Alarm Clustering for Intrusion Detection
Systems in Computer Networks

Giorgio Giacinto, Roberto Perdisci, Fabio Roli

Department of Electrical and Electronic Engineering, University of Cagliari
Piazza D Armi - 09123 Cagliari, Ttaly
{giacinto,roberto.perdisci,roli}@diee.unica.it

Abstract. Until recently, network administrators manually arranged
alarms produced by Intrusion Detection Systems (IDSs) to attain a high-
level description of threats. As the number of alarms is increasingly grow-
ing, automatic tools for alarm clustering have been proposed to provide
such a high level description of the attack scenario. In addition, it has
been shown that effective threat analysis require the fusion of different
sources of information, such as different IDSs, firewall logs, etc. In this
paper, we propose a new strategy to perform alarm clustering which pro-
duces unified descriptions of attacks from multiple alarms. Tests have
been performed on a live network where commercial and open-source
IDSs analyzed network traffic.

Keywords: Computer Security, Intrusion detection, Clustering

1 Introduction

At present, a number of commercial, open-source, and research Intrusion De-
tection Systems (IDSs) tools are available. They differ in the way intrusions are
detected, and in the available options allowing further alarm processing. Among
them, network misuse detectors are widely used in many organizations for their
ability in detecting well-known patterns of intrusions.

Network misuse detectors analyse network traffic looking for packets whose
characteristics match the ”signature” of known attacks. As soon as a signature
is matched, an alarm is raised. As signature matching is performed on a packet
basis, alarms provide a powerful source of fine-grain information related to sus-
pect activities in the protected network. In order to gain an understanding of
the intrusions against the protected network, a network administrator needs to
arrange these alarms to produce a high-level description of the threat. As the
number of alarms is increasingly growing, it is not feasible for a network ad-
ministrator to manually arrange the huge volume of alarms. Recently a number
of alarm clustering products have been proposed to provide such a high level
description of the attack scenario [1]. The aim is to manage the large number
of so-called elementary alarms produced by IDSs, by their fusion in higher-level
alarm messages. The source of such a large number of alarms is motivated by
the nature of some categories of attacks which send a large number of malicious

packets. As signature-based IDSs produce an alarm for each malicious packet,
alarm flooding may occur. Alarm clustering can also be used to fuse alarms from
different sensors. The use of multiple complementary Intrusion Detection tech-
nologies can provide the following benefits: i) for a given attack, different IDSs
may produce different outputs; ii) for a given attack, only a limited number of
IDSs might be able to detect it; iii) the fusion of alarms raised by different IDSs
may attain more comprehensive information about intrusion attempts than that
attained using a single IDS technique. Therefore, the proposed multiple-sensor
environment is made up of a number of IDSs (e.g., commercial and open-source
products), and the measurements to be fused are the elementary alarms raised
by each IDS. This paper proposes an on-line alarm clustering algorithm whose
output is a set of meta-alarms. During the operation of the IDSs, the alarms are
analysed and clustered. When no further alarm can be clustered to an existing
group, the related meta-alarm is output to the administrator.

Meta-alarms provide a network administrator with summary information
about the attack and the related alarm messages produced by IDSs. This infor-
mation can be further used by higher-level modules that perform multiple-step
attack scenario reconstruction and threat analysis.

At present, a few works on alarm clustering and correlation have been pre-
sented [2-5]. With respect to the related work, in the present paper a novel on-
line alarm-clustering algorithm is proposed. The objective is to achieve alarm
volume reduction by fusing alarms produced by different sensors in consequence
of a given attack. In particular, the main contribution is the introduction of a
learning phase, which aims at extracting the attack class(es) an attack descrip-
tion belongs to. This attack description classification process allows to cluster
alarms seemingly produced by different attacks but belonging to the same alarm
thread.

The paper is organized as follows. Section 2 presents the details of the pro-
posed alarm clustering algorithm. Some results attained on a test network with
commercial and open-source IDSs are reported in Section 3. In particular, the
structure of the meta-alarm is presented which can summarize a large number
of elementary alarms. Conclusions are drawn in Section 4.

