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Abstract. In this paper we describe a new cluster model which is based
on the concept of linear manifolds. The method identifies subsets of the
data which are embedded in arbitrary oriented lower dimensional linear
manifolds. Minimal subsets of points are repeatedly sampled to construct
trial linear manifolds of various dimensions. Histograms of the distances
of the points to each trial manifold are computed. The sampling corre-
sponding to the histogram having the best separation between a mode
near zero and the rest is selected and the data points are partitioned on
the basis of the best separation. The repeated sampling then continues
recursively on each block of the partitioned data. A broad evaluation
of some hundred experiments over real and synthetic data sets demon-
strates the general superiority of this algorithm over any of the competing
algorithms in terms of stability, accuracy, and computation time.

1 Introduction

The problem of clustering can be loosely defined as the partitioning of a set of
points in a multidimensional space into groups (clusters) such that the points
in each group are similar to one another. Finding these clusters is important
because their points correspond to observations of different classes of objects
that may have been previously unknown. A second kind of latent information
that may be of interest, are correlations in a data set. A correlation is a linear
dependency between two or more attributes of the data set. Knowing about the
existence of a relationship between attributes may enable us to learn hidden
causalities. For example, the influence of the age of a patient and the dose rate
of medication on the length of his disease.
Due to recent technology advances in data collection many applications of

clustering are now characterized by high dimensional data, some of whose dimen-
sions are non-information carrying. Thus, clusters or correlations may be visible
only in linear combinations of subsets of the dimensions. Conventional clustering
algorithms such as K-means [10], and DBSCAN [8] are ”full-dimensional” in the
sense that they give equal relevance to all dimensions, and therefore are likely
to fail when applied to such high-dimensional data. Subspace clustering is an
extension to traditional clustering in that it attempts to find clusters embedded
in different subspaces of the same data set. A subspace cluster consists of a sub-
set of points and a corresponding subset of attributes (or linear combinations



of attributes), such that these points form a dense region in a subspace defined
by the set of corresponding attributes. Most subspace clustering methods such
as CLIQUE [3], MAFIA [11], and PROCLUS [1] are restricted to finding clus-
ters in subspaces spanned by some subset of the original measurement features.
However, examination of real data often shows that points tend to get aligned
along arbitrarily oriented subspaces. ORCLUS [2] the most relevant algorithm
to our problem is an extension to PROCLUS which allows clusters to exist in ar-
bitrarily oriented subspaces. Dasgupta [5] presents two important results related
to random projections which have implications to clustering in high dimensional
spaces. These results show that it is possible to project high dimensional data
into substantially lower dimensions while still retaining the approximate level
of separation between clusters. In a recent paper Haralick at el. [6] use random
projections in the context of projection pursuit to search for interesting one
dimensional projections that reveal inter-cluster separations. Their algorithm,
called HPCluster, uses an hierarchical approach that repeatedly bi-partitions
the data set using interesting one-dimensional projections.
In this paper we describe a new cluster model that is based on the concept of

linear manifolds. It takes into account both linear dependencies among features
and distances betweens points. In section 2 we formalize our model of a cluster.
Based on this model, we present in section 3 the algorithm-LMCLUS. In section
4 we present a broad evaluation of LMCLUS applied on synthetic and real data
sets, and in section 5 we conclude the paper giving hints on future work.

2 The Cluster Model

The goal is to find clusters with an intrinsic dimensionality that is much smaller
than the dimensionality of the data set, and that exhibit correlation among some
subset of attributes or linear combinations of attributes. The cluster model which
we propose has the following properties: the points in each cluster are embedded
in a lower dimensional linear manifold 1. The intrinsic dimensionality of the
cluster is the dimensionality of the linear manifold. The manifold is arbitrarily
oriented. The points in the cluster induce a correlation among two or more
attributes (or linear combinations of attributes) of the data set. In the orthogonal
complement space to the manifold the points form a compact densely populated
region.

Definition 1 (Linear Manifold). L is a linear manifold of vector space

V if and only if for some subspace S of V and translation t ∈ V , L = {x ∈
V |for some s ∈ S, x = t+ s}. The dimension of L is the dimension of S.

