Embedding time series data for classification
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Abstract. We propose an approach to embed time series data in a vec-
tor space based on the distances obtained from Dynamic Time Warping
(DTW), and to classify them in the embedded space. Under the problem
setting in which both labeled data and unlabeled data are given before-
hand, we consider three embeddings, embedding in a Euclidean space
by MDS, embedding in a Pseudo-Euclidean space, and embedding in a
Euclidean space by the Laplacian eigenmap technique.

We have found through analysis and experiment that the embedding by
the Laplacian eigenmap method leads to the best classification result.
Furthermore, the proposed approach with Laplacian eigenmap embed-
ding shows better performance than k-nearest neighbor method.

1 Introduction

1.1 Classification of time series data

With the development of information technology, recognition of time series data,
such as gesture recognition, video retrieval, online handwriting recognition, is
becoming more important. Here, we consider the following 2 class classification
problem for time series data.

A set of n time series data, X = {X1,..., X, }, is given, where, X; (1 <i < n)
is a sequence of feature vectors whose length is I[1X; = (x,...,x] ). First s of the
time series datall {X; | 1 <i < s}, are labeled with a class label y; € {-1,+1}.
The task is to estimate the labels of unlabeled data: {X; | s + 1 <1i < n}.

Time series data are much more difficult to deal with than vector data with
a fixed dimension, Many of the classification methods for time series data use
generative models such as Hidden Markov Models (HMMs) [1]. When the true
models are estimated correctly, these methods are accurate. But they needs lots
of training data. Other classification methods such as k nearest neighbors are
based on distances which are obtained from dynamic time warping (DTW) [1].
K nearest neighbors can express class boundaries which have complex shapes
without assuming the form of probability densities, but they tend to be sensitive
to noise in general .



1.2 Proposed approach
We propose a distance based approach which can be summarized as follows.

1. Compute the distances between time series data from DTW.
2. Map by @ the time series data into a vector space (a feature space) F, such
that the DTW distances are preserved in some sense.

DX - F
X; — QS(XZ)
Project #(X;) to a lower dimensional subspace, and obtain &(X;).

Train a classifier in F using the labeled data {(®(X;),y;) |1 <i < s}.
4. Classify the unlabeled data, {®(X;) | s +1 <14 < n}, using the classifier.

@

1.3 Embedding in a vector space

We consider three methods, i.e. three kinds of mapping @, for embedding time
series data in a vector space. The first method is multidimensional scaling (
MDSO [2], which embeds data in a Euclidean space. The second method, which
is an extension of the first one, embeds data in a pseudo Euclidean space [3—
5]. The third method uses the technique known as manifold learning [6, 7], and
embeds time series data in a Euclidean space.

We consider the three embedding methods from the following reasons. MDS
(the first method) is popular as an embedding method using distances between
data. We consider the embedding in a pseudo Euclidean space (in the second
method), because dynamic time warping distances do not satisfy the triangle in-
equality relationship for (Euclidean) distances. For the third embedding method,
we have chosen, from several manifold learning techniques, one which can be ap-
plied to non vector data. Generally speaking, manifold learning embeds data
on a manifold in a low dimensional space such that the geodesic distances are
preserved. Manifold learning is gaining more and more attentions recently as a
nonlinear dimensionality reduction method.

In order to analyze the three embedding methods, we employ the theoretical
framework of kernel PCA [8], which is an extension of principal component
analysis (PCA).

1.4 Related work

Shimodaira et al. [9] propose dynamic time alignment kernel for voice recogni-
tion, and report better classification accuracy than HMMs when the number of
training data is small. Bahlmann et al.[10] propose GDTW kernel, which substi-
tutes the distance term in the Gaussian kernel with DTW distance, and obtained
classification accuracy comparable with that of HMMs for online handwritten
characters. However, neither method can prove the positive definiteness of the
corresponding kernel matrix which guarantees the existence of a feature space
(a Hilbert space).



Graepel et al. [4] embed data in a pseudo Euclidean space on the basis of the
similarity measures of pairs of data, and then classify the embedded data using
SVM. They experimented with cat’s cortex data and protein data, and obtained
a favorable result when compared with k-nearest neighbors. Pekalska et al. [5]
propose a similar method and report a good result in the experiment to classify
offline handwritten characters / object shapes in binary images. But, neither of
them consider the classification of time series data.