2 The Proposed Alarm Clustering Algorithm

In this section, we present our alarm clustering algorithm designed to process
the sequence of alarms produced by IDSs, and then produce meta-alarms, i.e.
summary descriptions of events obtained by aggregating correlated alarms pro-
duced by various IDS sensors. Such a summary information can be provided
by the attack class the alarms refer to. The alarm class provides an effective
high-level information [6] that can be used by higher-level modules that perform
multiple-step attack scenario reconstruction. As an example, let us consider the
three attack classes used in our experiments, i.e., portscan, web-scan, and DoS
(Denial of Service). A portscan attack is performed by sending a very large
number of TCP or UDP packets to different ports in order to spot whether a

multi-class
meta-alarms

iype 1
iype 2
L]

-

ype M
meta-alams

lusteri
e
module

classification
nvod ule

no-class
meta-alarms

labeling
process

Fig.1. Alarm Clustering Module

service is bound to a certain port or not. In a similar way a webscan attack
is performed by sending a sequence of HTTP queries to a web server (the vic-
tim) looking for vulnerable web applications. DoS attacks, instead, are usually
performed by sending a large number of properly crafted packets to a victim
host trying to exploit vulnerabilities which can cause the victim host or appli-
cation to crash. Each meta-alarm is further described by a number of features
needed to uniquely identify the event, such as start and stop times, source and
destination IP, etc. In addition, the identifiers of the aggregated alarm logs are
reported for further inspection. The proposed system results particularly suit-
able in aggregating alarms produced by those kinds of attacks which cause the
IDSs to produce a high number of alarms. In the following, we will refer pri-
marily to signature-based Netowrk-IDS (NIDS) sensors, as it is the most widely
used type of IDS sensors. Nevertheless, the reported discussion can be extended
to other ID techniques. We will provide an overview of the architecture of the
proposed alarm-clustering module first, then going into the details of each of the
components. Figure 1 depicts a schema of our alarm clustering system.

The first block is the Alarm Management Interface (AMI) that performs data
alignment by translating each alarm message toward a standard alarm message
format. This is necessary because IDSs from different vendors usually produce
messages according to different formats. In our implementation, we used the
IDMEF format because it has been proposed as standard format by the IETF
[7]. The second block, i.e. the classification module, is designed to label an alarm
message as belonging to one or more attack classes. The classification module is
motivated by two kinds of ambiguities: i) for a given attack, different sensors may
produce a number of alarms reporting different attack descriptions; ii) an attack
description may be produced by the IDS in response to different attacks. In case

of alarms labelled as belonging to more than one class, the clustering process
removes the ambiguity as soon as an alarm with a unique label is clustered with
the multiple-class alarm. In fact, each cluster must contain alarms belonging to
one attack class. We also used the "no-class” label for those meta-alarms related
to attacks for which a class has not been defined during classifier design. Details
on the training procedure of the classification module will be given in Section
2.2. Classified alarms are sequentially sent to the clustering/fusion block, which
applies a nearest-neighbour clustering algorithm [8]. For each received alarm
the clustering algorithm determines whether the alarm can be clustered, and
thus fused, to one of the clusters or have to initialize a new meta-alarm (a new
group of alarms). The whole system is designed to be used in a near real-time
environment, i.e. IDS sensors send the alarms to the alarm reduction system as
soon as they are produced. In such an environment meta-alarms that have not
been involved in a clustering/fusion process for a time interval greater than a
predefined timeout threshold will be removed from the reduction system and
sent in IDMEF format to the administrator.

2.1 Meta-alarm content

Before going into the details of the clustering algorithm, let us state which
information we aim to extract from each cluster, and include in the related
meta-alarm. A meta-alarm is characterised by the following features: a classifi-
cation name, that is the common generalized class-name assigned to the clustered
alarms by the classification module; the create-time, that is the timestamp of the
last meta-alarm update (the last fusion). Additional data include the start and
stop times of the attack, list of source IP addresses, list of target IP addresses,
source ports, target ports, etc. In addition, a reference to the log files of the IDSs
is reported so that further investigation of the aggregated alarms can be carried
out. It is worth noting that a meta-alarm M is removed from the clustering-
fusion module and reported to the administrator if no more alarms are fused
within a suitable time threshold.