Definition 2 (Linear Manifold Cluster Model). Let D be a set of d-dimensional
points, C ⊆ D a subset of points that belong to a cluster, x some point in C,
b1, . . . , bd an orthonormal set of vectors that span R

d, (bi, . . . , bj) a matrix whose

1 A linear manifold is a translated subspace. A subspace is a subset of points closed
under linear combination.



columns are the vectors bi, . . . , bj , and µ some point in R
d. Then each x ∈ C is

modeled by,

x = µ+ (b1, . . . , bl)λ+ (bl+1, . . . , bd)ψ, (1)

where µ is the cluster mean, λ is a zero mean random l× 1 vector whose entries
are i.i.d. U(−R/2,+R/2), ψ is a zero mean random vector with small variance
independent of λ, and R is the range of the data.

The idea is that each point in a cluster lies close to an l-dimensional linear
manifold, which is defined by µ+ span{b1, . . . , bl}. It is easy to see that µ is the
cluster mean since

E[x] = E[µ+ (b1, . . . , bl)λ+ (bl+1, . . . , bd)ψ] =

µ+ (b1, . . . , bl)E[λ] + (bl+1, . . . , bd)E[ψ] = µ+ (b1, . . . , bl)0+ (bl+1, . . . , bd)0 = µ

Classical clustering algorithms such as K-means take l = 0 and therefore omit the
possibility that a cluster has a non-zero dimensional linear manifold associated
with it. In the manifold we assume the points are uniformly distributed in each
direction according to U(−R/2,+R/2). It is in this manifold that the cluster is
embedded, and therefore the intrinsic dimensionality of the cluster will be l. The
third component models a small disturbance, or error factor associated with each
point in the manifold. The idea is that each point may be perturbed in directions
that are orthogonal to the manifold, i.e., the vectors bl+1, . . . , bd. We model this
behavior by requiring that ψ be a (d− l)×1 random vector, normally distributed
according to N(0, Σ), where the largest eigenvalue of Σ is much smaller than
R. Since the variance along each of these directions is much smaller than the
range R of the embedding, the points are likely to form a compact and densely
populated region, which can be used to cluster the data.
Figure 1 is an example of data set modeled by eq. (1). The data set contains

three non-overlapping clusters, where C1, C2 which are almost planner are em-
bedded in 2D manifolds. Their points are uniformly distributed in the manifold
and they include a random error element in the orthogonal complement space
to the manifold. Similarly, C3 an elongated line like cluster, is embedded in a
1D linear manifold.

3 The Algorithm

LMCLUS can be viewed as an hierarchical-divisive procedure, which marries the
ideas of random projection via sampling and histogram thresholding, in order
to detect clusters embedded in lower dimensional linear manifolds. It expects
three inputs: L, an estimate of the highest dimension of the manifolds in which
clusters may be embedded. K̂, an estimate of the largest number of clusters
expected to be found, which is used to compute the number of trial manifolds
of a given dimensionality that will be examined in order to reveal the best pos-
sible partitioning of the data set. Γ , a sensitivity threshold which is used to
determine whether or not a partitioning should take place. We note that unlike
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Fig. 1. A data set demonstrating the concept of linear manifold clusters.

related methods K̂ does not impose a restriction on the number of clusters the
algorithm actually finds. The output of LMCLUS is a set of labeled clusters
together with the intrinsic dimensionality of each cluster. Knowing the dimen-
sionality associated with each cluster can then be used with methods such as
PCA to model the data in each cluster. The algorithm operates by detecting
one cluster at a time and successively reapplying itself on the remaining set of
points. It iterates over a range of manifold dimensionalities, in an a priori fash-
ion, starting from the lowest-1, and terminating with the highest-L. For each
dimensionality the algorithm invokes a procedure which we call FindSeparation
in an attempt to reveal separations among subsets of the data. Its underlying
idea is to successively randomly sample subsets of points that can define a lin-
ear manifold of a given dimension. Of the linear manifolds constructed, the one
closest to a substantial number of data points is selected. The proximity of the
input data points to the manifold is captured by a distance histogram. If the
manifold indeed has some subset of points near it, then the distance histogram
will reveal a mixture of two distributions. One of the distributions has a mode
near zero and is the distribution of distances of points that potentially belong to
a cluster, and the other is the distribution of the remaining points in the data
set. The problem of separating the cluster points from the rest is then cast into
a histogram thresholding problem, which is solved using Kittler and Illingworth
minimum error thresholding technique [9]. FindSeparation returns four values γ-
which is a measure of the “goodness” of the separation, τ - a proximity threshold
that is computed from the histogram and is used to split the data, B- the basis
of the manifold which exposed the separation, and x0-the origin of the manifold.
When γ exceeds the value of the sensitivity threshold Γ , indicating that a worthy
separation has been found, then the data set is split according to τ . This split
corresponds to the partitioning of all the points which are located close enough
to a manifold, i.e. all points that potentially belong to a given cluster, and those
that belong to other clusters. In addition the dimensionality of the manifold
which revealed the separation, corresponding to the intrinsic dimensionality of
the cluster is recorded. An attempt to further partition the cluster which may



