
Comparative analysis of Genetic algorithm, Simulated
annealing and Cutting Angle method for artificial neural

networks

Ranadhir Ghosh, Moumita Ghosh, John Yearwood, Adil Bagirov,

 School of InformationTechnology and Mathematical Sciences, University of Ballarat,
PO Box 663, Ballarat – 3353, Australia

{r.ghosh, m.ghosh, j.yearwood, a.bagirov}@Springer.de

Abstract. Neural network learning is the main essence of ANN. There are
many problems associated with the multiple local minima in neural networks.
Global optimization methods are capable of finding global optimal solution. In
this paper we investigate and present a comparative study for the effects of
probabilistic and deterministic global search method for artificial neural net-
work using fully connected feed forward multi-layered perceptron architecture.
We investigate two probabilistic global search method namely Genetic algo-
rithm and Simulated annealing method and a deterministic cutting angle
method to find weights in neural network. Experiments were carried out on
UCI benchmark dataset.

1 Introduction

Artificial neural networks (ANN) are the interconnection of basic units called artifi-
cial neurons. Those are capable of performing classification, learning and function
approximation. Learning is the main essence of ANN. Learning can be considered as
a weight-updating rule of the ANN. Most of the neural learning method strictly de-
pends on the architecture of the ANN. The nonlinearity of ANN results in the exis-
tence of many sub-optimal solutions. There are many problems associated with the
multiple local minima in neural networks [1][2][3]. Some of the aspects with exist-
ing learning methods for MLP can be summarized as the convergence tends to be
extremely slow, learning constants must be guessed heuristically, convergence to the
global minimum is not guaranteed. [4]. The global search method guarantees the
global solution.

There exist solutions that include multiple starts from randomly chosen initial
points. Those are simulated annealing, random search, and evolutionary computing
[5-14]. These methods are probabilistic in nature and they can find the globally op-
timal solution with a certain probability. Hence the solution partly depends on the
number of iterations of the algorithm. In contrast, there exist deterministic tech-

niques which are capable of finding global optimal solution. Deterministic methods
include tabu search, branch-and-bound, generalized cutting plane and systematic
search [11,12]. But the computational costs of these methods are extremely high.

In this paper we investigate three different global optimization methods to find the
weights of ANN. Two of them are probabilistic global search method namely genetic
algorithm, and simulated annealing method respectively. The third one is a recently
developed cutting angle method of deterministic global optimization [15-17].

2 Research Methodology

In this section we describe Genetic algorithm, Simulated annealing and Cutting
angle method.

2.1 Genetic Algorithm

Genetic algorithm (GA) learning provides an alternative way to learn for the ANN.
The task involves controlling the complexity by adjusting the number of weights of
the ANN. The use of GA for ANN learning can be viewed as follows:

1. Search for the optimal set of weights
2. Search over topology space
3. Search for optimal learning parameters
4. A combination to search for all the above [18]

The fundamental work in this area was done by Holand, Rechenberg, Schwefel
and Fogel during the 1970s [19]. Much of the research has focused on the training of
feed forward networks [20] [21]. Miller et al, reported that evolutionary algorithm
(EA), which is a slight variation of GA, is a better candidate than other standard
neural network techniques, because of the nature of the error surface[22] [23]. Those
characteristics pointed out by miller are

1. The architecture surface is infinitely large, hence unbounded for possible
number of nodes and connections

2. The surface is non-differentiable since changes in the number of nodes and
connections are discrete

3. The surface is complex and noisy since the mapping from the architecture
to the performance is indirect, strongly epistasis, and dependent on the
evaluation method used.

4. The surface is deceptive since similar architectures may have quite different
results

5. The surface is multi-modal since different architectures may have similar
performance

The steps in genetic algorithm are described as follows:

Step 1: Initialize all the hidden layer weights using a uniform distribution
of a closed interval range of [-1, +1]. A sample genotype for the lower half gene
from the population pool for n input, h hidden units, m output, and p number

of patterns can be written as hnhhnn wwwwwwwww 212222111211

where, range(w) initially is set between the closed interval [-1 +1]. Also, the sam-
ple genotype will vary depending on the connection type as described later.