2.2 Classification module

An alarm class C' is made up of the set of alarm messages provided by the sensors
in response to at tacks of type C. For example, the portscan alarm class is made
up of the set of alarm messages obtained by simulating portscan attacks with
different techniques. We have already noticed that a given alarm can be raised
by an IDS in response to different attacks. For example, a portscan may cause
an IDS to produce a number of alarms that refer to DoS attacks in addition
to the alarms related to the portscan activity. Such DoS alarms are confusing
because they should be produced only in case of real DoS attacks. The role
of the classification module is to assign each alarm to the attack class(es) that
might have produced it. To this end, the classifier is designed by simulating a
number of real attacks for each class of attacks. For example, if we consider

attacks belonging to portscan, webscan and DoS classes, the designing process
has to be performed in the following way:

1. Simulate the most frequent portscan attacks with different techniques.

2. Extract the pairs {sensor-name, alarm-message} from each alarm produced
by step 1.

3. Store the pairs {sensor-name, alarm-message} into a set called portscan-
descriptions.

4. Repeat steps 1, 2 and 3 for webscan and DoS attacks, thus storing the
pairs {sensor-name, alarm-message} into webscan-descriptions set and dos-
descriptions set respectively.

When the classifier receives an alarm with description Desc-1 produced by
Sensor-A, the pair {Sensor-A, Desc-1} is compared to each pair contained into
the portscan-descriptions, webscan-descriptions and dos-descriptions sets. The
alarm is then labelled with the classes with matching pairs. For example, if the
pair {Sensor-A, Desc-1} is found both into the portscan-descriptions set, and
into the dos-description set, then the alarm will be labelled as belonging to both
portscan and DoS classes. On the other hand, if the pair {Sensor-A, Desc-1} is
not in any sets of descriptions, the alarm will be labelled as "no-class”.

2.3 Clustering/fusion module

The clustering/fusion module is initialised by creating a number of empty sets,
each one devoted to contain clusters related to one of the attack classes taken
into account in the classifier design phase. In the case of the above example
the clustering/fusion block creates three sets: PortscanMetaAlarmSet, Webscan-
MetaAlarmSet, and DoSMetaAlarmSet. In addition, two other sets are created,
namely the MultiClassMetaAlarmSet, and the NoClassMetaAlarmSet. The first
set is devoted to temporarily contain meta-alarms obtained by clustering alarms
labelled as belonging to multiple classes, while the latter is devoted to contain
meta-alarms obtained by clustering alarms that have not received a label from
the classification module. It is worth recalling that alarm clustering is aimed at
reducing the number of alarms produced by a certain class of attacks. Thus, a
number of alarms are clearly not taken into account in the design phase. Be-
fore giving the details of the clustering algorithm, some definitions have to be
introduced:

— Definition 1. Distance between pairs of features
Let us denote the distance between the i-th feature of an alarm A and the
corresponding feature of a meta-alarm M as dist(A. feat;, M. feat;). Distance
measures for various types of features such as the timestamp, target IP, target
port, source IP, source port, etc., are defined in Section 2.4.

— Definition 2. Clustering function
An alarm A is assigned to the nearest cluster if the distance between A and
the meta-alarm M associated with that cluster is below a predefined thresh-
old. In particular, alarm A is assigned to the nearest cluster M if all the

distances between the corresponding features are smaller than a set of prede-
fined thresholds:

dist(A.feat;, M.feat;) < thres; Vi=1,. v (1)

where v is the total number of features. The values of the thresholds {thres;}i=1. 4
depend on the class M belongs to, as well as on the characteristics of the
protected network. In the following, we will refer to an alarm A and a meta-
alarm M satisfying Eq. 1, to be correlated.
— Definition 3. Distance between an alarm and a meta-alarm
If an alarm A and a meta-alarm M are correlated, then their distance is
computed as the time gap between the create-time of A and the create-time
of the more recent alarm fused to M. Otherwise, the distance between A and
M 1is set to 4+o00.
— Definition 4. Distance between an alarm and a meta-alarm set
The distance between an alarm A and a meta-alarm set S is defined in the
following way:
1. If S does not contain any meta-alarm M correlated to A, then the distance
15 set to +00.
2. If S contains k meta-alarms My, Mo, ..., My, correlated to A, the distance
between A and S is computed as min;—q i (dist(A, M;)).

