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Abstract. The Error-Correcting Output Codes (ECOC) is a representative ap-
proach of the binary ensemble classifiers for solving multi-class problems. 
There have been so many researches on an output coding method built on an 
ECOC foundation. In this paper, we revisit representative conventional ECOC 
methods in an overlapped learning viewpoint. For this purpose, we propose 
new OPC based output coding methods in the ECOC point of view, and define 
a new measure to describe their properties. From the experiment on a face rec-
ognition domain, we investigate whether a problem complexity is more impor-
tant than the overlapped learning or an error correction concept. 

1   Introduction 

The Error-Correcting Output Codes (ECOC) [1] is one of the binary ensemble classi-
fiers for solving multi-class problems. The ECOC has been dominant theoretical 
foundation in output coding methods [2-6] that decompose a complex multi-class 
problem into a set of binary problems and then reconstructs the outputs of binary 
classifiers for each binary problem. The performance of output coding methods de-
pends on base binary classifiers. It needs to revisit the ECOC concept, since the Sup-
port Vector Machines (SVM) [7] that can produce a complex nonlinear decision 
boundary with a good generalization performance is available as a base classifier for 
output coding methods. 

The ECOC has two principals with respect to a codes design in which the codes 
concern both how to decompose a multi-class problem into several binary ones and 
how to decide a final decision. One principal is to enlarge the minimum hamming 
distance of a decomposition matrix. The other is to enlarge the row separability to 
increase the diversity among binary problems. A high diversity reduces an error-
correlation among binary machines [8]. By enlarging the length of codewords [9], we 
can easily increase the hamming distance of the decomposition matrix at the cost of 
generating a large number of binary problems. In this circumstance, each class can be 
learned redundantly in several binary machines, we call it overlapped learning. By 
increasing the error-correction ability through the overlapped learning, we have been 
able to improve performance of a conventional ECOC with a hamming decoding. The 



hamming decoding closely concerns the hamming distance of the decomposition 
matrix. 

In a generalized ECOC [9] that includes 0 elements as well as –1 and +1 in the de-
composition matrix, i.e., it has a triple codes (on the other side, a conventional ECOC 
consists of -1 and +1, i.e., it has a binary codes), we cannot directly compute the 
hamming distance. A new distance, a generalized hamming distance, is defined by [9], 
where the distance between the 0 element and the others is 0.5. The primary motiva-
tion of the conventional ECOC has been the overlapped learning of classes built on 
binary codes. The generalized ECOC does not insist on the binary codes any more, 
and the SVM used for a binary classifier can produce a real-valued confidence output 
that can be useful information for discriminating classes.  

In this paper, we revisit ECOC with respect to the generalized ECOC by compar-
ing and empirically analyzing certain properties of the representative ECOC methods, 
such as One-Per-Class (OPC) [11], All-Pairs [12], Correcting Classifier (CC) [10] 
and our proposed OPC-based methods designed on conventional ECOC concept. 
Further, we give an empirical conclusion on a codes design, which is limited to our 
experiment on face recognition. 

2 One-Per-Class Variants with ECOC concept 

In this section, we firstly formulate the output coding method (a generalized ECOC) 
in two steps: decomposition and reconstruction. Then, we propose new OPC based 
output coding method with ECOC concept, and define a new measure to describe 
their properties. Further, we describe later the performance of ECOC with margin 
decoding, which uses the real-valued output of a machine, using a newly defined 
problem complexity measure in the experiment. The OPC with hamming decoding 
has no error correction ability, so we begin by introducing additional machines to 
endow it with an error correcting ability. 

2.1   Decomposition and Decoding 

Decomposition (Encoding): A decomposition matrix, { } KLD ×+−∈ 1,0,1 , specifies K  
classes to train L  machines (dichotomizers), . The machines  is trained 
according to the row . If 
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Decoding (Reconstruction): In the decoding step, a simple nearest-neighbor rule is 
commonly used. The class output is selected that maximizes some similarity meas-
ure , between and columnLLs }1,0,1{: −×R ],[ ∞∞−→ )(xf ),( kD ⋅ .  

)),(),((maxarg_ kDfsoutputclass k ⋅= x  ⑴ 

We call it a margin decoding, equation ⑵, a similarity measure based on a margin, 
defined as )(xfy ⋅ [9]. When classifier outputs a hard decision, { 1,1)( − }∈xh , the 
method is called hamming decoding, equation ⑶. 
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2.2 New Decompositions 

Tree-Based Decomposition: We design the tree structure for getting additional ma-
chines as well as those of generated by OPC. We adopt binary tree and distribute the 
classes of a parent node to its child nodes in a crossing manner. By the crossing  
manner, we can achieve the diversity of the binary problems with our proposed de-
composing method as follows. Each node except for the root node makes one row in 
a decomposition matrix by assigning a positive value for classes that the node has, 
and a negative value for the other classes in the sibling nodes. The root node gives a 
positive value for the half of the whole classes and a negative value for the remainder. 
Fig. 1 shows a generated decomposition tree and a decomposition matrix on 8 classes. 

