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Abstract. Steering an autonomous vehicle requires the permanent adaptation of behavior in 

relation to the various situations the vehicle is in. This paper describes a research which implements 
such adaptation and optimization based on Reinforcement Learning (RL) which in detail purely 
learns from evaluative feedback in contrast to instructive feedback. Convergence of the learning 
process has been achieved at various experimental results revealing the impact of the different RL 
parameters. While using RL for autonomous steering is in itself already a novelty, additional 
attention has been given to new proposals for post-processing and interpreting the experimental 
data.  

1. Introduction 

The study presented in this paper deals with the concept and the implementation of a 
system which, based on experience over a period of time, is able to autonomously learn to 
steer different vehicles and to optimise its behaviour to various possible road courses. This 
shall be done in a different way than researched in many other works before as described 
further below.  

Key element is the fact that any action (steering, acceleration) is dependent on the 
situation to which a vehicle is exposed. If a vehicle is exposed to a real environment, 
situations are subject to permanent changes and therefore any true autonomous system 
will have to continuously adapt its actions. 

Many research projects have been performed based on neural nets and have shown 
some results, but were always dependent on strong similarities between current 
environment and previous training pattern. A new situation always needs to be trained if 
deviating even slightly from previously trained situations. 

The model based approach proved better success and is still being pursued in many 
researches. Even though we also believe in its further success, the parameterisation 
becomes more and more complex when the number of different situations increases (e.g. 
when situations are being further examined). This remains the biggest challenge for some 
time. In this light, an interesting variation has been proposed by using a neural net for 
learning the parameters of the used model [13], [14].  

Altogether, however, both directions are dependent on instructive feedback � therefore 
they are based on a-priori knowledge resulting from parameters of teaching phases.  

This paper therefore describes the research of a third method: Reinforcement Learning 
(RL). RL-Systems provide capabilities of self-optimising actions based on evaluative 
feedback. They explore the overall state-space by means of analysing the impact of 
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previously issued actions, coping with delayed feedback as well as coping with disturbed 
feedback.  

Given the above aspects, it should also be noted that RL is not striving to compete with 
the established approaches like modelling. In lieu thereof, any progress of RL-Systems 
might be used to enhance the advantages of modelling achieved so far. At the end, a 
combined system built on modelling and RL might provide better results than each 
approach alone. In this light, we strongly believe RL-system will play a significant role in 
the near future in autonomous driving systems. 

This paper, however, focuses purely on Reinforcement Learning in order to explore its 
benefits and limitations. 

All in all, the main targets of this research are: steering of an autonomous vehicle along 
any curvy road, autonomous exploration of new actions for familiar as well as for new 
situations, therefore autonomous optimization (self-tuning of the system to any 
combination of environment and vehicle), learning from evaluative feedback (in contrast 
to instructive feedback/ teaching), coping with delayed feedback (delayed rewarding) as 
well as non-linearity of true environment, and finally Real-time processing. 

2. Related work 

Till now the visual control of systems for autonomous vehicle driving with learning 
components have been implemented in several ways. [2] describes a short direct 
connection between image processing and soft computing learning method using a neural 
network. This approach provides good results but only as long as input pictures of the 
scene are similar to the training patterns. This approach was being enhanced by a multiple 
neural network [3], but could not completely solve the dependency problem of the taught 
training patterns. Further developments then included a GPS system [4] to support 
orientation or enhanced the approach with object-oriented vision in order to distinguish 
between road following and obstacle detection [5], [6].  In all those variations, however, 
neural networks with their inherent dependency on training patterns are embedded. Also, 
as a major difference to the presented research, the established knowledge on vehicle 
driving is stored within the neural net but not explicitly available, e.g. for optimisation or 
for further learning processes. 

A completely different approach is being followed by using explicit modelling, 
therefore trying to rebuild a model of the environment as well as the vehicle and to derive 
proper actions from it. The basic idea of such a model is to try to understand interaction 
between vehicle and environment and to predict consequences of any behaviour thus 
allowing to determine a suitable behaviour in a given situation.  