Belkin et al. [6, 7] propose Laplacian eigenmap method to embed data in a low
dimensional vector space based on a similarity matrix. They have experimented
with offline handwritten digit classification and report a better result than k-
nearest neighbors. But they do not consider time series data, either.

1.5 Paper Organization

After briefly explaining DTW (Sec. 2) and kernel PCA (Sec. 3), we propose
the embedding methods in Sec. 4, compare the distance between data before
and after the embeddings in Sec. 5, and explain the classification including the
classifier learning in Sec. 6. We report on the experiment to evaluate the proposed
methods in Sec. 7. Sec. 8 concludes the paper.

2 DTW

The DTW distances {d?(X;, X;) | 1 < i,j < n} which we use in the paper are
computed as follows (|| - || is the Euclidean norm.)

1. Initialize: g(0,0) =0
2. Repeat: for 1 <t¢; <;;01<¢t; <

glti = 1,t)) + ||, — 2] |*
g(ti,t;) = min Q g(t; — 1,t; — 1) + 2||@f, — ] |*
glti,t; — 1) + [l=f, — i |?

3. Finish: d2(Xi,Xj) = g(li,lj)/(li +l])

3 Kernel PCA

We explain kernel PCA by following [8]. Let X = {X;, Xo,...} be a finite or an
infinite set (which need not be a subset of a vector space), and let k be a positive
definite kernel function defined on X x X'. Then, there exists a mapping to a
Hilbert space, @ : X — H, and for any X, X' € X, k(X,X') = (®(X),D(X"))
holds, where (.,.) stands for the inner product in the Hilbert space H.

Kernel PCA performs the principal component analysis of the set: {®(X),
P(X3), ..., P(X,)}. Let C be the covariance matrix: C' = %ZZ d(X)P(X;)T,
and let A and v be an eigenvalue and eigenvector of the covariance matrix:



Cv = \v. Then, it can be shown that an eigenvector whose eigenvalue is not 0
is in the subspace spanned by {®(X;) | 1 <i < n}, and hence can be expanded as
v=> 1", a;P(X;). The expansion coefficients, & = (a1, ..., a,)7, are obtained
from the eigenvectors of the Kernel matrix K : K;; = k(X;, X;) as follows.

nla = Ka (1)

As a consequence, it can be shown that m-th principal component of &(X;) can
be computed by the following formula:

(™, B(X:)) = \/rAma™ (i) 1<i<n) 2)

where A, is an eigenvalue of the matrix KO o™ (i) is the i-th element of the
m-th eigenvector ™. Note that we have assumed that £ >  &(X;) = 0 in
computing the covariance matrix, C, but this can be easily realized by centering
the kernel matrix K.

4 Embedding in a vector space

4.1 First method: MDS

The first method uses MDS|2] to obtain a mapping ®; : X — R" such that the
following holds.

P4 (Xy) — @1(X;)|* = d*(X;, X;) (1<i,j<n) 3)

We abbreviate @1 (X;) as z; in what follows. In order to centralize the kernel
matrix, let Z = %ZZ z;, and consider the inner product: k1 (X;, X,;) = (z; —
Z,z; — z). Using (3), we can obtain, after some manipulations, a formula to
compute the kernel matrix from DTW distances.

ki (Xi, X;) = —fdQ(XZ,X + —Zdz X, X)) + %i (X, X1)
n2 Z Z (X, X (4)
=1 m=1

The kernel matrix K : K;; = ki(X;, X;) is decomposed through eigenvalue
analysis as follows.

K=U0AU" (5)
where A = diag(A1,..., ), A1 > ... > ), is a diagonal matrix of the eigenval-
ues, and U = [e!, ..., e"] is a matrix of the eigenvectors.

When K is semi-positive definite, let Z = A?UT, and then K = Z7Z
holds. Hence, we can view the i-th column of Z as z; —Zz. Translate the origin to
the centroid, keep up-to the p-th principal components, we obtain the following.

— (Ve (), Voge (i), )y V/ApeP (i) (1<i<n) (6)



Note that the above (6) and (2) are identical up to a constant (1/n).

