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Abstract Assessing the similarity between objects is a prerequisite for
many data mining techniques. This paper introduces a novel approach
to learn distance functions that maximizes the clustering of objects be-
longing to the same class. Objects belonging to a data set are clustered
with respect to a given distance function and the local class density in-
formation of each cluster is then used by a weight adjustment heuristic
to modify the distance function so that the class density is increased in
the attribute space. This process of interleaving clustering with distance
function modification is repeated until a “good” distance function has
been found. We implemented our approach using the k-means cluster-
ing algorithm. We evaluated our approach using 7 UCI data sets for a
traditional 1-nearest-neighbor (1-NN) classifier and a compressed 1-NN
classifier, called NCC, that uses the learnt distance function and cluster
centroids instead of all the points of a training set. The experimental
results show that attribute weighting leads to statistically significant im-
provements in prediction accuracy over a traditional 1-NN classifier for 2
of the 7 data sets tested, whereas using NCC significantly improves the
accuracy of the 1-NN classifier for 4 of the 7 data sets.

1 Introduction

Many tasks, such as case-based reasoning, cluster analysis and nearest-neighbor
classification, depend on assessing the similarity between objects. Defining object
similarity measures is a difficult and tedious task, especially in high-dimensional
data sets.

Only a few papers center on learning distance function from training exam-
ples. Stein and Niggemann [10] use a neural network approach to learn weights
of distance functions based on training examples. Another approach, used by
[7] and [9], relies on an interactive system architecture in which users are asked
to rate a given similarity prediction, and then uses reinforcement learning to
enhance the distance function based on the user feedback.

Other approaches rely on an underlying class structure to evaluate distance
functions. Han, Karypis and Kumar [4] employ a randomized hill-climbing ap-
proach to learn weights of distance functions for classification tasks. In their



approach k-nearest-neighbor queries are used to evaluate distance functions; the
k-neighborhood of each object is analyzed to determine to which extend the class
labels agree with the class label of each object. Zhihua Zhang [13] advocates the
use of kernel functions and multi-dimensional scaling to learn Euclidean met-
rics. Finally, Hastie et. al. [5] propose algorithms that learn adaptive rectangu-
lar neighborhoods (rather than distance functions) to enhance nearest-neighbor
classifiers.

There has also been some work that has some similarity to our work under
the heading of semi-supervised clustering. The idea of semi-supervised cluster-
ing is to enhance a clustering algorithm by using side information that usually
consists of a “small set” of classified examples. Xian’s approach [12] transforms
the classified training examples into constraints: points that are known to belong
to different classes need to have a distance larger than a given bound. He then
derives a modified distance function that minimizes the distance between points
in the data set that are known to belong to the same class with respect to these
constraints using classical numerical methods ([1] advocates a somewhat similar
approach). Klein [6] proposes a shortest path algorithm to modify a Euclidean
distance function based on prior knowledge.

This paper introduces an approach that learns distance functions that maxi-
mize class density. It is different from the approaches that were discussed above
in that it uses clustering and not k-nearest-neighbor queries to evaluate a dis-
tance function; moreover, it uses reinforcement learning and not randomized hill
climbing or other numerical optimization techniques to find "good" weights of
distance functions.

The paper is organized as follows. Section 2 introduces a general frame-
work for similarity assessment. Section 3 introduces a novel approach that learns
weights of distance functions using clusters for both distance function evaluation
and distance function enhancement. Section 4 describes our approach in more
depth. Section 5 discusses results of experiments that analyze the benefits of
using our approach for nearest-neighbor classifiers. Finally, Section 6 concludes
the paper.