The major challenge of this approach is to find a suitable model which approximates 
the true vehicle behaviour and environment in the best way. Any difference between the 
model and the real environment/vehicle results in a difference between the calculated 
behaviour and an optimum behaviour. Any model also needs to be shaped up and tuned 
with parameters. Usually there are no versatile models, so any change of e.g. vehicle or 
environment requires a corresponding tuning, respectively adaptation of the model. In 
other words, any tuned model is valid only for a certain environment or vehicle and is 
more or less sensible to any change of these. [7] describes an early success with 
international attention of a vehicle system using a real-time vision system BVV2 [8]. 
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Further developments in this area (e.g. [9]) are being pursued with significant progress, 
however always dependent on many parameters for the modelling process.  

3. General Structure 

Figure 1 shows the overall structure of our approach. According to Sutton/Barto [1], a 
RL-system consists of an RL-Agent and theRL-Environment. The RL-Agent receives 
input regarding the state (situation) st as well as a reward rt and determines an appropriate 
action at. This action will cause a reaction of the RL-Environment and consequently result 
in a change of state from st to st+1. Similarly, the RL-Environment will also issue a reward 
rt+1 corresponding to st+1.  
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Fig. 1. Structure of the System 

Since the determination of the state s and the reward r is required from the RL-
Environment and usually not being provided by an environment simulator, our system 
enhances the RL-Environment and provides methods of Image Processing, Pattern 
Matching and reward-generation being described more in detail in the next paragraph.  

4. Image Processing and Pattern Matching 

The proper pre-processing of the incoming data is key to any successful RL-System. 
One of the major novelties of this research is the determination of a suitable situation 
description in correspondence to the situation the vehicle is in. In this light, the classical 
RL-Environment (the lower part of figure 1) has been enhanced in order to provide the 
RL-agent with defined descriptions of each situation. Any incoming image, along with 
external information on any appropriate action, is being given to an image processing 
system, which extracts all relevant information in order to describe the current situation. 
Such situation description is being referred to as Abstract Complete Situation Description 
(ACSD). Even though such technique is a significant part of the current research, it shall 
not be described at this point since public presentations (also available on the web) have 
been done and has been described in proceeding papers in detail (e.g. [10], [11], [12]). At 
this point it shall only be emphasized that it makes use of a self-created statistical database 
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storing the conditional probabilities of road mark positions and additionally exploiting the 
information to extract the road marks faster and more reliable than with many other 
methods. Such ACSDs are then being stored along with the corresponding action a of the 
training phase in a database.  

When operating the system in driving mode, any incoming image is being converted 
into an ACSD. Given the ACSD of the current image and the ACSD�s in the database, a 
fast k-nearest neighbour algorithm locates the most similar ACSDs. Such way, the RL-
Agent not only receives information regarding the current situation but also information 
which other similar (or identical) situations experienced before.  

In this context, the ACSD explained above is being used as the state s, the action a is 
basically the steering command (i.e. angle of the steering wheel). 

Additionally, a reward r is being determined, which can be a value representing the 
lateral deviation from the middle of the road if the agent has to learn to follow any road 
course � however, the reward can also be a timer value measuring the time needed for a 
road section if the agent is to learn to pass a road section in the shortest possible time. 

5. Reinforcement Learning  

The basic idea of RL is, that states st,, respectively actions issued at a certain state at, 
are being rated considering the reward rt+1 of the situation st+1. Such rating is being 
represented by Q(s,a) and is defined to be the sum of future rewards discounted by a 
discount factor γ. In the beginning only estimates of the q-values exist. Thus, the current 
Q-values deviate from the converged Q-values by an error TDerr.   
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The error TDerr is being used for updating the Q-values (also discounted by the 
learning rate parameter α) and will lead to a convergence of the Q-values, as long as the 
reward is deterministic. 