consist of sub-clusters is executed by reapplying FindSeparation until the cluster
can not be further separated. At this point the algorithm will attempt to par-
tition the cluster in higher dimensions, a process which will continue until the
dimension limit L is reached. When L is reached we have a subset of points that
cannot be partitioned any more, and declare that a cluster is found. We note
that if outliers exist then the last partition will contain this set of points. By
definition outliers do not belong to any cluster and therefore will remain the last
group of points to be associated to any other group. Moreover, since they are
unlikely to form any clusters the algorithm will not be able to partition them,
and therefore will all be grouped together.

Sampling Linear Manifolds. To construct an l-dimensional linear manifold
by sampling points from the data we need to sample l + 1 points. Let x0, . . . xl
denote these points. We choose one of the points x0 as the origin. Then the l
vectors spanning the manifold are obtained by x′i = xi−x0 where i = 1 . . . l. As-
suming each of these sampled points came from the same cluster, then according
to eq. (1)

x′i = (µ0 +Bλi +Bcψi)− (µ0 +Bλ0 +Bcψ0) = B(λi − λ0) +Bc(ψi − ψ0)

where B = (b1, . . . , bl) and Bc = (bl+1, . . . , bd). If the cluster points did not have
an error component, that is, they all lie at distance zero from the manifold, then
sampling any l+1 which are linearly independent, and belong to the same cluster
would enable us to reconstruct B. Therefore in order to get a good approximation
of B we would like each of the sampled points to come from the same cluster, and
to be as close as possible to the linear manifold spanned by the column vectors
of B. In other words we would like each of the l+1, . . . , d components of each x′i
to be close to zero, and this occurs when ψi − ψ0 ≈ 0. A good indication as to
why this is likely to occur when the sampled points come from the same cluster,
is given by the fact that E[ψi − ψ0] = 0. Therefore the problem of sampling a
linear manifold that will enable us to separate a cluster from the rest of the data
basically reduces to the problem of sampling l+1 points that all come from the
same cluster.
Assuming the data set contains K clusters all having approximately the same

number of points. Then the probability that a sample of l+1 points all come from

the same cluster is approximately
(

1
K

)l
. The probability that out of n samples

of l+1 points, none come from the same cluster, is approximately (1− (1/K)l)n

and 1− (1− (1/K)l)n will be the probability that at least for one of the samples
all of its l + 1 points come from the same cluster. Therefore the sample size n
required such that this probability is greater than some value 1− ε is given by

n ≥
log ε

log(1− (1/K)l)
(2)

Thus, by computing n given ε, and K = K̂ we can approximate a lower bound
on the number samples required or trial manifolds that will be examined. Note
that by varying K̂ we can tradeoff accuracy with efficiency.



For each sample of points (x′1, . . . , x
′

l) we construct an orthonormal basis B
of a linear manifold, measure distances to it, and then using Kittler and Illing-
worth’s method we compute a threshold τ . Of all possible thresholds correspond-
ing to different linear manifolds we prefer the one which induces the best sepa-
ration. That is to say, the one which induces the largest discriminability given

by (µ1(τ)−µ2(τ))2

σ1(τ)2+σ2(τ)2 , and the one which causes the deepest broadest minimum in

the Kittler and Illingworth criterion function J [9]. This can be measured by the
difference/depth of the criterion function evaluated at τ and the value evaluated
at the closest local maxima τ ′, i.e., depth = J(τ ′) − J(τ). Thus, our composite
measure of the “goodness” of a separation is given by

γ = discriminability × depth (3)

A set of typical histograms generated during the clustering process are de-
picted in Fig. 2, corresponding to a subset of the histograms used to cluster the
data set given in Fig. 1.
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Fig. 2. Histograms used to separate the clusters from Fig. 1. (a) C3 is separated from
C2 and C3 by sampling 1D linear manifolds. (b) C1 is separated from C2 by sampling
2D linear manifolds. (c) a histogram for which no separation can be found.

4 Empirical Evaluation

LMCLUS as well as three other related methods: DBSCAN a representative
of the full-dimensional clustering methods, ORCLUS a representative of sub-
space clustering methods, and HPCluster a random projection based clustering
method, were implemented in C++. The aim of the experiment was to evaluate
LMCLUS’s performance in comparison to the other methods with respect to
accuracy, efficiency, scalability and its stability as a stochastic algorithm.