2 Similarity Assessment Framework Employed

In the following a framework for similarity assessment is proposed. It assumes
that objects are described by sets of attributes and that the similarity of different
attributes is measured independently. The dissimilarity between two objects is
measured as a weighted sum of the dissimilarity with respect to their attributes.
To be able to do that, a weight and a distance measure has to be provided for
each attribute. More formally, define:

O = {o1,...,0,} Set of objects whose similarity has to be assessed
0ij Value of attribute att; for object o; € O
Oe; Distance function of the i-th attribute

w; Weight for the i-th attribute



Based on the definitions in the above table, the distance © between two
objects 0; and o9 is computed as follows:
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3 Interleaving Clustering and Distance Function Learning

In this section, we will give an overview of our distance function learning ap-
proach. Then, in the next section, our approach is described in more detail. The
key idea of our approach is to use clustering as a tool to evaluate and enhance
distance functions with respect to an underlying class structure. We assume that
a set of classified examples is given. Starting from an initial object distance func-
tion d;nt, our goal is to obtain a “better” distance function dge0q that maximizes
class density in the attribute space.
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Figure 1. Visualization of the Objectives of the Distance Function Learning Process

Fig. 1 illustrates what we are trying to accomplish; it depicts the distances
of 13 examples, 5 of which belong to a class that is identified by a square and
8 belong to a different class that is identified by a circle. When using the initial
distance function d;,;+ we cannot observe too much clustering with respect to the
two classes; starting from this distance function we like to obtain a better dis-
tance function dge0q so that the points belonging to the same class are clustered
together. In Fig. 1 we can identify 3 clusters with respect to dgooq, 2 containing
circles and one containing squares. Why is it beneficial to find such a distance
function dg0q4? Most importantly, using the learnt distance function in conjunc-
tion with a k-nearest-neighbor classifier allows us to obtain a classifier with high
predictive accuracy. For example, if we use a 3-nearest-neighbor classifier with
dgooq it will have 100% accuracy with respect to leave-one-out cross-validation,
whereas several examples are misclassified if d;,;; is used. The second advantage
is that looking at dgooq itself will tell us which features are important for the
particular classification problem.



There are two key problems for finding “good” object distance functions:

1. We need an evaluation function that is capable of distinguishing between
good distance functions, such as dg.04, and not so good distance functions,
such as d;p;t-

2. We need a search algorithm that is capable of finding good distance functions.

Our approach to address the first problem is to cluster the object set O with
respect to the distance function to be evaluated. Then, we associate an error with
the result of clustering process that is measured by the percentage of minority
examples that occur in the clusters obtained.

Our approach to the second problem is to adjust the weights associated
with the i-th attribute relying on a simple reinforcement learning algorithm
that employs the following weight adjustment heuristic. Let us assume a cluster
contains 6 objects whose distances with respect to att; and att, are depicted in
Fig. 2:
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Figure 2. Idea Underlying the Employed Weight Adjustment Approach

If we look at the distribution of the examples with respect to att; we see that
the average distance between the majority class examples (circles in this case) is
significantly smaller than the average distance considering all six examples that
belong to the cluster; therefore, it is desirable to increase the weight w, of atty,
because we want to drive the square examples "into another cluster" to enhance
class purity; for the second attribute atts the average distance between circles is
larger than the average distance of the six examples belonging to the clusters;
therefore, we would decrease the weight ws of atts in this case. The goal of these
weight changes is that the distances between the majority class examples are
decreased, whereas distances involving non-majority examples are increased. We
will continue this weight adjustment process until we processed all attributes
for each cluster; then we would cluster the examples again with the modified
distance function (as depicted in Fig. 3), for a fixed number of iterations.

4 Using Clusters for Weight Learning and Distance
Function Evaluation

Before we can introduce our weight adjustment algorithm, it is necessary to
introduce the notations in Table 1 that are later used when describing our algo-
rithms.
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Figure 3. Co-evolving Clusters and Distance Functions

As discussed in [4], searching for good weights of distance functions can be
quite expensive. Therefore in lieu of conducting a “blind” search for good weights,
we like to use local knowledge, such as density information within particular clus-
ters, to update weights more intelligently. In particular, our proposed approach
uses the average distances between the majority class members! of a cluster and
the average distance between all members belonging to a cluster for the purpose
of weight adjustment. More formally, let:

w; be the current weight of the i-th attribute

o be the average normalized distances for the examples that belong to
the cluster with respect to ©;

i be the average normalized distances for the examples of the cluster

that belong to the majority class with respect to ©;

Then the weights are adjusted with respect to a particular cluster using formula
W:

w; = w; + aw;(o; — ;) (1)

with 1 > a > 0 being the learning rate.