In order to explain how the proposed clustering algorithm works, let us resort
to an example. Let us suppose to be in a running state, and that each meta-
alarm set contains a number of clusters. When a new alarm A is processed by
the clustering module, three different cases may occur:

a) A has been labelled as belonging to a unique class.

If the alarm A has been labelled, for example, as a portscan the following
distances will be computed:

d1 = dist(A, PortscanM eta AlarmSet)

= dist(A, MultiClassMetaAlarmSet)

d3 dist(A, NoClassMetaAlarmSet)

If (d1 = d2 = d3 = +0), then there is no meta-alarm correlated to A into
the Portscan, MultiClass, and NoClass meta-alarm sets. In this case, A will
be inserted into the PortscanMetaAlarmSet where it will initialize a new
meta-alarm. If d; = min{dy,da,ds}, A will be inserted into the Portscan-
MetaAlarmSet, and it will be fused with the nearest portscan meta-alarm
that is correlated to A. Similarly, if dy or ds exhibit the minimum distance,
A will be inserted respectively into the MultiClassMetaAlarmSet or the No-
ClassMetaAlarmSet, and it will be fused with the nearest correlated meta-
alarm. In the case of d2 = min{di,dz,ds}, the resulting meta-alarm will
be moved from the MultiClassMetaAlarmSet to the PortscanMetaAlarmSet,
as the alarm A has a unique class label that can resolve the ambiguity of
the correlated meta-alarm. In the case of ds = min{dy, ds,ds}, the class la-
bel given to A will not be further considered, and the resulting meta-alarm
will have no class label. The reason for computing the distances dy and d3

instead of immediately insert A into PortscanMetaAlarmSet (A has been
labeled as a portscan by the classification module) is justified by the follow-
ing considerations: 1) Let us assume that alarm A is the n-th alarm caused
by a portscan attack, and that the first n — 1 alarms have been classified
as belonging to multiple classes, portscan class included. By comparing A
with the meta-alarms contained in the MultiClassMetaAlarmSet, it will be
correctly fused with the correct sequence of alarms. 2) Given that a perfect
matching is required among the features of the alarm A and those of a no-
class meta-alarm M to be correlated (Eq. 1), if d3 = min{d;,ds,ds}, A and
M are quite certainly related to the same attack even though A has been
labelled as belonging to a certain class.

b) A has been labelled as belonging to multiple classes.
If alarm A has been labelled, e.g. as portscan and DoS, the following four
distances will be computed:
dy = dist(A, PortscanMetaAlarmSet)
d2 = dist(A, DosMetaAlarmSet)
d3 = dist(A, MultiClassMetaAlarmSet)
d4 = dist(A, NoClassMetaAlarmSet)
if (di = dy = d3 = d4y = +00), A will be inserted into the MultiClass-
MetaAlarmSet, and it will initialize a new meta-alarm. If one or more dis-
tances are not equal to 400, then A will be inserted into the nearest meta-
alarm set, and it will be fused with the nearest meta-alarm.

¢) A has been labelled as belonging to none of the classes.
If A has been labelled as belonging to no-class, then it will be inserted
into the NoClassMetaAlarmSet, and it will be clustered with the nearest
no-class meta-alarm. If the NoClassMetaAlarmSet contains no meta-alarm
correlated to A, then A will initialize a new no-class meta-alarm that inherits
A’s features. It is worth recalling that an alarm A and a no-class meta-alarm
M are considered correlated only if all A’s and M’s features (except the
attack description) perfectly match. In this case there is a high probability
that A and M are relative to the same attack, even if the attack descriptions
do not coincide.

