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Abstract. Neural network learning is the main essence of ANN. Theze a
many problems associated with the multiple local minima inatexatworks.
Global optimization methods are capable of finding global agtsolution. In
this paper we investigate and present a comparative studiefeeffects of
probabilistic and deterministic global search method foricigifneural net-
work using fully connected feed forward multi-layered perceparchitecture.
We investigate two probabilistic global search method na@elyetic algo-
rithm and Simulated annealing method and a deterministic cuttinig ang
method to find weights in neural network. Experiments wereezhmwut on
UCI benchmark dataset.

1 Introduction

Artificial neural networks (ANN) are the interconniect of basic units called artifi-
cial neurons. Those are capable of performing claasific, learning and function
approximation. Learning is the main essence of ANNrmieg can be considered as
a weight-updating rule of the ANN. Most of the neural iéag method strictly de-
pends on the architecture of the ANN. The nonlinearithNN results in the exis-
tence of many sub-optimal solutions. There are manplgmts associated with the
multiple local minima in neural networks [1][2][3]. SomEtbe aspects with exist-
ing learning methods for MLP can be summarized as theecgence tends to be
extremely slow, learning constants must be guessed heaifistconvergence to the
global minimum is not guaranteed. [4]. The global searethod guarantees the
global solution.

There exist solutions that include multiple starts frandomly chosen initial
points. Those are simulated annealing, random seardheatutionary computing
[5-14]. These methods are probabilistic in nature and ¢aayfind the globally op-
timal solution with a certain probability. Hence tbaution partly depends on the
number of iterations of the algorithm. In contrastere exist deterministic tech-



niques which are capable of finding global optimal solutidaterministic methods
include tabu search, branch-and-bound, generalized cuttimg plad systematic
search [11,12]. But the computational costs of these mgthie extremely high.

In this paper we investigate three different global ojzi@ition methods to find the
weights of ANN. Two of them are probabilistic globehsch method namely genetic
algorithm, and simulated annealing method respectivelg.tiind one is a recently
developed cutting angle method of deterministic global opttion [15-17].

2 Research Methodology

In this section we describe Genetic algorithm, Sinmaaannealing and Cutting
angle method.

2.1 Genetic Algorithm

Genetic algorithm (GA) learning provides an alternatisggy to learn for the ANN.
The task involves controlling the complexity by adjustihg number of weights of
the ANN. The use of GA for ANN learning can be vieveedfollows:

1. Search for the optimal set of weights

2. Search over topology space

3. Search for optimal learning parameters

4. A combination to search for all the above [18]

The fundamental work in this area was done by Holandh&eerg, Schwefel
and Fogel during the 1970s [19]. Much of the research has tbousthe training of
feed forward networks [20] [21]. Miller et al, reported tleablutionary algorithm
(EA), which is a slight variation of GA, is a betteandidate than other standard
neural network techniques, because of the nature oftbesirface[22] [23]. Those
characteristics pointed out by miller are

1. The architecture surface is infinitely large, henceoumioled for possible
number of nodes and connections

2. The surface is non-differentiable since changes imtimber of nodes and
connections are discrete

3. The surface is complex and noisy since the mapping frenartthitecture
to the performance is indirect, strongly epistasis, depgkendent on the
evaluation method used.

4. The surface is deceptive since similar architecturgsthrage quite different
results

5. The surface is multi-modal since different architectumey have similar
performance

The steps in genetic algorithm are described as follows:



Step 1: Initialize all the hidden layer weights using doum distribution
of a closed interval range of [-1, +1]. A sample genoffigpethe lower half gene
from the population pool fan input, h hidden unitsn output, ang number

of patterns can be written as |W11W12..Wan21W22..W2n...whlwh2..whn|
where, range(w) initially is set between the closadrival [-1 +1]. Also, the sam-
ple genotype will vary depending on the connection typseasribed later.

Step 2: The fitness for the population is calculateddbasethe phenotype
and the target for the ANN.

netOutput= f (hid * weight)

wherehid is the output matrix from the hidden layer neuromeight is the
weight matrix output neurons and f is the sigmoid function

> (netOutput- ney’
RMSError= 4/

n*p
popRMSErro = norm(RMSErroy)

norm function normalized the fithess of the individual, Ise fitness of each in-
dividual population is forced to be within certain range.

Step 3: Generate a random numbéiom a Gaussian distribution of mean
0 and standard deviation 1.