In summary, after a clustering? has been obtained with respect to a distance
function the weights of the distance function are adjusted using formula 1 iter-
ating over the obtained clusters and the given set of attributes. It should also
be noted that no weight adjustment is performed for clusters that are pure or
for clusters that only contain single examples belonging to different classes.

Exzample 1. Assume we have a cluster that contains 6 objects numbered 1 through

6 with objects 1, 2, 3 belonging to the majority class. Furthermore, we assume

there are 3 attributes with three associated weights w;, ws, w33 which are as-
1

sumed to be equal initially (w; = w2 = ws = 5) and distance matrices Dy,

Dy, and D3 with respect to the 3 attributes are given below; e.g. object 2 has a

L If there is more than one most frequent class for a cluster, one of those classes is
randomly selected to be “the” majority class of the cluster.
2 Clusters are assumed to be disjoint



Set of objects (belonging to a data set)

Number of different classes in O

Number of objects in the data set

Distance matrix with respect to the i-th attribute

Object distance matrix for O

Clustering of O with each cluster Ci being a subset of O

| Number of clusters used

) Clustering algorithm that computes a set of clusters X

,0) = q(w(0,0))|Evaluation function for © using a clustering algorithm 7

q(X Evaluation function that measures the impurity of a clustering
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Table 1. Notations used in the description of our algorithms.

distance of 2 to object 4 with respect to ©1, and a distance of 3 to object 1 with
respect to O3:

Dy D D D
01234371 [011151] [033223] [01.67 2 2 3.672.33
01231 01151 03223 0 1.671.673.33 1.67

0122 0155 0222 0 133 3 3

013 051 013 0 2.332.33

01 05 01 0 2.33
0 0 0 0

The object distance matrix D is next computed using;:

w1 D1 + we Dy + w3 D3
w1 + wo + ws

D =

First, the average cluster and average inter-majority object distances for each
attribute have to be computed; we obtain: o1 = 2, uy = 1.3; 02 = 2.6, uo = 1;
o3 = 2.2, u3 = 3. The average distance and the average majority examples
distance within the cluster with respect to © are: o = 2.29, y = 1.78. Assuming
a = 0.2, we obtain the new weights: {1.14x0.33333,1.32x0.33333,0.84%0.33333}.
After the weights have been adjusted for the cluster, the following new object
distance matrix D is obtained:

01.511.861.953.89 2.20
0 1.511.603.551.51
0 1.26 3.20 3.20
0 2.602.20
0 2.60
0

After the weights have been adjusted for the cluster, the average inter-object
distances have changed to: 0 = 2.31, © = 1.63. As we can see, the examples



belonging to the majority class have moved closer to each other (the average
majority class example distance dropped by 0.15 from 1.78), whereas the average
distances of all examples belonging to the cluster increased very slightly, which
implies that the distances involving non-majority examples (involving objects 4,
5 and 6 in this case) have increased, as intended.

The weight adjustment formula we introduced earlier gives each cluster the
same degree of importance when modifying the weights. If we had two clusters,
one with 10 majority examples and 5 minority examples, and the other with 20
majority and 10 minority examples, with both clusters having identical average
distances and average majority class distances with respect to the attributes,
the weights of attributes would have identical increases (decreases) for the two
clusters. This somehow violates common sense; more efforts should be allocated
to remove 10 minority examples from a cluster of size 30, than to removing 5
members of a cluster that only contains 15 objects. Therefore, we add a factor A
to our weight adjustment heuristic that makes weight adjustment somewhat pro-
portional to the number of minority objects in a cluster. Our weight adjustment
formula therefore becomes:

wi = w; + alw;(o; — 1)

with A being defined as the number of minority examples in the cluster over the
average number of minority examples per clusters.

For example, if we had 3 clusters that contain examples belonging to 3 differ-
ent classes with the following class distributions (9, 3, 0), (9, 4, 4), (7, 0, 4); the
average number of minority examples per cluster in this case is (3+8+4)/3=5;
therefore, A would be 3/5=0.6 when adjusting the weights of the first cluster,
8/5 when adjusting the weights of the second cluster, and 4/5 when adjusting
the weights in the third cluster.