2.4 Distances among features

In this section we present the definition of some of the distances among features
used by the clustering algorithm. Let A be an alarm and M a meta-alarm.
Distances among IP addresses and port lists hold the same definitions either
they refer to target or source information (i.e. dist(A.sourcel P, M.sourcelP)
and dist(A.targetl P, M.targetI P) have the same definition, as well as distances
among source or target port lists).

— dist(A.IP, M.IP): We consider only IPv4 addresses. The distance is defined
as a sub-network distance. We take the binary expression of A.IP and M.IP,
then we XOR the two binary strings. If we call n the number of zeros in the
resulting binary string counted starting from the right, the distance d will
be d = 32 — n. The greater d, the greater the distance between IP addresses.

— dist(A.portList, M.portList): The distance among A.portList and M.portList
equals the number of port numbers present in A.portList but not in M.portList.

— time_distance(A, M): The time distance ¢ among an alarm A and a meta-
alarm M is computed as the distance, in terms of milliseconds, among
A.createTime and M.stopTime.

3 Experiments

The proposed alarm clustering strategy has been implemented and tested on a
live network containing dozens of hosts, some of them chosen as victims. It is
worth noting that at present no dataset is publicly available for designing and
testing alarm clustering algorithms. As a consequence, a direct comparison with
results in the literature is rather difficult. Thus, researchers usually evaluate
their algorithms by performing some experiments on a typical network scenario,
and assessing the effectiveness of the proposed techniques on such a scenario.
The traffic of the considered network was made up of the so-called background
traffic, i.e., the normal activity of the users of the network, and by a number
of simulated attacks. Three IDSs have been used to monitor network traffic:
Snort 2.1.0 [9], Prelude-NIDS 0.8.6 [10], and ISS Real Secure Network Sensor
7.0 [11]. We have subdivided the experiments into three stages: 1) Training of
the classification module; 2) Tuning of the thresholds involved in the clustering
algorithm; 3) Performance tests. The first two stages have been carried out by
executing attack simulations in an isolated network made up of three hosts, two
victims (a Linux host and a Win2k host), and an attacker host. The performed
experiments were related to three attack classes, i.e., portscan, webscan, and
DoS, as they usually produce a large number of alarms.

3.1 Training and Tuning

The classification module has been designed using a number of tools available
in the Internet. In particular, we have used nmap, wups, etc., as portscan tools;
nikto, babelweb, etc., as webscan tools; teardrop, jolt (aka ping of death), synflood,
etc., as DoS attacks. During this phase, for each attack, the pairs {sensor-name,
alarm-message} has been stored according to the procedure described in section
2.2. The values of the thresholds used by the clustering algorithm described in
Section 3.3 have been estimated in two phases. In the first phase, an initial value
for the thresholds has been chosen by heuristics based on attack characteris-
tics. Then, in the second phase, attack simulations have been performed in the
isolated network to suitably tune the thresholds in order to effectively cluster
all the correlated alarms produced by a given attack. The notion of effective-
ness may change according to the characteristic of the protected network, the
needs of the network administrator, etc. Thus different tunings may fit different
administrator’s needs. The thresholds used in our experiments are reported in
Tab.1. The §t constant in the Time threshold column accounts for possible drifts
among IDS sensors’ clock. In our experiments, §¢ was set equal to one second.

Meta-Alarm Class | SourcelP | TargetIP | SourcePort | TargetPort | Time(s)
portscan 0 0 400 +00 480+4t
webscan 0 0 400 0 12046t

DoS +oo 0 +00 +00 120+t
no-class 0 0 0 0 046t

Table 1. Values of the thresholds used in the clustering algorithm

3.2 Performance Tests

A large number of attacks have been executed in the selected live network to
test the feasibility of the designed system to correctly cluster attacks. Results
showed that the proposed technique produced not only meta-alarms related to
the simulated attacks, but also meta-alarms related to the background traffic.
As the design phase has been carried out in an isolated network, this results
show the feasibility of the proposed approach. Table 2 reports the details of the
most significant results.