Unfortunately, DTW distances do not satisfy the triangle inequality, and the
matrix K computed from (4) is not necessarily semi-positive definite. Neverthe-
less, the first method embeds data in the Euclidean space, simply by neglecting
negative eigenvalues / vectors.

4.2 Second method: embedding in a pseudo Euclidean space

Like the first method, K is computed from DTW distances using (4), and is
eigen-decomposed as in (5). While the first method embeds data by viewing K
as a matrix of inner products in a Euclidean space, the second method embeds
data by viewing K as a matrix of symmetric bilinear forms in §R("+’"_), a pseudo
Euclidean space 2, without neglecting negative eigenvalues / vectors [3-5].

The concrete embedding procedure is as follows. Take the absolute value
A of the eigenvalue matrix A in (5): A = diag(|\1], [A2],--., [ An|). Let Z be

_1
AZUT | choose p eigenvalues / vectors whose absolute values are the largest.
The coordinates in the embedded space will be as follows.

Zi = (VA [€71(0), - /| A, [ €77 ()T (1<i<n) (7)

We explain briefly about a pseudo Euclidean space 4. A pseudo Euclidean
space R ") is a vector space with the following bilinear form : (-, -)pz, which
corresponds to the inner product in a Euclidean space.

(z,2\pm = 2" M2
I+

M = 0

0

S O o

0

0
—I,-
nxn

M is called as the signature matrix of a pseudo Euclidean space. For a pseudo
Euclidean space, one can define, from its bilinear form (-, -)pz, a pseudo metric
(distance): ||z—2'||3; = (2—2")T M (z—2'). The second method seeks a mapping
By X — RO which satisfies

1B2(X;) — B2(X;) [ 3r = (X3, X;) (1<4,j<n) (8)

4.3 Third method: the Laplacian eigenmap

The third method embeds time series data by employing the Laplacian Eigenmap
technique [6, 7]. The procedure is as follows.

3nt n”in R " 7) stands for the number of positive and negative eigenvalues of K,
respectively.

4 In the literature on pattern recognition, a feature space generally means a Hilbert
space. The second method, however, considers a pseudo Euclidean space also as a
feature space



1. Compute the similarity matrix W from DTW distances.

W o Jer TN Nd(X, X)) < e
* 0 if otherwise

where t(> 0) is a hyper parameter.
2. Compute the Laplacian Matrix L.
L =D — W, D is a diagonal matrix such that D;; = Z?zl Wi;.
3. Solve a generalized eigenvalue problem: Le = ADe, and compute p smallest
eigenvectors e!,...,e? (A <X < ... < Ap) i
4. Compute the coordinates in the embedded space.
Let U = [61,62, .. .,e”], and Z = [Z1,...,2,] = U7, that is to say

z; = (e'(i), e*(4),...,eP(i))" (1<i<n) (10)

5 Distances before and after the embedding

We investigate how the distances between time series data change when they are
embedded in vector spaces.

As we can see clearly from Eq. (3) and (8), the first and the second methods
perform, so to speak, a global embedding which maintains both short DTW
distances and long DTW distances equally.

Next, let us consider the meaning of the solution for the generalized eigen-
value problem: Le = ADe in the third method [6]. To begin with, seek a mapping
from time series data to p dimensional space, ¥ : X — RP (X; — 2%;), such that
iz — z;||?W;; will be minimized. In other words, we try to map those
time series which are close to each other (in DTW distances) to nearby points in

RP. Let n x p matrix U be such that l}'T = [2122...2%,], then it can be shown
that the following holds ©.

1

N

SNz - IPW, = w( LD) (11)
i=1 j=1
Hence, we are left with the following minimization problem.

U’ LU) (12)

o _
U =argmingr - tr(

It is well known that the above minimization problem is reduced to finding the
p smallest eigenvalues / vectors for a generalized eigenvalue problem: Le = ADe.
Since the distances after the embedding are weighted according to the similarity
W ,; in (11), the third method performs, so to speak, a local embedding which
maintains short DTW distances, neglecting long distances.

5 It has recently been pointed out [11] that K = L', ie., the pseudo inverse of
the Laplacian matrix L is the kernel matrix for the Laplacian eigenmap technique.
Therefore, embedding using the eigenvectors with the smallest eigenvalues of L is
equivalent to kernel PCA for the kernel matrix: K.

