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Abstract. Neural network learning is the main essence of ANN. There are 
many problems associated with the multiple local minima in neural networks. 
Global optimization methods are capable of finding global optimal solution. In 
this paper we investigate and present a comparative study for the effects of 
probabilistic and deterministic global search method for artificial neural net-
work using fully connected feed forward multi-layered perceptron architecture. 
We investigate two probabilistic global search method namely Genetic algo-
rithm and Simulated annealing method and a deterministic cutting angle 
method to find weights in neural network. Experiments were carried out on 
UCI benchmark dataset. 

1   Introduction 

Artificial neural networks (ANN) are the interconnection of basic units called artifi-
cial neurons. Those are capable of performing classification, learning and function 
approximation. Learning is the main essence of ANN. Learning can be considered as 
a weight-updating rule of the ANN. Most of the neural learning method strictly de-
pends on the architecture of the ANN. The nonlinearity of ANN results in the exis-
tence of many sub-optimal solutions. There are many problems associated with the 
multiple local minima in neural networks [1][2][3]. Some of the aspects with exist-
ing learning methods for MLP can be summarized as the convergence tends to be 
extremely slow, learning constants must be guessed heuristically, convergence to the 
global minimum is not guaranteed. [4]. The global search method guarantees the 
global solution.  

There exist solutions that include multiple starts from randomly chosen initial 
points. Those are simulated annealing, random search, and evolutionary computing 
[5-14]. These methods are probabilistic in nature and they can find the globally op-
timal solution with a certain probability. Hence the solution partly depends on the 
number of iterations of the algorithm. In contrast, there exist deterministic tech-



niques which are capable of finding global optimal solution. Deterministic methods 
include tabu search, branch-and-bound, generalized cutting plane and systematic 
search [11,12]. But the computational costs of these methods are extremely high. 

In this paper we investigate three different global optimization methods to find the 
weights of ANN. Two of them are probabilistic global search method namely genetic 
algorithm, and simulated annealing method respectively. The third one is a recently 
developed cutting angle method of deterministic global optimization [15-17]. 

2   Research Methodology 

In this section we describe Genetic algorithm, Simulated annealing and Cutting 
angle method. 

2.1   Genetic Algorithm 

Genetic algorithm (GA) learning provides an alternative way to learn for the ANN. 
The task involves controlling the complexity by adjusting the number of weights of 
the ANN. The use of GA for ANN learning can be viewed as follows: 

1. Search for the optimal set of weights 
2. Search over topology space 
3. Search for optimal learning parameters 
4. A combination to search for all the above [18] 

The fundamental work in this area was done by Holand, Rechenberg, Schwefel 
and Fogel during the 1970s [19]. Much of the research has focused on the training of 
feed forward networks [20] [21]. Miller et al, reported that evolutionary algorithm 
(EA), which is a slight variation of GA, is a better candidate than other standard 
neural network techniques, because of the nature of the error surface[22] [23]. Those 
characteristics pointed out by miller are 

1. The architecture surface is infinitely large, hence unbounded for possible 
number of nodes and connections 

2. The surface is non-differentiable since changes in the number of nodes and 
connections are discrete 

3. The surface is complex and noisy since the mapping from the architecture 
to the performance is indirect, strongly epistasis, and dependent on the 
evaluation method used. 

4. The surface is deceptive since similar architectures may have quite different 
results 

5. The surface is multi-modal since different architectures may have similar 
performance 

The steps in genetic algorithm are described as follows: 



Step 1:  Initialize all the hidden layer weights using a uniform distribution 
of a closed interval range of [-1, +1]. A sample genotype for the  lower half gene 
from the population pool for n input, h hidden             units, m output, and p number 

of patterns can be written as  hnhhnn wwwwwwwww ............ 212222111211  

where, range(w) initially is set between the closed interval   [-1 +1]. Also, the sam-
ple genotype will vary depending on the connection type as described later.  

Step 2:  The fitness for the population is calculated based on the phenotype 
and the target for the ANN. 

)*( weighthidfnetOutput=  

where hid is the output matrix from the hidden layer neurons, weight is the 
weight matrix output neurons and f is the sigmoid function 
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norm function normalized the fitness of the individual, so the fitness of each in-
dividual population is forced to be within certain  range. 

Step 3:  Generate a random number x from a Gaussian distribution of mean 
0   and standard deviation 1.     

If (x < crossOverRate) 

Select two parents from the intermediate population 

ApplyCrossOver 

  End If 

  Generate another random number y from the same distribution 

  If (y < mutationRate) 
  ApplyMutation 

   End If 



The crossover method that is used for this algorithm is known as linear interpo-

lation with two point technique. Let’s consider two genes 1 2.. hw w w    and 
/ / /
1 2... hw w w  

Two points are selected randomly, lets assume point1 and point2, where 
point1<point2, and point1>1, point2<h 

The two child after the crossover operation will be 

/ / / / // /
int1 int1 int1 1 int1 1 int 2-1 int2-1 int 2 int 21 1 2 2

2 2 2 2 22 2
... ... ...

