may split a cluster into two.

The classical mutation was implemented for LL-encoding and the test results
were not encouraging. With the classical mutation, the out-link of a node is very
likely to change to a different one, but the new out-link might still point to the
same cluster. This results in no change in the chromosome after being rectified,
and hence lessens the affect of the mutation during the search. The solution is
to make sure that the mutated gene gains a link to a different cluster instead
of just a different node. Also, when the mutated gene is again assigned to its
original cluster, that cluster is split into two. Hence, the mutation might have
two different effects on the chromosome; a sub-group of objects can be moved
to a new cluster or a cluster can be split into two. This new mutation method
changes the membership of set of objects rather than just a single object.

4 Experimental Results

In this section, we report the result of our experiments on two widely used data
sets, namely Iris and Ruspini. The former is a real dataset recording 150 obser-
vations of the three species (Setosa, Versicolor, and Virginica) of iris flowers, all



Table 1. Genetic parameters used for the experiments.

Parameter Value
Number of Experiments 10
Number of Generations 2000
population size (Iris) 800
population size (Ruspini) 500
Niche Comparison Size (selection)| 5
Nitch Radius 5
Nitch Count Size 25
Crossover Rate 0.9
Mutation Rate 0.2

described in four features. The latter is an artificial dataset of two attributes. Its
75 data points naturally form 4 clusters. Originally data points in both datasets
are sorted so that the clusters are easily perceived. To obtain unbiased result,
we reorganized the datasets and all the data points are randomly placed. In
addition, data standardization process is applied to the dataset to neutralize
the effects brought by data attributes of disparage magnitude. We divide each
data element by the maximum value of its dimension to scale all data elements
ranging from 0 to 1. In our experiments, two GAs are developed. Apart from
the encoding schemes, all GA operators are kept the same as described in Sec-
tion 3. The genetic parameters are fixed for all GA runs and they are presented
in Table 1.

Note that the multi-objective GA tries to minimize TWCV for all possible
number of clusters. For the Iris data set, the possible number of clusters ranges
from 1 to 150. The single cluster is the case where all instances are placed into
the same cluster, and each instance is considered as a separate cluster when
number of clusters increases to 150. This range is between 1 and 75 for the
Ruspini dataset since the number of instances is 75 in this domain. Note that
the optimal number of clusters for Iris and Ruspini is 3 and 4, respectively. Hence,
TWCYV values obtained for smaller number of clusters is of more interest.

For Iris, the change in TWCV is quite stable down to 3 clusters. However,
there is a considerable leap between TWCYV values of 2 and 3 clusters. The same
is valid for Ruspini between 3 and 4 clusters. Hence, it is possible to derive
conclusions about the optimum number of clusters by considering the pareto
optimal set obtained at the end of the GA search. In both data sets the optimum
clusters are well separated from others. We realize that in a domain where the
cluster borders are not very clear, the leap at the optimum number of clusters
may not be as clear as the result obtained in these two domains.

Note that Ruspini dataset has only two attributes. It is easy to display the
clusters obtained on this data set as two-dimensional diagrams. In Figure 1 the
best partitions obtained by the Linkage encoding are presented for 3, 4 and 5
clusters. From Figure 1, it can be easily realized that the natural partition of the
dataset is formed by four clusters (Figure 1-b). However, the partitions obtained
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Fig. 1. The best TWCYV values obtained when the number of clusters is: a) 3; b)4; ¢) 5



when the number of clusters is decreased to 3 or increased to 5 are also plausible.
When the number of clusters is 3, two of the clusters that appear in the natural
solution merge into a single cluster (Figure 1-a). On the other hand, one of the
clusters in the natural solution splits into two when the number of clusters is 5.
In this case, a new cluster is created with the elements that seem to be a bit
more separate compared to the other elements in the original class (Figure 1-c).

5 Conclusions

In this paper, a new encoding scheme is proposed for the application of GA to the
clustering problem. This new scheme has been successfully used with the multi-
objective GA which is a powerful optimization technique. The results obtained
on two well-known data sets provide a good insight about the importance and
effectiveness of the new scheme. The analysis carried out clearly notifies that the
new scheme is applicable, useful and effective. Although some extra processes
are needed in order to keep the redundancy low, it has been observed that the
computational cost of these processes is not significant.

The leap in TWCV after the optimum number of clusters seems to be an
important issue about the proposed technique. The experiments demonstrate
that it is expected to observe such a leap for datasets with well separated clusters.
It would be interesting to observe the change in TWCV, in domains where cluster
borders are not clear. In such domains, probably it would not be possible to
directly observe the optimum number of clusters. However, an automatic analysis
of the change in TWCYV values might be helpful to determine the optimum point.
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