5 From (11), we can see that L is semi-positive definite.



6 Classification

6.1 Classifier training

We consider here linear classifiers only for simplicity.
F(X) = (w, S(X)) + b= (w, Z) +b (13)

The term (w, (X)) in the above should be (w,®(X)),, for the second method.
However, by setting w’ = Mw, and considering (w, 2),, = (w’,2), pseudo
Euclidean coordinates will be treated as Euclidean coordinates from now on [4]0

Least Mean Square Error Here, we seek a linear classifier which minimizes

the mean square error for the labeled data: {(®(X;),y;) | 1 < i < s}. In other
words, the following error function in terms of w, b should be minimized.

Brew, ) = > o — (w,3:) +5)) (14)

Maximal Margin A hyperplane which has the maximal margin will be ob-
tained by minimizing ||w||? under the following constraint [12]

6.2 Classifying unlabeled data
Let f(X) = (w*, 2) + b*, and for X;(i > s),

7 Experiments

7.1 Experiment 1

We compare the three embedding methods using Australian sign language (ASL)
data [13]. The ASL data consists of 95 signs obtained from 5 subjects, each of
which is a sequence of 9 dimensional feature vectors. We picked up two pairs,
”sad” and "what”, ”go” and ”please” among the 95 signs, and classified each
pairs into two classes. Each sign class has 70 samples.

As to the third method, the similarity matrix was computed by using 8
nearest neighbors instead of e distance neighbors. The value for ¢, ¢ = 10000,
was determined experimentally.

We varied the total number of training data. The rest were used as test data.
The dimensionality of the embedded space, p, was set to 20% of the number of
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Fig. 1. Experiment 1 "sad” vs "what” (left) and "go” vs "please” (right). Average
error rate from 30 trials are plotted. Solid lines (Hilbert) are for the third method.
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Fig. 2. Distances before and after the embedding: 1st Method (left) and 3rd Method
(right) for 140 data of ”go” and ”please” signs

the training data. We used the maximal margin linear classifier for the first and
second method, and the least mean squared error classifier for the third method,
about which good results have been reported [4, 5, 7).

Fig. 1 shows that the third method has the best accuracy. Let us consider
the reason. Since DTW distances are originally pattern matching scores, short
distances which show a good match tend to be reliable, but long distances tend
to be unreliable. While the first and the second method maintain both short
and long distances equally alike in the embeddings, the third method tries to
maintain only short distances by putting more weights on short distances. We
thus conjecture that the third method has yielded the best result because it
is compatible with the above nature of DTW distances (See also Fig. 2, which
supports the analysis in Sec. 5 on distances.)

7.2 Experiment 2

In the second experiment, we compare the third method: Laplacian eigenmap
embedding, which had the highest accuracy in the first experiment, with k£ near-
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Fig. 3. Experiment 2: ”sad” vs "what” (left) and ”go” vs "please” (right). The average
error rate is plotted for the same ASL data used in the first experiment.
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Fig. 4. Experiment 2: "upward shift” vs ”increasing trend” in Control Chart Time
Series [13].

est neighbors (k = 1, 3,5). K nearest neighbors also use DTW distances, but do
not embed data.

The results in Fig. 3 and 4 show that the third method has the best classifi-
cation accuracy. We conjecture the reasons as follows. Firstly, the third method
uses a linear classifier, which is expected to be more robust to noise than k near-
est neighbors. Secondly, the third method seems to use unlabeled data effectively
[14], because the coordinates of test data in the embedded space are determined
by the DTW distances not only to the labeled data (the training data), but
also to the unlabeled data (the test data), as far as they are within 8 nearest
neighbors.

8 Conclusion

‘We have proposed an approach to embed time series data in a vector space based
on the distances obtained by Dynamic Time Warping, and to classify them in



the embedded space. Under the problem setting in which both labeled data
and unlabeled data are given beforehand, we have considered three embeddings,
embedding in a Euclidean space by MDS, embedding in a Pseudo-Euclidean
space, and embedding in a Euclidean space by the Laplacian eigenmap technique.
We have found that embedding by the Laplacian eigenmap technique leads to
the best classification result. Furthermore, the proposed approach with Laplacian
eigenmap embedding shows better performance than k-nearest neighbors.
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