⒜    ⒝   
Fig.1. Decomposition matrix of Tree-based scheme for 8 classes. ⒜ tree-structure on 8 classes. 
⒝ Its decomposition matrix. 

When the number of classes is K , the )1(2 −× K  problems are generated. The differ-
ence between the number of classes being a positive class and the number of classes 
being a negative class varies according to the level of depth of the tree, so each binary 
problem can have the different level of complexity. Therefore, it is desirable to intro-
duce weights into the decoding process to handle a different complexity among prob-
lems. 
 
N-Shift Decomposition: In this scheme, we first decide the number of positive 
classes , and then form the first row of a decomposition matrix by setting  ele-
ments from left as positive ones and the remainder as negative ones. The rest rows are 

N N



easily constructed by right-shifting the elements of the preceding row. Finally, OPC 
decomposition matrix is added to it. When the number of classes is K , the K×2  
problems are generated. . Fig. 2 shows two examples of a generated decomposition 
matrix having different  values, 2 and 3, respectively, when N K is 4. 

      

⒜ 2=N           ⒝ 3=N  
Fig. 2. Decomposition matrix of 2-Shift and 3-Shift for 4 classes. 

2.3 New Decodings 

It is undesirable to deal with the outputs of the machines equally where each machine 
is trained with a problem having different level of complexity. There are two possible 
solutions to this problem: One is to utilize the different level of output for class deci-
sion, and the other is to adopt a weighed output. In this section, we propose the rela-
tive distance decoding for the former, and the weighted decoding for the latter respec-
tive. 
 
Relative Distance Decoding: The machine has different scale outputs for two classes, 
so the same outputs should be understood differently. As an example, consider that, 
for samples belonging to class i , the machine habitually generates 0.8, and for sam-
ples belonging to class , 0.5. The habit of generating uneven outputs for classes is 
formed during the learning process, and can be used for discriminating classes. To 
utilize this information, we introduce an average template. The average template is 
constructed by calculating the average of output for each machine as follows: 

j

( ) jC i CfjiD
j

/)(),(' ∑= ∈x x  ⑷ 

where jC means the number of samples belonging to the class . The following 

equation calculates the similarity between a given input and a considered class by the 
relative distance. 
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Both A and B constants of the exponential function and they can be usually fixed by 
experiment. 
 
Weighted Decoding: As the number of positive classes increases, the complexity of 
the binary problem increases accordingly. There is a difference between the confi-
dences on the outputs of a machine trained with problems having different level of 



complexity. To handle this problem, we introduce weighting into the decoding proc-
ess. The weight for learner , , is calculated as follows:  l lw
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where,  is a function for discerning positive classes from negative classes. 
Then, the weighted decoding is as follows: 
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This decoding can be used for determining the complexity of a problem. If we adopt 
this measure and obtain improvement in decomposition, then we can think that the 
decomposition generates complex problems. 

3 Intuitive Problem Complexity 

We define a new measure for estimating the complexity of a machine as well as the 
weighted decoding. We need some measure that estimates the complexity when in 
designing the decomposition matrix, not in the experiment as the weighted decoding. 
The magnitude of a super class, equation (2), for training a binary classifier, means 
that how many classes are grouped into one. Intuitively, one expects that, as the num-
ber of classes that is grouped into one increases, i.e., the magnitude of  or  
increases, the complexity of the binary problem associated with them will increase. 
From this viewpoint, we can say that the most complex case is 

, and the easiest case is  when the number of 
classes is 
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K . In other words, if we define intuitively the problem complexity as the 
magnitude of the super class of a binary problem, this can be in proportion to  

and . Let us define Intuitive Problem Complexity (IPC) as follows:  
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We summarize the magnitude of each super class of different decompositions and 
IPC in Table 1. According to Table 1, the tree-based scheme can be considered as a 
very complex problem compared to other schemes. The second complex problem can 
be the N-Shift scheme or CC scheme up to the value of N. 