As explained earlier, our approach searches for good weights using a weight
adjustment heuristic that was explained in the previous section; however, how
do we know which of the found distance functions is the best? In our approach a
distance function is evaluated based on the impurity of the clustering X obtained
with respect to the distance function to be evaluated. As explained earlier, im-
purity is measured by the percentage of minority examples that occur in the
different clusters of solution X. A minority example is an example that belongs
to a class different from the most frequent class in its cluster.

5 Experimental Evaluation

5.1 Data Sets Used and Preprocessing

We tested the distance function learning approach for a benchmark consisting of
the following 7 datasets: DIABETES, VEHICLE, HEART-STATLOG, GLASS,
HEART-C, HEART-H, and IONOSPHERE that were taken from the University
of Irvine’s Machine Learning Benchmark [2]. Table 2 gives a short summary for



Dataset n |Classes|Attributes
DIABETES 768 2 8
VEHICLE 846 4 18
HEART-STATLOG|270 2 13
GLASS 214 6 9
HEART-C 303 5 13
HEART-H 294 5 13
IONOSPHERE 351 2 34

Table 2. Data Sets Used in the Experimental Evaluation

each data set. All seven data sets only contain numerical attributes. The numer-
ical attributes in each data set were normalized by using a linear interpolation
function that assigns 1 to the maximum value and 0 to the minimum value for
that attribute in the data set.

5.2 Algorithms Evaluated in the Experiments

In the experiments conducted, we compared the performance of two different
1-nearest-neighbor classifiers that use the learnt weights with a traditional 1-
nearest-neighbor classifier that considers all attributes to be of equal importance.
Moreover, we also compare the results with a decision tree classifier. Details
about the algorithm evaluated will be given in this section.

Our distance function learning approach does not only learn a distance func-
tion ©, but also obtains a centroid and a majority class for each cluster. These
(centroid, majority class) pairs can be used to construct a 1-nearest-neighbor
classifier that we call nearest centroid classifier (NCC) in the following. NCC
is based on the idea that a cluster’s centroid is used as the representative for
a cluster. NCC classifies new examples by assigning the majority class of the
closest centroid to it. NCC uses the learnt distance function @ to determine the
closest centroid. A nearest centroid classifier can be viewed as a “compressed” 1-
nearest-neighbor classifier that operates on a set of k < n cluster representatives,
rather than using all training examples.

In particular, in the experiments the following four algorithms were tested
for the 7 data sets that have been described in the previous section:

1-NN 1-nearest-neighbor classifier that uses all examples of the training set and
does not use any attribute weighting.

LWINN 1-nearest-neighbor classifier with attribute weighting (same as 1-NN
but weights are learnt using the methods we described in Sections 3 and 4)

NCC 1-nearest-neighbor classifier that uses k (centroid, majority class) pairs,
instead of all objects in the data set; it also uses attribute weighting.

C4.5 uses the C4.5 decision tree learning algorithm that is run with its default
parameter settings.



5.3 Experimental Results

Experiments were conducted using the WEKA toolkit [11]. The accuracy of the
four algorithms was determined by running 10-fold cross validation 10 times.
Table 2 shows the accuracy results averaged over the ten runs of cross validation
for each data set/classification algorithm pair.

The weight learning algorithm was run for 200 iterations and best weight
combination found with respect to q was reported. We used 1/j (were j is the
number of attributes) as the initial weights; that is, attributes are assumed to
have the "same" importance initially. Moreover, after each iteration weights were
normalized so that the sum of all weights always adds up to 1. The learning rate
« was linearly decreased from 0.6 at iteration 1 to 0.3 at iteration 200.

A supervised clustering algorithm [3] was used to determine the k-values for
the DIABETES, and VEHICLE data sets, and for the other data sets k-values
were set to 5 times the number of classes in the data set. The decision tree and
1-NN classifiers used in the experiments are the standard classifiers that accom-
pany the WEKA toolkit. The remaining algorithms use two modified WEKA
algorithms: the k-means clustering and 1-NN algorithms. The modifications to
each permit the use of attribute weights when computing object similarity.