Step 2: The fitness for the population is calculated based on the phenotype
and the target for the ANN.

)*(weighthidfnetOutput=

where hid is the output matrix from the hidden layer neurons, weight is the
weight matrix output neurons and f is the sigmoid function

2

1

()

*

n

i

netO u tpu t net
R M SE rro r

n p
=

−
=

∑

)(ii RMSErrornormrpopRMSErro =

norm function normalized the fitness of the individual, so the fitness of each in-
dividual population is forced to be within certain range.

Step 3: Generate a random number x from a Gaussian distribution of mean
0 and standard deviation 1.

If (x < crossOverRate)

Select two parents from the intermediate population

ApplyCrossOver

 End If

 Generate another random number y from the same distribution

 If (y < mutationRate)
 ApplyMutation

 End If

The crossover method that is used for this algorithm is known as linear interpo-

lation with two point technique. Let’s consider two genes 1 2.. hw w w and
/ / /
1 2... hw w w

Two points are selected randomly, lets assume point1 and point2, where
point1<point2, and point1>1, point2<h

The two child after the crossover operation will be

/ / / / // /
int1 int1 int1 1 int1 1 int 2-1 int2-1 int 2 int 21 1 2 2

2 2 2 2 22 2
...

3 3 3 3 3 3 3
po po po po po po po po h h

w w w w w w w w w ww w w w + ++ + + + ++ +

/ / / / // /
int1 int1 int1 1 int1 1 int2 1 int 2 1 int 2 int 21 1 2 2

2 2 2 2 22 2
...

3 3 3 3 3 3 3
po po po po po po po po h h

w w w w w w w w w ww w w w + + − −+ + + + ++ +

 For mutation, a small random value between 0.1 and 0.2, is added to all the

weights. Let us assume a parent string hwww ..21 . After mutation the child string

becomes εεε +++ hwww |..|| 21 , where ε is a small random number [0.1 0.2],

generated using a uniform distribution.

Step 4: If the convergence for the GA is not satisfied then goto step 2.2
Manuscript Preparation

2.2 Simulated Annealing

In this section we will describe the Simulated Annealing method. Let us consider
the following global optimization problem:

minimize f(x) subject to Xx∈

(1)

where nRX ⊂ is a compact set. We describe a version of the simulated anneal-
ing (SA) method and its pseudo-code for solving this problem.

Simulated annealing [24-27] is one of the few successful stochastic methods for
the practical large-scale problems. Numerical experiments show that SA is success-
ful for many discrete optimization problems. However, for some continuous optimi-
zation problems in high-dimensional space SA meets difficulties.

Simulated annealing method differs from the traditional descent methods in that
local search algorithm for a neighbourhood solution search allows not only downhill
moves, while in an attempt to escape from it allows occasional uphill moves as well.
The name “simulated annealing” comes from a physical process called annealing,
the process for growing crystals.

Starting with an initial solution x, and an initial “temperature’’ T0, which is a pa-
rameter, we obtain a neighbouring solution x′ and compare its cost with that of x. If

the cost of x′ ' is smaller than that of x, i.e. () ()xfxf <′ , we accept the new solu-

tion x′ . The same thing would happen if we were applying the local descent

method. On the other hand, if ()xf ′ is greater than ()xf (in which case any local

descent algorithm will not accept x′), the SA algorithm may accept x′ , but with a

probability
0T
xx

e
′∆

−

where xx′∆ is the difference in the costs of x′ and x, i.e.

() ()xfxf
xx

−′=∆ ′ . This process is carried out for a certain number of times,

which we call iterations, for each temperature. Then we reduce the temperature ac-
cording to a particular schedule, and repeat. An essential element of the SA algo-

rithm is the probability
0T
xx

e
′∆

−

of an uphill move of size xx′∆ being accepted when

the current temperature is T. This is dependent on both xx′∆ and T. For a fixed tem-

perature T, smaller uphill moves xx′∆ have a higher probability of being accepted.