Table 1. Comparison of the magnitudes of super classes and IPC 

Decomposition 
Scheme OPC All-Pairs CC Tree-

based N-Shift 

|| +C  1 1 2 K/2 N 
|| −C  K-1 1 K-2 K/2 K-N 

IPC 1 1 2 K/2 N 



 
4 Experimental Results 

4.1 Data sets 

We used the ORL face dataset, which is one of the popular public datasets used in 
face recognition. The image set consists of 400 images, ten images for each individ-
ual. Each image for one person differs from each other in lighting, facial expression, 
and pose. We obtain the final training and testing dataset by applying preprocessing 
and Principal Component Analysis. Fig. 3 shows examples of the normalized face 
images produced after preprocessing. 

 
Fig. 3. Some normalized facial images in the ORL dataset. 

We used all of the face images for PCA transformation, and divided them into two 
parts; one was used for a gallery set (reference set), and the other was used for a 
probe set (test set). We obtained the highest recognition rate at 48-dimension with a 
PCA-based rank test, which is the standard test protocol described in FERET [13]. 
We determined the feature dimension by employing the procedure mentioned above, 
because the focus of our experiments is to display the classification performance of 
our proposed method. To compare the properties of the output coding methods, we 
used the SMOBR [14], which is one of the implementations of SMO [15], with RBF 
kernels as a base classifier. We randomly selected five images of each person, for 
training and the remaining five for testing. The number of samples for training and 
testing is both 200 respectively and the dimension of one sample is 48. Note that the 
dataset has a relatively small number of samples for its high dimensional feature 
space. We evaluated various decoding schemes on the ORL face dataset and com-
pared their recognition performance. Table 2 shows the decoding schemes we inves-
tigated. 

Table 2. Various decoding schemes. 

Symbol Meaning 
HM Hamming Decoding 
MG Margin Decoding 
RD Relative Distance Decoding 

WHM Weighted Hamming Decoding 
WMG Weighted Margin Decoding 



In the subsequent section, the recognition accuracy of each decomposition scheme is 
presented. For those results, we calculated the recognition accuracy, varying C  of 
SVM parameter from 1 to 10 and dispersion from 0.2 to 1.0 and chose the best recog-
nition accuracy among them. 

4.2 Properties Analysis 

In this section, we compare and analyze empirically some properties of the represen-
tative output coding methods, such as OPC, All-Pairs, CC and our proposed OPC-
based methods, on the following items. 

 
Relationships between Overlapped Learning and Hamming Decoding: The error 
correcting ability is related to the minimum hamming distance of a decomposition 
matrix, and this is obtained from the overlapped learning of classes. We investigate it 
empirically. The number of binary machines generated and the minimum hamming 
distance of each output coding method for 40 classes are summarized in Table 3. We 
assume that the hamming distance between zero and zero or nonzero element of a 
decomposition matrix is 0.5. 

Table 3. Number of machines and Minimum hamming distance of decomposition schemes. 

Number of Machines Minimum Hamming Distance Decomposition 
Scheme K=40 K-Class K=40 K-Class 

OPC 40 K 2 2 
All-Pairs 780 K(K-1)/2 390 (K(K-1)/2–1)/2+1 

CC 780 K(K-1)/2 76 2 (K-2) 
N-Shift 80 K+K 2 2 

Tree-Based 78 (K-2)+K 2 2 
 
Fig. 4 ⒜ presents the recognition accuracy of each decomposition scheme with ham-
ming decoding. If we compare the recognition accuracy of Fig. 4 ⒜ with the number 
of machines and the minimum hamming distance in Table 3, we can observe that the 
recognition accuracy is in proportion to both the number of machines and the mini-
mum hamming distance. 
The recognition accuracy of OPC is considerably lower than those of N-Shift and 
Tree-based schemes in spite of their having the same hamming distances. The reason 
for this observation is that OPC does not retain any error correction ability because it 
does not conduct overlapped learning. In other words, both N-Shift and Tree-based 
schemes generate some extra binary machines in addition to the same machines of the 
OPC scheme; as a result, this allows for them to train classes in an overlapped manner, 
where it makes a considerable difference. Therefore, we conclude that the recognition 
accuracy of each decomposition scheme with hamming decoding depends on the 
number of machines for overlapped learning as well as its minimum hamming dis-
tance. 
 



Hamming Decoding versus Margin Decoding: According to Fig. 4⒝, margin de-
coding is superior to hamming decoding for all the decomposition schemes, except 
for All-Pairs. This means that the margin decoding does not strongly depend on the 
number of machines or the minimum hamming distance. The reason for the poor 
accuracy of All-Pairs with margin decoding can be explained by two viewpoints as 
follows: First, the number of samples being used in training each machine of All-
Paris is significantly smaller than that of OPC. Secondly, the decomposition matrix 
includes zero elements, which means that some classes exist that are not involved in 
training a machine. That raises the problem of nonsense outputs. The level of the 
nonsense outputs problem increases as the number of classes increases. 