3 3 3 3 3 3 3
po po po po po po po po h h

w w w w w w w w w ww w w w + ++ + + + ++ +

/ / / / // /
int1 int1 int1 1 int1 1 int2 1 int 2 1 int 2 int 21 1 2 2

2 2 2 2 22 2
... ... ....

3 3 3 3 3 3 3
po po po po po po po po h h

w w w w w w w w w ww w w w + + − −+ + + + ++ +

  For mutation, a small random value between 0.1 and 0.2, is added to all the 

weights. Let us assume a parent string hwww ..21 . After mutation the child string 

becomes εεε +++ hwww |..|| 21 , where ε is a small random number [0.1 0.2], 

generated using a   uniform distribution. 

Step 4:  If the convergence for the GA is not satisfied then goto step 2.2   
Manuscript Preparation 

2.2   Simulated Annealing  

In this section we will describe the Simulated Annealing method. Let us consider 
the following global optimization problem: 

minimize f(x) subject to Xx∈  

 

(1) 

where nRX ⊂ is a compact set. We describe a version of the simulated anneal-
ing (SA) method and its pseudo-code for solving this problem.  

Simulated annealing [24-27] is one of the few successful stochastic methods for 
the practical large-scale problems. Numerical experiments show that SA is success-
ful for many discrete optimization problems. However, for some continuous optimi-
zation problems in high-dimensional space SA meets difficulties.  

Simulated annealing method differs from the traditional descent methods in that 
local search algorithm for a neighbourhood solution search allows not only downhill 
moves, while in an attempt to escape from it allows occasional uphill moves as well. 
The name “simulated annealing” comes from a physical process called annealing, 
the process for growing crystals. 



Starting with an initial solution x, and an initial “temperature’’ T0, which is a pa-
rameter, we obtain a neighbouring solution x′  and compare its cost with that of x. If 

the cost of x′ ' is smaller than that of x, i.e. ( ) ( )xfxf <′ , we accept the new solu-

tion x′ . The same thing would happen if we were applying the local descent 

method. On the other hand, if ( )xf ′  is greater than ( )xf  (in which case any local 

descent algorithm will not accept x′ ), the SA algorithm may accept x′ , but with a 

probability 
0T
xx

e
′∆

−

where xx′∆ is the difference in the costs of x′ and x, i.e. 

( ) ( )xfxf
xx

−′=∆ ′ . This process is carried out for a certain number of times, 

which we call iterations, for each temperature. Then we reduce the temperature ac-
cording to a particular schedule, and repeat.  An essential element of the SA algo-

rithm is the probability 
0T
xx

e
′∆

−

of an uphill move of size xx′∆  being accepted when 

the current temperature is T. This is dependent on both xx′∆ and T. For a fixed tem-

perature T, smaller uphill moves xx′∆ have a higher probability of being accepted. 

On the other hand, for a particular uphill movexx′∆ , a higher temperature results in 
a higher probability for that uphill move to be accepted. In the words of [27], at a 
high temperature any uphill move might be indiscriminately accepted with a high 
probability so that the objective function and the tumbles around the space are not 
very important; as T is decreasing the objective function becomes more and more 
significant; until as T goes to zero the search becomes trapped in the lowest minima 
that it has reached. Simulated Annealing algorithm for solving a practical problem is 
typically implemented in two nested loops: the outer loop and the inner loop. The 
outer loop controls temperatures, while the inner loop iterates a fixed number of 
times for the given temperature. The inner loop is for the problem of specific deci-
sions. The decisions of the outer loop involve the setting of initial temperature (T0), 
the cooling schedule, the temperature length, which is the number of outer loop 
iterations performed at each temperature, as well as the stopping criterion of the 
outer loop. The inner loop of SA typically consists of the following parts:  feasible 
solution space, initial feasible solution, neighbourhood move, objective function 
values, and the decision, which decides whether the decision is found acceptable or 
probability acceptable according to the so-called Metropolis criterion. Denote renew 
the counts of the solution being accepted in the inner loop, N_factor as an input 
parameter, which can be any positive integer, and frozen_num the stopping condition 
for the outer loop.  

The strength of the simulated annealing is that it can deal with highly nonlinear 
models, chaotic and noisy data and many constraints.  It is a robust and general 
technique. Its main advantages over other local search methods are its flexibility and 
its ability to approach global optimality. The algorithm is quite versatile since it does 



not rely on any restrictive properties of the model. The other advantage is that, it 
allows not only downhill moves while in an attempt to escape from local minima, 
occasionally it also allow uphill moves. Hence it doesn’t get stuck to any narrow or 
broad local minima and can improve it further.  