On the other hand, for a particular uphill movexx′∆ , a higher temperature results in
a higher probability for that uphill move to be accepted. In the words of [27], at a
high temperature any uphill move might be indiscriminately accepted with a high
probability so that the objective function and the tumbles around the space are not
very important; as T is decreasing the objective function becomes more and more
significant; until as T goes to zero the search becomes trapped in the lowest minima
that it has reached. Simulated Annealing algorithm for solving a practical problem is
typically implemented in two nested loops: the outer loop and the inner loop. The
outer loop controls temperatures, while the inner loop iterates a fixed number of
times for the given temperature. The inner loop is for the problem of specific deci-
sions. The decisions of the outer loop involve the setting of initial temperature (T0),
the cooling schedule, the temperature length, which is the number of outer loop
iterations performed at each temperature, as well as the stopping criterion of the
outer loop. The inner loop of SA typically consists of the following parts: feasible
solution space, initial feasible solution, neighbourhood move, objective function
values, and the decision, which decides whether the decision is found acceptable or
probability acceptable according to the so-called Metropolis criterion. Denote renew
the counts of the solution being accepted in the inner loop, N_factor as an input
parameter, which can be any positive integer, and frozen_num the stopping condition
for the outer loop.

The strength of the simulated annealing is that it can deal with highly nonlinear
models, chaotic and noisy data and many constraints. It is a robust and general
technique. Its main advantages over other local search methods are its flexibility and
its ability to approach global optimality. The algorithm is quite versatile since it does

not rely on any restrictive properties of the model. The other advantage is that, it
allows not only downhill moves while in an attempt to escape from local minima,
occasionally it also allow uphill moves. Hence it doesn’t get stuck to any narrow or
broad local minima and can improve it further.

2.3 Cutting Angle Method

In this section we will describe the Cutting Angle method. The cutting angle
method is based on theoretical results in abstract convexity [15]. The method calcu-
lates the value of the objective function at certain points. The points are selected in
such a way that the algorithm does not return to unpromising regions where function
values are high. The new point is chosen where the objective function can potentially
take the lowest value. The function is assumed to be Lipschitz, and the value of the
potential minim is calculated based on both the distance to the neighboring points
and function values at these points. Let us consider the following global optimization
problem:

minimize f(x) subject to Sx∈ (2)
where the objective function f is an increasing positively homogeneous of degree

one and the set S is the unit simplex in nR .:







 =∈= ∑

=
+

n

i
i

n xRxS
1

1:
(3)

where { }nixRxR i
nn ,....,1,0: =≥∈=+ .

A function f defined nR+ is called increasing if yx ≥ implies () ()yfxf ≥ .

The function f is positively homogeneous of degree one if () ()xfxf λλ =, for all
nRx +∈ and 0>λ .

For a given vector 0, ≠∈ + lRl n , we consider () { }0:,....,1 >== ilnilI . We

use the following notation for Rc∈ and nRl +∈ :

() ()
()




∉
∈

=
lIiif

lIiiflc
lc i

i 0

/
/ .

(4)

An IPH function is nonnegative onnR+ . We assume that () 0>xf for all Sx∈ .

It follows from the positiveness of f that I(l) = I(x) for all Sx∈ and l=f(x)/x. Let
ke be the kth orthant vector.
The cutting angle method is as follows:

Step0: Initialization: Consider the points Sxk ∈ , k=1,…,m, where nm≥ ,

nkforxe kk ,...,1== and .,....,10 mnkforxk +=≥ Let

() .,...,1,/ mkxxfl kkk == Define the function mh :

() () () 





==

∈≤≤+≤∈≤
xlxlxlxh k

i
lIimkn

k
k
k

nk
i

k
i

lIimk
m kk

minmax,maxmaxminmax
1

(5)

And set j=m.