 

   
⒜ ⒝ ⒞ 

Fig. 4. Comparison of recognition accuracy ⒜ with hamming decoding, ⒝ between hamming 
and margin decoding, and ⒞ between margin and weighted margin decoding. 

 
Relationships between Performance and Intuitive Problem Complexity: While N-
Shift and Tree-Based schemes have more machines due to the overlapped learning, 
they are inferior to OPC in recognition accuracy. For explanation of the reason, we 
consider the Intuitive Problem Complexity (IPC) and the weighted decoding. The IPC 
of each decomposition scheme being computed using Table 1 with K=4, can be or-
dered ascendant as follow: OPC=1, 2-Shift=2, 3-Shift=3, and Tree-Based=20. This 
order corresponds exactly to the order of their recognition accuracy shown in Fig. 4⒞. 

Therefore, we infer that the overlapped learning has a strong effect when it is used 
with hamming decoding; however, this is not the case with margin decoding. In other 
words, recognition accuracy depends more on the IPC than the overlapped learning 
effects when we use margin decoding. Table 4 presents both the IPC and recognition 
accuracy on the ORL dataset.  

To support this inference, We compare the recognition accuracy of N-Shift and 
Tree-Based schemes with margin decoding and weighted decoding respectively in 
Fig. 4⒞. According to Table 4 and Fig. 4⒞, the recognition accuracy of each 
decomposition scheme decreases as the IPC increases; however, their recognition 
accuracy is almost the same as our proposed weighted margin decoding. This means 
that weighted margin decoding can remove something related to the problem 
complexity represented by IPC. These results allow us to infer again that recognition 
accuracy strongly depends on the IPC of each decomposition matrix when we use 
margin decoding. 



Table 4. Recognition Accuracy (RA) of decomposition schemes with margin decoding and 
IPC. 

Decomposition OPC 2-Shift 3-Shift Tree-Based 
RA (%) 92.0 90.0 89.0 84.0 

IPC 1 2 3 20 
 
Performance Analysis: In Table 5, we present the recognition accuracy of the ex-
periments on the ORL dataset with various decomposition and decoding schemes. 

Table 5. Rcognition accuracy (%) on the ORL face dataset. 

Decoding Scheme Decomposition 
Scheme HM MG RD WHM WMG 

OPC 69.0 92.0 93.0 - - 
All-Pairs 91.0 88.5 88.5 - - 

CC 89.5 92.5 93.0 - - 
2-Shift 73.5 90.0 93.0 73.5 91.0 
3-Shift 73.5 89.0 90.0 71.5 92.5 

Tree-Based 73.5 84.0 85.5 75.0 91.0 
 
When we compare the OPC and All-Pairs, with the hamming decoding, All-Pairs 

shows a significantly better performance than OPC, but with the margin decoding, 
OPC shows a better performance. Overall, OPC with the margin decoding shows 
slightly better performance than All-Pairs with the hamming decoding. We infer that 
the performance of OPC training all classes at a time is better than that of All-Pairs 
since the number of training face image of one person is small. 

Each machine in OPC and CC trains all the classes at a time. In this case, CC 
shows significantly better performance than OPC in hamming decoding like All-Pairs 
due to its large number of machines. With margin decoding, the performance of the 
two machines is almost the same regardless of their differing numbers. 

Consequently, when we have small number of samples, such as face images, the 
OPC-like schemes training all the classes at a time can be preferred, but it is unneces-
sary to make too many machines for the overlapped learning like the CC scheme to 
improve an error correcting ability at the expense of a larger IPC than OPC and All-
Pairs. 

5 Conclusion 

In this paper, we compared and analyzed empirically certain properties of the repre-
sentative output coding methods such as OPC, All-Pairs, CC and our proposed OPC-
based methods with a face recognition problem. We observed the followings:  Firstly, 
the recognition accuracy of each decomposition scheme with a hamming decoding 
depends on the number of machines for overlapped learning as well as its minimum 
hamming distance of it. Secondly, the margin decoding is superior to hamming de-
coding with all the decomposition schemes except for All-Pairs. The margin decoding 
is slightly independent of the number of machines or the minimum hamming distance. 



Thirdly, we infer that an overlapped learning can have a strong effect when it is used 
with the hamming decoding, but this is not the case with the margin decoding. This 
means that recognition accuracy relies more on the IPC than the overlapped learning 
effects when we use the margin decoding. 

According to our experiment on face recognition, we conclude that the perform-
ance depends more on the problem complexity than the minimum hamming distance 
of the decomposition matrix, so it is no need to consider seriously the conventional 
error-correcting concept, and we suggest that the IPC of desired output coding 
method should be small as one.  
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