2.3   Cutting Angle Method 

In this section we will describe the Cutting Angle method. The cutting angle 
method is based on theoretical results in abstract convexity [15]. The method calcu-
lates the value of the objective function at certain points. The points are selected in 
such a way that the algorithm does not return to unpromising regions where function 
values are high. The new point is chosen where the objective function can potentially 
take the lowest value. The function is assumed to be Lipschitz, and the value of the 
potential minim is calculated based on both the distance to the neighboring points 
and function values at these points. Let us consider the following global optimization 
problem: 

minimize f(x) subject to Sx∈  (2) 
where the objective function f is an increasing positively homogeneous of degree 

one and the set S is the unit simplex in nR .: 
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where { }nixRxR i
nn ,....,1,0: =≥∈=+ . 

A function f defined nR+  is called increasing if yx ≥ implies ( ) ( )yfxf ≥ . 

The function f is positively homogeneous of degree one if ( ) ( )xfxf λλ =,  for all 
nRx +∈  and 0>λ . 

For a given vector 0, ≠∈ + lRl n , we consider ( ) { }0:,....,1 >== ilnilI . We 

use the following notation for Rc∈ and nRl +∈ : 
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An IPH function is nonnegative onnR+ . We assume that ( ) 0>xf for all Sx∈ . 

It follows from the positiveness of f that I(l) = I(x)  for all Sx∈  and l=f(x)/x. Let 
ke be the kth orthant vector.  
The cutting angle method is as follows: 

Step0: Initialization: Consider the points Sxk ∈ , k=1,…,m, where nm≥ , 

nkforxe kk ,...,1==  and .,....,10 mnkforxk +=≥  Let 

( ) .,...,1,/ mkxxfl kkk ==  Define the function mh : 
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(5)  

And set j=m. 

Step1: Find a solution *x for the problem 

minimize ( )xh j  subject to Sx∈ . (6) 

Step2: Set j = j+1  and *xx j = . 

Step3: Compute ( ) jjj xxfl /= , define the function 

( ) ( ) ( ) ( ) i
k
i

lIijk
i

k
i
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(7)  

 
And go to Step 1.  

3   Experimental Result 

Experiments were conducted using the following real-world benchmark data sets 
from UCI Machine Learning repository: Austral, Breast cancer (Wisconsin) and 
Heart Disease (Cleveland) and Diabetes data. The details of these datasets can be 
obtained from the UCI website. The datasets are described in Table 1. 

 
Table 1: Dataset details 

Dataset Instances Class Attribute 
Austral 690 2 14 

Wisconsin Breast Cancer Databases 699 2 9 
Heart Disease  Cleveland 297 2 13 

Diabetes 768 2 8 
 
The results are compared in terms of test classification accuracy and computation 

time. The following tables (Table 2 & 3) show the classification accuracy and the 
time complexity of the ANN in percentage for all methods and data sets. 

 
Table 2: Classification Accuracy results for all data sets 

Classification Accuracy [%] 
Dataset GA SA CA 
Austral 88.5 89 92.2 

Breast Cancer 96.5 98.8 100 
Cleveland 89.7 87.5 89.7 
Diabetes 82.3 79.8 81.5 

 
 
 



Table 3: Time Complexity results for all data  
CPU Time [s] 

Dataset GA SA CA 
Austral 89 75.4 85.6 

Breast Cancer 75 69.8 70.3 
Cleveland 40 35.5 45 
Diabetes 51 46.5 49.8 

 

3   Analysis 

The following figures (Figure 1, Figure 2) show a comparison of classification ac-
curacy and the time complexity for the three methods. From Figure 1 it is clear that 
CA performed more efficiently compare to SA for all datasets. But GA performed 
slightly better in case of diabetes dataset.  
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Fig1: Comparison of classification accuracy 
 

Comparison of computational time
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Fig2: Comparison of computational time 
 

 
Figure 3 shows the convergence of GA, SA, and CA in astral dataset. Figure 3 

shows that SA has converged much quicker than GA and CA. This is because the 
stopping criterion of SA was number restricted to number of iteration, because each 
iteration in SA takes long time to converge. GA has taken much longer time to con-
verge compare to CA.  
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Figure3: Comparison of Convergence  



4   Conclusion 

This paper presents a comparative analysis of probabilistic and deterministic 
global search method to find neural network weights. The results show that both 
Cutting angle method, and Genetic algorithm performed much better than Simulated 
annealing method for all the dataset. While we compare Genetic algorithm with 
Cutting angle method, we see that that Cutting angle method performed slightly 
better that Genetic algorithm in most of the cases. For diabetes and Heart Disease 
dataset Genetic algorithm performed slightly better than Cutting angle method.  
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