Step1: Find a solution *x for the problem

minimize ()xh j subject to Sx∈ . (6)

Step2: Set j = j+1 and *xx j = .

Step3: Compute () jjj xxfl /= , define the function

() () () () i
k
i

lIijk
i

k
i

lIi
jj xlxlxhxh

kj ∈≤∈
− ≡







= minmaxmin,max 1

(7)

And go to Step 1.

3 Experimental Result

Experiments were conducted using the following real-world benchmark data sets
from UCI Machine Learning repository: Austral, Breast cancer (Wisconsin) and
Heart Disease (Cleveland) and Diabetes data. The details of these datasets can be
obtained from the UCI website. The datasets are described in Table 1.

Table 1: Dataset details

Dataset Instances Class Attribute
Austral 690 2 14

Wisconsin Breast Cancer Databases 699 2 9
Heart Disease Cleveland 297 2 13

Diabetes 768 2 8

The results are compared in terms of test classification accuracy and computation

time. The following tables (Table 2 & 3) show the classification accuracy and the
time complexity of the ANN in percentage for all methods and data sets.

Table 2: Classification Accuracy results for all data sets

Classification Accuracy [%]
Dataset GA SA CA
Austral 88.5 89 92.2

Breast Cancer 96.5 98.8 100
Cleveland 89.7 87.5 89.7
Diabetes 82.3 79.8 81.5

Table 3: Time Complexity results for all data
CPU Time [s]

Dataset GA SA CA
Austral 89 75.4 85.6

Breast Cancer 75 69.8 70.3
Cleveland 40 35.5 45
Diabetes 51 46.5 49.8

3 Analysis

The following figures (Figure 1, Figure 2) show a comparison of classification ac-
curacy and the time complexity for the three methods. From Figure 1 it is clear that
CA performed more efficiently compare to SA for all datasets. But GA performed
slightly better in case of diabetes dataset.

Comparison of classification accuracy

0

20

40

60

80

100

120

Austral Breast
Cancer

Cleveland Diabetes

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 [

%
]

GA

SA

CA

Fig1: Comparison of classification accuracy

Comparison of computational time

0

20

40

60

80

100

Austral Breast
Cancer

Cleveland Diabetes

Ti
m

e
[s

] GA

SA

CA

Fig2: Comparison of computational time

Figure 3 shows the convergence of GA, SA, and CA in astral dataset. Figure 3

shows that SA has converged much quicker than GA and CA. This is because the
stopping criterion of SA was number restricted to number of iteration, because each
iteration in SA takes long time to converge. GA has taken much longer time to con-
verge compare to CA.

Comparison of Convergence

0

0.2

0.4

0.6

0.8

1

GA

SA

CA

Figure3: Comparison of Convergence

4 Conclusion

This paper presents a comparative analysis of probabilistic and deterministic
global search method to find neural network weights. The results show that both
Cutting angle method, and Genetic algorithm performed much better than Simulated
annealing method for all the dataset. While we compare Genetic algorithm with
Cutting angle method, we see that that Cutting angle method performed slightly
better that Genetic algorithm in most of the cases. For diabetes and Heart Disease
dataset Genetic algorithm performed slightly better than Cutting angle method.

REFERENCES

[1] Whittle, P.: Prediction and regularization by linear least square methods”, Van
Nostrand, Princeton, N.J. (1963).

[2] Goggin, S. D., Gustafson, K.E., and Johnson, K. M.: An asymptotic singular
value decomposition analysis of nonlinear multilayer neural networks. Interna-
tional Joint Conference on Neural Networks, (1991), I-785-I-789,.

[3] Burton, S. A.: A matrix method for optimizing a neural network, Neural comput.
Vol 3, no 3.

[4] Lawrence, S., Giles, C. L., Tsoi, A. C.: What size neural network gives optimal
generalization? Convergence properties of backpropagatioin. UMIACS-TR-96-
22.

[5] Duch, W. and Korczak, J.: Optimization and global minimization methods suit-
able for neural networks. Neural computing surveys (1999).