Portscan - When porstcans have been performed, the clustering algorithm suc-
cessfully produced a meta-alarm for every portscan activity. As an example,
consecutive SYN and Xmas portscans have been performed from one source to-
wards a victim, producing a total of 3074 alarms from the three considered IDSs
(see the first column in table 2). During these attacks, the sensors also produced
alarms related to malicious activities in the background traffic. The clustering
algorithm correctly produced one meta-alarm related to the portscan, and 15
meta-alarms related to other activities. The meta-alarm related to portscan ac-
tivities is correctly labelled as portscan, and contains the list of scanned ports,
the source and target hosts, the start and stop times of the attack, and references
to the alarms that originated the meta-alarm.

Webscans - Similar results have been also attained with webscans. In some
cases, long attacks originated more than one meta-alarm, because of time gaps
among groups of alarms. This kind of anomalies can be resolved by a post-
processing situation refinment module that is aimed at finding relationships
among meta-alarms. As an example, Webscan2 (nikto) originated 19164 alarms
that were clustered into 37 clusters. The size of the first two clusters was equal to
7464 and 11631 alarms, respectively. It is worth noting that 69 alarms produced
by the ISS Real Secure sensor generated 35 meta-alarms. These alarms were
related to attack responses produced by the webserver that were not correctly
recognized by Real Secure.

DoS - Four DoS attacks have been performed against the same host. The pro-
posed alarm clustering was able to correctly produce 4 meta-alarms correspond-
ing to the different attacks carried out and 33 meta-alarms corresponding to
alarms related to suspicious background-traffic.

10

Attack Type portscan webscanl webscan2 DoS
Alarms from Snort 1058 94 7143 71
Alarms from Prelude 1314 93 6601 8828
Alarms from ISS Real Secure 728 63 5586 186
Total Number of Alarms 8100 250 19330 9085
Attack-related Alarms 3074 244 19164 9028
Alarms produced by backgroud traffic 26 6 166 57
Meta-Alarms from simulated attacks 1 1 37 4
Meta-Alarms from backgroud traffic 15 3 85 33
Total number of Meta-Alarms 16 4 122 87

Table 2. Experimental results on live network

4 Conclusions

In this paper we proposed a novel on-line alarm-clustering algorithm whose main
objective is the reduction of the volume of alarms produced by today’s IDS
sensors. The clustering algorithm has been devised to work in near real time.
Experiments performed in different attack scenarios on a live network showed
that the proposed algorithm effectively groups alarms related to the same attack,
even though IDSs produced alarms whose descriptions were erroneously referred
to different types of attacks. The produced meta-alarms provide the system
administrator with a concise high-level description of the attack. In addition, it
is the starting point for the development of modules for situation refinement and
threat analysis.

References

1. J. Haines, D. K. Ryder, L. Tinnel, S. Taylor, Validation of Sensor Alert Correlators,
IEEE Security Privacy, January-February 2003, 1(1), pp. 46-56.

2. A. Valdes, K. Skinner, Probabilistic Alert Correlation, RAID 2001. LNCS 2212, pp.
54-68.

3. F. Cuppens, Managing Alerts in a Multi-Intrusion Detection Environment, Proceed-
ings of ACSAC’01, IEEE Computer Society.

4. F. Cuppens, A. Mige, Alert Correlation in a Cooperative Intrusion Detection Frame-
work, Proceedings of the IEEE Symposium on Security and Privacy, 2002.
5. P. A. Porras, M. W. Fong, A. Valdes, A Mission-Impact-Based Approach to IN-
FOSEC Alarm Correlation, RAID 2002. Springer-Verlag, LNCS 2516, pp. 95-114.
6. J. Undercoffer, A. Joshi, J. Pinkston, Modeling Computer Attacks: An Ontology for
Intrusion Detection, RAID 2003. Springer-Verlag, LNCS 2820, pp. 113-135.

7. D. Curry, H. Debar, B. Feinstein, The Intrusion Detection Message Exchange For-
mat (http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-11.txt)

8. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Computing
Surveys 31(3) 1999, 264-323.

9. Snort, Lightweight Intrusion Detection for Networks. (http://www.snort.org)

10. Prelude Intrusion Detection System. (http://www.prelude-ids.org)

11. ISS, Inc.: RealSecure intrusion detection system. (http://www.iss.net)