TDerrasQasQ tttt ⋅+= α),(:),(  (4) 

The maximum Q-value of a state s across all possible actions shall be: 

),(maxmax a asQQ ia=−  (5) 

and in combination with the policy π, the system usually selects the action with the 
highest Q-value, resulting the system to operate in the mode called exploitation mode: 
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)(:)( max−= ai Qaasπ  (6) 

An initial target, however, is to self-optimise behaviour over time. Consequently it is 
imperative to actively explore the state-action-space in order to search for the best action 
(and temporarily switching to exploration mode): 
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(7) 

with ]1,0[],1,0[() ∈∈ εrand  

In this policy learning and exploitation are randomly mixed. Such way the RL-system 
also adapts autonomously to a new or even changing environment without any explicit 
training phase. 

Notable, at this point, is also the capability of a RL-system to cope with non-linearity�s 
(e.g. errand rewarding) of the environment. This notation also includes the ability of the 
system to cope with delayed rewards. Given is for example the state-action relationship as 
displayed in figure 2. At t=0 the system shall be in state si and has the option between two 
actions: ai!j which will cause a transition to state sj and further-on to state sk or action ai!i 
which will prevent any change of state. rj shall be errand and rk shall be much higher than 
ri. Therefore, the system should be able to learn to accept an errand (low) temporary 
reward at state sj but to finally reach sk and should not remain in state si.  

According to its policy, the system will choose the action with the highest Q-Values. 
Depending on the rewards and the discount factor, the maximum Q-value at state si is 
given in formula 8. Basically, the closer the discount value get towards �1�, the higher 
will be the preference on long-term-rewards instead of short-term rewards. 
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Fig. 2. State sequence of the RL-system while coping with disturbed reward rj(see flash) 
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6. Experimental results and findings 

6.1 Experimental setup 

The experiments have been done with a closed-loop-system consisting of two 
connected computers. The System-PC, processes the video stream of a connected camera 
and calculates the steering commands for the vehicle. These steering commands are then 
being given to the Simulator-PC, which is responsible for the environment simulation. A 
converter box connects both interfaces. The output of the second computer is being given 
onto its monitor, which again is being read by the video camera � alternatively, the video 
output of the Simulator-PC is being connected directly to the framegrabber of the system-
PC using a S-VHS-cable. Due to this set-up a realistic amount of measurement noise is 
introduced into the system. 

The task of the following experiments has been, to learn the ideal vertical position, 
respectively, the driving angle of a vehicle driving along a road course. In this light, a 
simplified system with 11 possible steering commands (equally distributed from sharp left 
steering to sharp right steering) has been defined. The number of possible situations varies 
depending on the settings of the image processing part.  

 

Simulator-PC System-PCConverter-Box

Videocamera

 

Fig. 3. HW setup for this research using two interconnected computers  

At this point it should be noted that all further results have been achieved without any 
supervised teaching at all! Therefore, the system discovers the whole state space 
completely on its own � in detail: the appropriateness of every action of every situation. 
Such extreme exploration of the environment is only possible on a simulator, which is our 
main reason for choosing such a platform.  

6.2 Splining and measurement of convergence 

One of the major new and significant findings in this research was, that a criterion is 
needed as to how much the system converged. Even though the values of TDerr (formula 
3) represent the convergence error and is therefore the basis for the update, the chart of 
TDerr(t) does not express the grade of state-space convergence. Fig. 4 shows lateral 
converged state-space (optimal lateral position to be learned) after the issuance of approx. 
170.000 actions and a chart of TDerr over time � the convergence is not really be 
recognizable. 