[6] Phansalkar V. V.and Thathachar, M. A. L.: Local and Global Optimization Al-
gorithms for Generalized Learning Automata. Neural Computation, Vol. 7.
(1995), 950-973.

[7] Sexton, R., Dorsey R., and Johnson, J.: Optimization of neural networks: A com-
parative analysis of the genetic algorithm and simulated annealing. European
Journal of Operational Research, Vol. 114. (1999), 589-601.

[8] Sexton, R., Dorsey R., and Johnson, J.: Toward global optimization of neural
networks: A comparison of the genetic algorithm and backpropagation. Decision
Support Systems. Vol. 22. (1998), 171-185.

[9] Sexton, R., Dorsey R., and Johnson, J.: Beyond Backpropagation: Using Simu-
lated Annealing for Training Neural Networks. Journal of End User Computing,
Vol. 11. (1999), 3.

[10] Y. Shang and B. W. Wah, Global optimization for neural network training,
Computer, 29 (1996), pp. p45(10).

[11] PintÈr, J.: Global optimization in action : continuous and Lipschitz optimiza-
tion--algorithms, implementations, and applications. Kluwer Academic Publish-
ers, Dordrecht ; Boston, (1996).

[12] Trn, A., and Zhilinskas, A.: Global optimization, Springer-Verlag, Berlin ; New
York, (1989).

[13] Zhang, X. M., and Chen, Y. Q.: Ray-guided global optimization method for
training neural networks, Neurocomputing, Vol. 30. (2000), 333-337.

[14] Zhang, X.-S.: Neural networks in optimization. Kluwer Academic Publishers,
Boston, Mass., (2000).

[15] Rubinov, A. M.: Abstract convexity and global optimization. Kluwer Academic
Publishers, Dordrecht ; Boston, (2000).

[16] Andramonov, M., Rubinov, A.,and Glover, B.: Cutting angle methods in global
optimization. Applied Mathematics Letters, Vol. 12 (1999), 95-100.

[17] Bagirov, A., and Rubinov, A.: Global minimization of increasing positively
homogeneous function over the unit simplex, Annals of Operations Research,
Vol. 98 (2000), 171-187.

[18] Petridis, V., Kazarlis, S., Papaikonomu, A., and Filelis, A.: A hybrid genetic
algorithm for training neural network. Artificial Neural Networks, Vol. 2.
(1992), 953-956.

[19] Rechenberg, I.: Cybernatic solution path of an experimental problem. Royal
Aircraft Establishment, Library translation no. 1122, Farnborough, Hants, U.K,
Aug, (1965).

[20] Whitley, D., Starkweather, T., and BoEArt, C. Genetic algorithms and neural
networks - optimizing connections and connectivity. Parallel Computing, Vol.
14, (1990). 347-361.

[21] Montana, D. , and Davis, L.: Training feedforward neural networks using ge-
netic algorithms. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence IJCAI-89, Vol. 1, (1989).

[22] Frean, M.: The upstart algorithm: a method for constructing and training feed-
forward neural networks. Neural computation, Vol. 2, (1990).

[23] Roy, A., Kim, L.S., andMukhopadhyay, S.: A polynomial time algorithm for the
construction and training of a class of multiplayer perceptrons. Neural networks,
Vol. 6, (1993).

[24] Hedar, A.R. and Fukushima, M.: Hybrid Simulated Annealing and Direct
Search method for nonlinear unconstrained global optimization. Optimization
Methods and Software, Vol. 17, No. 5, (2002). 891-912.

[25] Brooks, D. G. and Verdini, W.A.: Computational experience with generalized
simulated annealing over continuous variables. American Journal of Mathemati-
cal and Management Sciences, Vol. 8. (1988). 425-449.

[26] Cardoso, M. F., Salcedo, R. L., and de Azevedo, S.F.: The simplex-simulated
annealing approach to continuous non-linear optimization. Journal of Computers
and Chemical Engineering, Vol. 20 (1996). 1065-1080.