If (x < crossOverRate
Select two parents from the intermediate population
ApplyCrossOver
End If
Generate another random numjpé&rom the same distribution

If (y < mutationRat®
ApplyMutation

End If



The crossover method that is used for this algorithkmdsvn as linear interpo-
lation with two point technique. Let's consider two gend,W,..W and

W W W,

Two points are selected randomly, lets assipoatl and point2, where
pointl<point2, andpoint1>1, point<h

The two child after the crossover operation will be

2VV1 + V\é 2V\é+ V\/é 2Wpoinll + \N,pointl Wpdn11+l+ 2V\;pdnt]rl Wpdn12-1+ 2V<’pdn12-l 2Wpcint2+ WpdntZ 2Wh + v‘é,
3 3 - 3 3 3 3 e
V\ﬁ+2V\4 V\é+ 2\1\/6 Wpointl+2V\/point1 2Wpdntl+l+ Wpdnt}l zwpdmzL 1+ wpdntz 1 Wpdnt2+ 2\/vpdntZ Wh +2V\41
3 3 3 3 3 3 o
For mutation, a small random value between 0.1 and §.2dded to all the
weights. Let us assume a parent stijwv,..W, . After mutation the child string

becomesv, + £ |W, + & |..|w, + &, whereeis a small random number [0.1 0.2],
generated using a uniform distribution.

Step 4: If the convergence for the GA is not satistieen goto step 2.2
Manuscript Preparation

2.2 Simulated Annealing

In this section we will describe the Simulated Anngglinethod. Let us consider
the following global optimization problem:

minimize f(x)subject tox [J X (1)

where X O R"is a compact set. We describe a version of the sisthiatneal-
ing (SA) method and its pseudo-code for solving this problem

Simulated annealing [24-27] is one of the few successfahattic methods for
the practical large-scale problems. Numerical experim&migy that SA is success-
ful for many discrete optimization problems. However, Some continuous optimi-
zation problems in high-dimensional space SA meetsudiffes.

Simulated annealing method differs from the traditionaicdet methods in that
local search algorithm for a neighbourhood solutionctealiows not only downbhill
moves, while in an attempt to escape from it alloasasional uphill moves as well.
The name “simulated annealing” comes from a physicatgs® called annealing,
the process for growing crystals.



Starting with an initial solution x, and an initial fiperature” TO, which is a pa-
rameter, we obtain a neighbouring solutixh and compare its cost with that of x. If

the cost ofX' ' is smaller than that of x, i.ef (X') <f (X) we accept the new solu-
tion X' . The same thing would happen if we were applying the Idescent
method. On the other hand, ff(X') is greater thanf (X) (in which case any local
descent algorithm will not accept’ ), the SA algorithm may accept’ , but with a
A

X'X

T
probability € ° where A is the difference in the costs ok and x, i.e.

A = f(x)‘ f(X). This process is carried out for a certain numberimég,

which we call iterations, for each temperature. Tivenreduce the temperature ac-
cording to a particular schedule, and repeat. An essaialent of the SA algo-
A

X'X

T
rithm is the probabilitye % ofan uphill move of sizébxx being accepted when
the current temperature is T. This is dependent on Bathand T. For a fixed tem-
perature T, smaller uphill move8yx have a higher probability of being accepted.

On the other hand, for a particular uphill méva: , a higher temperature results in
a higher probability for that uphill move to be acceptaedthe words of [27], at a
high temperature any uphill move might be indiscriminatetgepted with a high
probability so that the objective function and the tleskaround the space are not
very important; as T is decreasing the objective fencthecomes more and more
significant; until as T goes to zero the search besdnapped in the lowest minima
that it has reached. Simulated Annealing algorithmdbrirsg a practical problem is
typically implemented in two nested loops: the outer laog the inner loop. The
outer loop controls temperatures, while the inner ldepaies a fixed number of
times for the given temperature. The inner loop istlier problem of specific deci-
sions. The decisions of the outer loop involve thareeof initial temperature (),
the cooling schedule, the temperature length, which @sntiimber of outer loop
iterations performed at each temperature, as well @asstibpping criterion of the
outer loop. The inner loop of SA typically consiststleé following parts: feasible
solution space, initial feasible solution, neighbourh@odve, objective function
values, and the decision, which decides whether theigedssfound acceptable or
probability acceptable according to the so-called Metismoiterion. Denotegenew
the counts of the solution being accepted in the ino@ep,IN_factor as an input
parameter, which can be any positive integer,feomen_nunthe stopping condition
for the outer loop.

The strength of the simulated annealing is that itamad with highly nonlinear
models, chaotic and noisy data and many constrairtss d robust and general
technique. Its main advantages over other local seaethods are its flexibility and
its ability to approach global optimality. The algoritligrguite versatile since it does



not rely on any restrictive properties of the moddie other advantage is that, it
allows not only downhill moves while in an attemptescape from local minima,
occasionally it also allow uphill moves. Hence it doeget stuck to any narrow or
broad local minima and can improve it further.