Regarding the state-space: the state �R1� is equivalent to being at the left edge of the 
road; the best action in this situation is the selection of the center situation. The state 
�R11� is equivalent to being at the right road edge; the best action in this situation is again 
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the selection of the center situation. The action �1� is equivalent to selecting the leftmost 
situation, the action �11�is equivalent to selecting the rightmost situation.  
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Fig. 4. original state-space (approx 30.000 actions) and TDerr (t)   

Therefore the state-space of the Q-values is being approximated by calculating for all 
situations each one spline over all actions. The cumulated squared difference between all 
original Q-Values and it�s corresponding splined Q-Value results in the determination of a 
value �Smoothness�. The splined Q-Values as well as the development of the Smoothness 
Value during the same testseries as Fig. 4 is shown in Fig. 5 and a clear indication for 
convergence can be seen. A rising smoothness value indicates the adaptation of the system 
to its environment (major learning performed), because the action space has to be globally 
smooth for the chosen system. The smoothness value decreases while the system 
converges. A complete convergence (therefore smoothness-value equal to zero) will not 
be achieved since any true environment is also not absolutely deterministic. 

However, a disadvantage of the splining, is the distortion of the state-space if some 
actions did not get issued often enough � resulting in a less often update according to 
Reinforcement Learning. Fig. 6 shows the original Q-Values as well as the splined Q-
Values for a state-space, in which only the middle actions got issued often enough 
(resulting in a local convergence). As a solution to this dilemma, the number of updates 
for each Q-Value gets counted and can either be considered during the splining process or 
used to hide the associated Q-Values. 
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Fig. 5. splined state-space (approx 30.000 actions) and Smoothness(t)  
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Fig. 6. original state-space and splined state-space 

Fig. 6 also shows the impact of reduced exploration. At reduced exploration, some 
actions might nearly never get issued (since not any action can be issued from any 
situation, creating a situation-specific dependency). Partially, this can be overcome by 
longer test-cycles but still, the counted number of updates for each Q-Values needs to be 
considered for any further analysis. 

6.3 Impact of learning parameters 

Although some other publications deal with the combination of RL and autonomous 
driving, the impact of the RL parameters are not yet publicly documented. In 
consequence, quite some experiments have been spent on such topic and provide for the 
first time an overview of the impact of the basi RL-parameters. Regarding the learning 
rate parameter α on the learning process, Fig. 7 and Fig. 8 show two similar testseries 
which differ only in values of α. A small value for α results in slower, but more stable 
learning. It should be noted that for those and the further tests, the system had to learn the 
driving angle, ie. the optimal driving angle is dependant on the situation the vehicle is in 
resulting in a different position of the maximum Q-Value for each situation.  
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Fig. 7. testseries (approx 7.000 actions) with α = 0.1; original state-space and 

Smoothness(t) 
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An environment with a higher number of situations lead to a more complex state space. 
Fig. 9. show corresponding tests; again with different settings for the grade of exploration. 
All in all, the system performs the learning task quite well � especially, as mentioned 
above, without any teaching at all. The more complex the environment becomes 
(dimension of state-space increasing) the test duration needs to be enhanced accordingly. 
However, even extended test times might run into limitations when the environment gets 
more and more complex. In those cases, focused exploration (i.e. exploration of only 
some sub-areas of the whole state-space) are supposed to be a viable solution � further 
investigation on this matter is planned for the near future. 
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Fig. 8. testseries (approx. 7.000 actions) with α = 0.5; original state-space and 

Smoothness(t)  
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Fig. 9. Impact of exploration: ε = 0,1 (left) resp. ε = 1,0 (right)  

7. Summary 

Pattern Matching provides capabilities of autonomous driving with knowledge being 
directly accessible (for further optimization). In addition, Reinforcement Learning allows 
autonomous optimization of behaviors based on self-created rewards, even if delayed or 
disturbed. Combining both techniques allows learning and optimizing of visual steering of 
autonomous vehicles. The current research, will now be further used in more complex 
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environments in order to explore the limiations of exploration in combination to test 
duration. Also, further aspects regarding coping with delayed rewards will still be 
focussed on within the current research. 
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