4.1 Synthetic Data Generation

In order to generate clusters embedded in different arbitrary oriented linear
manifolds of various dimensions, and following the model given by eq. (1) we



used a method similar to one described in the ORCLUS paper. The underlying
idea is to first generate the clusters in an axis parallel manner and then randomly
translate and rotate each cluster to achieve the effect of an arbitrary orientation
in the space. A candidate data set that we would like to produce is one in which
the clusters are relatively close in some subspace with minimal overlap, and yet
sparse enough that canonical clustering algorithms would not be able to detect.
We also used the cluster sparsity coefficient proposed in the ORCLUS paper to
measure the relative hardness of clustering a given data set, and selected only
data sets which yielded a measure within a specific range.

4.2 Accuracy

To measure the accuracy of LMCLUS we have generated several dozen synthetic
data sets of various sizes, space/manifold dimensionalities, and number of clus-
ters. Table 1 summarizes the properties of fifteen representative data sets, along
with the performance of each of the algorithms when applied to these data sets.
The ones marked with a star (′∗′) denote star data sets due to their star like
geometry, which are likely to present difficulties to many clustering algorithms.
Accuracy was measured by means of a Confusion Matrix. In addition the amount
of time (in hours, minutes, and seconds) required by each algorithm to cluster a
data set was recorded. These results clearly demonstrate LMCLUS’s superiority
over the other clustering algorithms. LMCLUS was the only one able to discover
(over 85% accuracy) all the clusters. DBSCAN’s poor performance emphasizes
the ineffectiveness of distance metrics that utilize the full space. Note that only
LMCLUS and ORCLUS were able to handle the star clusters. However requir-
ing the number of clusters and the dimensionality of the subspaces in which
the clusters are embedded makes ORCLUS impractical for real data sets. The
fact that HPCluster was not able to cluster the star data sets also comes at
no surprise since it searches for 1D projections, and any 1D projection of these
type of data sets will only reveal unimodal distributions. However its ability
to cluster well the first type of data sets supports the concept of random pro-
jections which LMCLUS also implements. In terms of running time, LMCLUS
ranked second after HPCluster. The remarkable low running times of HPCluster
can be attributed to the fact that it is based on a stochastic procedure which
tries a constant number of 1D projections to discover inter-cluster separations,
and thus invariant to the size of the data set. Nonetheless LMCLUS runs faster
than the other algorithms on seven of the fifteen data sets, and when compared
to ORCLUS and DBSCAN only, demonstrates a significant gain in efficiency,
especially when applied on large or high dimensional data sets.

4.3 Scalability

We measured the scalability of LMCLUS in terms of size and dimensions. In the
first set of tests, we fixed the number of dimensions at ten, and the number of
clusters to three, each of which was embedded in a three-dimensional manifold.
We then increased the number of points from 1,000 to 1,000,000. In the second



Table 1. Data set properties along with accuracy and running time results used for
the Accuracy benchmark.

size clusters dim LM dim LMCLUS ORCLUS DBSCAN HPCluster
D1 3000 3 4 2-3 95% / 0:0:08 80% / 0:0:22 34.6% / 0:0:9 72% / 0:0:51
D2 3000 3 20 13-17 98.4% / 0:0:33 58.8% / 0:2:18 65.5% / 0:0:36 97.4% / 0:1:39
D3 30000 4 30 1-4 100% / 0:15:38 64.9% / 1:5:30 100% / 1:31:52 99.3% / 0:1:32
D4 6000 3 30 4-12 99.9% / 0:9:22 98.3% / 0:8:20 66.5% / 0:3:49 97.1% / 0:0:12
D5 4000 3 100 2-3 100% / 0:0:20 87.9% / 0:54:30 65.3% / 0:5:24 99% / 0:3:54
D6 90000 3 10 1-2 99.99% / 0:0:29 100% / 0:29:02 66.7% / 4:58:49 100% / 0:1:23
D7 5000 4 10 2-6 99.24% / 0:2:05 99.3% / 0:2:41 74.1% / 0:0:54 96% / 0:0:35
D8 10000 5 50 1-4 99.9% / 0:1:42 63.64% / 1:33:52 100% / 0:17:00 99.2% / 0:3:43
D9 80000 8 30 2-7 99.9% / 3:12:46 96.9% / 13:30:30 100% / 10:51:15 99.9% / 0:4:57
D10 5000 5 3 1-2 86.5% / 0:0:48 68.2% / 0:0:45 59.6% / 0:0:5 78% / 0:0:33
∗D11 1500 3 3 1 98.5% / 0:0:01 99.6% / 0:0:10 42.6% / 0:0:02 33.3% / 0:0:52
∗D12 1500 3 3 2 97% / 0:0:02 99% / 0:0:11 33.8% / 0:0:02 33.3% / 0:0:26
∗D13 1500 3 7 3 97.7% / 0:0:05 99.1% / 0:0:17 33.9% / 0:0:04 33.3% / 0:0:34
∗D14 5000 5 20 4 99.9% / 0:5:46 100% / 0:10:42 21.1% / 0:1:39 20% / 0:1:30
∗D15 4000 4 50 3 99% / 0:9:14 100% / 0:25:52 25% / 0:2:34 25% / 0:3:20