2.3 Cutting Angle M ethod

In this section we will describe the Cutting Angle noeth The cutting angle
method is based on theoretical results in abstraategdy [15]. The method calcu-
lates the value of the objective function at cerfaamts. The points are selected in
such a way that the algorithm does not return to unpiogiregions where function
values are high. The new point is chosen where tleeiblg function can potentially
take the lowest value. The function is assumed to bechitzs and the value of the
potential minim is calculated based on both the distamdde neighboring points
and function values at these points. Let us considepliogiing global optimization
problem:

minimize f(x)subject tox ] S (2)
where the objective function f is an increasing pesiyi homogeneous of degree
one and the set S is the unit simplexf .:
n (3)
S=ix0OR!: ) x=1
i=1
where R} :{XD R":x,> 0, :L....,n}.
A function f defined R} is called increasing ifx =y implies f(X)Z f(y).
The function f is positively homogeneous of degree ond (f/i,x) = Af (X) for all
xOR! andA >0.

For a given vectdr O R,l 0, we considei(l):{i =1,...n:1l >O}. We

use the following notation foc [ Rand| O R':
c/lifion() (4)
(cr), =471 .
oifidi(l)
An IPH function is nonnegative dR] . We assume thaf (X) > Ofor allXx[J S.

It follows from the positiveness dfthat (1) = I(x) for all X[ S andI=f(x)/x. Let

€“be the kth orthant vector.
The cutting angle method is as follows:

StepO: Initialization: Consider the poir)éDS, k=1,....,m where m=n,
e“=x* fork =1,...,n and x*>0fork=n+1....m Let
|k = f (Xk )/ x*,k =1,...,m Define the functionh,,;:



h, (%)=

And setj=m.
Stepl: Find a solutiorX” for the problem
minimizeh, (X) subject tox [ S. (6)

Step2: Sej = j+1 and x=x".
Step3: Computd ! = f(Xj )/Xj , define the function

(5)
maxmnl X, = max maxl K X, Mmax mnI X
ksm ion 1K) ! n+1<ksmic (I€)

h].(x):max{hi ()mnl x} maxmin | x, 0

idn|l ) k<j oidil )

And go to Step 1.

3 Experimental Result

Experiments were conducted using the following real-worldcbmark data sets
from UCI Machine Learning repository: Austral, Breasincer (Wisconsin) and
Heart Disease (Cleveland) and Diabetes data. The slefathese datasets can be
obtained from the UCI website. The datasets are destm Table 1.

Table 1: Dataset details

Dataset Instances Class Attribute
Austral 690 2 14
Wisconsin Breast Cancer Databases 699 2 9
Heart Disease Cleveland 297 2 13
Diabetes 768 2 8

The results are compared in terms of test classificadccuracy and computation
time. The following tables (Table 2 & 3) show the sléisation accuracy and the
time complexity of the ANN in percentage for all methedsl data sets.

Table 2: Classification Accuracy results for all data sets

Classification Accuracy [%]
Dataset GA SA CA
Austral 88.5 89 92.2
Breast Cancer 96.5 98.8 100
Cleveland 89.7 87.5 89.7
Diabetes 82.3 79.8 81.5




Table 3: Time Complexity results for all data

CPU Time[g
Dataset GA SA CA
Austral 89 75.4 85.6
Breast Cancer 75 69.8 70.8
Cleveland 40 35.5 45
Diabetes 51 46.5 49.§

3 Analysis

The following figures (Figure 1, Figure 2) show a comparisiociassification ac-
curacy and the time complexity for the three methodsmHFigure 1 it is clear that
CA performed more efficiently compare to SA for all aksts. But GA performed
slightly better in case of diabetes dataset.
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Figure 3 shows the convergence of GA, SA, and CA imbditaset. Figure 3
shows that SA has converged much quicker than GA and GiA.i3 because the
stopping criterion of SA was number restricted to nunabéteration, because each
iteration in SA takes long time to converge. GA h&gmsamuch longer time to con-
verge compare to CA.

Comparison of Convergence
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Figure3: Comparison of Convergence



4 Conclusion

This paper presents a comparative analysis of prolabibsid deterministic
global search method to find neural network weights. fdsalts show that both
Cutting angle method, and Genetic algorithm performed mettkerithan Simulated
annealing method for all the dataset. While we comizeretic algorithm with
Cutting angle method, we see that that Cutting angle mepeoformed slightly
better that Genetic algorithm in most of the cases. diabetes and Heart Disease
dataset Genetic algorithm performed slightly better @@atiing angle method.
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