We chose the 1-NN classifier as the reference algorithm for the experiments
and indicated statistically significant improvements® of other algorithms over
1-NN in bold face in Table 2. The table also indicates the number of objects
n in each data set, as well as the parameter k that was used when running k-
means. If we compare the 1-nearest-neighbor classifier with our attribute weight-
ing approach (LW1NN), we see that the weight learning approach demonstrates
significant improvements of more than 3.5% in accuracy for the GLASS, and
IONOSPHERE data sets (also outperforming C4.5 for those data sets), but
does not show any statistically significant improvements for the other five data
sets.

Dataset n k 1-NN LWINN NCC C4.5
DIABETES 768 35 70.62 68.89 73.07 74.49
VEHICLE 846 64 69.59 69.86 65.94 72.28
HEART-STATLOG 270 10 76.15 77.52 81.07 78.15
GLASS 214 30 69.95 73.5 66.41 67.71
HEART-C 303 25 76.06 76.39 78.77 76.94
HEART-H 294 25 78.33 717.55 81.54 80.22
IONOSPHERE 351 10 87.1 91.73 86.73 89.74

Table 3. Accuracy for the 4 Classification Algorithms

3 Statistical significance was determined by a paired t-test on the accuracy for each
of the 10 runs of 10-fold cross validation.



Using NCC, on the other hand, demonstrates significant improvements in
accuracy for the DTABETES, HEART-STATLOG, HEART-C, and HEART-H
data sets, which is quite surprising considering the small number of represen-
tatives used by the compressed classifier. For example, for the HEART-C data
set the 303*0.9 objects* in a training set were replaced by 25 (centroid, major-
ity class)-pairs and the distance function that considers every attribute of equal
importance was replaced with the learnt distance function. Moreover, the accu-
racies of the three HEART data sets are at least 1.5% higher than those reported
for C4.5. Again, not surprisingly, for the other data sets reducing the number
of objects used by a nearest-neighbor classifier, results in a reduced accuracy,
sometimes significantly less.

Each run of the weight learning process for each fold was captured through a
set of graphs. Fig. 4 depicts one of those run summaries for the DIABETES data
set. It shows how cluster impurity and weights changed during that particular
run. The DIABETES data set has eight attributes and therefore eight weights
Weight0,...,Weight7 that are initially set to 0.125. The initial impurity was about
25% at the beginning of the run and the minimum impurity of 21% was reached
approximately at iteration 180; the other graphs depict how the 8 weights of the
8 attributes changed iteration by iteration. For example, Weight3 dropped from
its initial value of 0.125 to approximately 0.03 at the end of the run, whereas
Weight5 increased from 0.125 to approximately 0.38 near the end of the run. As
mentioned earlier, weights are normalized prior to clustering; therefore, the sum
of the 8 weights always adds up to 1.

6 Conclusion

The paper presented a novel approach to learn distance functions with respect
to an underlying class structure that uses clusters for both distance function
evaluation and distance function enhancement. We also proposed a novel weight
adjustment heuristic that adapts weights of distance functions based on class
density information in clusters.

The proposed weight learning approach was evaluated using a benchmark
consisting of 7 data sets. Our empirical results suggest that our attribute weight-
ing approach enhanced the prediction accuracy of a 1-nearest-neighbor (1-NN)
classifier significantly for 2 of the 7 data sets. However, our approach does not
only learn a distance function, but also provides a centroid and a majority class
for each cluster. These (centroid, majority class) pairs can be used to construct a
nearest centroid classifier (NCC) that is a "compressed" nearest-neighbor clas-
sifier. Surprisingly, although it uses only a small percentage of the examples
belonging to a data set using NCC lead to significant improvements in accuracy
for 4 of the 7 data sets.

We claim that our approach facilitates the tailoring of distance functions
supporting different perspectives with respect to the data set to be analyzed. For

4 10-fold cross validation only uses 90% of the examples of a data set for training.
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Figure 4. Display of a Run of the Weight Learning Algorithm for the VEHICLE Data

Set

example, one user might be interested in analyzing products with respect to the
time spend for their delivery whereas another analyst is interested in analyzing
products with respect to the profit they produced. Using our approach we would
generate a distance function for each analysis perspective that, we believe, is
particularly important for data warehousing applications, such as those that
rely on OLAP-technology.
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