set of tests we fixed the number of points, and clusters as before, but increased
the number of dimensions from 10 to 120. Fig. 3 is a plot of the running times
of LMCLUS in comparison to the other algorithms. The figure shows that in
practice, for data sets with a small number of clusters which are embedded in
low dimensional manifolds, LMCLUS, like ORCLUS scales linearly with respect
to the size of the data set. This can be attributed to the sampling scheme it uses
and to the fact that each cluster that is detected is removed from the data set.
We note however that as the dimensionality of manifolds increases, performance
is likely to degrade. The figure also shows that LMCLUS, like DBSCAN scales
linearly with respect to the dimensionality of the data set. Combined together,
linearity in both the size and dimensionality of the data set makes LMCLUS one
of the fastest algorithms in its class.
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Fig. 3. Scalability, (a) running time vs. data size. (b) running time vs. dimensionality.



4.4 Real Data and Applications

Time Series Clustering/Classification. In this experiment we applied LM-
CLUS on a Time Series data set obtained from the UCI KDD Archive [7] con-
sisting of 600 examples with 60 attributes each, divided into 6 different classes.
The donors of this data set claim the this is a good data set to test time series
clustering because Euclidean distance measures will not be able to achieve good
accuracy. LMCLUS was able to achieve an average of 87% with a high of 89%
accuracy. ORCLUS was only able to achieve a high of 50% accuracy, while DB-
SCAN with extensive tuning of its parameters achieved a high of 68% accuracy,
and HPCluster a high of 63.5%.

Handwritten Digit Recognition. The data used in this experiment consists
of 3823 handwritten digit bitmaps of 64 attributes each, obtained from the UCI
Machine Learning Repository [4]. We divided the data into the even and odd
digits, and clustered each separately. LMCLUS was able to achieve an average
of 95% and 82% for the even and odd digits respectively, whereas DBSCAN 82%
and 58%, ORCLUS 84.7% and 82.9%, and HPCluster 50.3% and 93%.

E3D Point Cloud Segmentation. DARPA’s “Exploitation of 3D Data” iden-
tification system must take as input a 3D point cloud of a military target and
then compare it to a database of highly detailed 3D CAD models. The first
step to accomplish this task usually involves segmenting the targets into their
constituent parts. In this experiment we demonstrate LMCLUS’s usefulness as a
segmentation procedure. Specifically, LMCLUS was applied on 3D vehicle point
cloud CAD models obtained from ALPHATECH Inc., as these provide a similar
level of complexity, to that of military vehicles. The applicability of LMCLUS
to this problem results from the fact that the surfaces constituting the vehicles
closely correspond to 2D linear manifolds embedded in a 3D space. The results
of this experiment applied on two different vehicles are depicted in Fig. 4. These
results clearly demonstrate LMCLUS’s ability to identify with high precision 2D
linear manifolds.

5 Conclusion

In this paper we explored the concept of linear manifold clustering in high di-
mensional spaces. We proposed a new cluster model and showed its relevance
to subspace and correlation clustering. Based on this model we presented our
algorithm LMCLUS, and demonstrated its superiority over methods such as
ORCLUS, DBSCAN, and HPCluster for linear manifold clustering. In addition
we presented a successful application of our algorithm to the problem of 3D
point cloud segmentation. In the feature we plan to investigate the applicability
of linear manifold clustering to microarray gene expression clustering, and its
usefulness as a tool for modeling high dimensional probability distributions.
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Fig. 4. (a) 2D view of a segmented Aeromate delivery van 3D point cloud (b) 2D view
of a segmented Ford Explorer 3D point cloud.
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