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Abstract. When we mine information for knowledge on a whole data
streams it’s necessary to cope with uncertainty as only a part of the
stream is available. We introduce a stastistical technique, independant
from the used algorithm, for estimating the frequent itemset on a stream.
This statistical support allows to maximize either the precision or the re-
call as choosen by the user, while it doesn’t damage the other.Experiments
with various association rules databases demonstrate the potential of
such technique.

1 Introduction

A growing body of works arising from researchers in Databases and Data Mining
deals with data arriving in the form of continuous potentially infinite streams.
Many emerging and real applications generate data streams: trend analysis, fraud
detection, intrusion detection, click stream, among others. In fraud detection,
data miners try to detect suspicious changes in user behavior [5]. Trend analysis
is an important problem that commercial applications have to deal with [8]. Se-
curity of network systems is becoming increasingly important as more and more
sensitive informations are being stored. Intrusion detection has thus become a
critical approach to protect systems [7].

From now on, we consider items to be the unit information, and itemsets to
be sets of items. An itemset is θ-frequent if it occurs in at least a fraction θ of the
stream (called its support), where θ is a user-specified parameter. As the item
flow is fast and represent a huge amount of information, it prevents its exact
storage. Out of the uncertainty it generates, the problem becomes to store the
information so as to keep valid its most crucial contents. One example of such a
content is the list of the most frequent items of itemsets encountered, a crucial
issue in Data Mining that has recently attracted significant attention [6, 10, 12, 7].
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When the database is subject to be updated regularly, maintaining frequent
itemsets has been successfully addressed by various incremental algorithms [2,
19]. But due to the high frequency and potentially huge information carried
out in a timely fashion by data streams, these incremental approaches cannot
easily handle them, unless they take the risk to make errors [18] and/or fail at
estimating supports, one of the two essential components of association rules
algorithms. This is where our paper takes place.

More precisely, we address the following questions:

(a) is it possible to set up a method which replaces the exact support by a
statistical support ensuring some desirable properties on support computa-
tions, and frequency estimations ? Ideally, we would like the resulting sup-
port to hold regardless of the algorithm used to build or maintain frequent
items/itemsets (see e.g. [2, 19]), and rely on mild theoretical assumptions so
as to be reliably implementable.

(b) how good is this statistical support, both from the theoretical and experi-
mental standpoints ?

The rest of this paper is organized as follows. Section 2 goes deeper into
presenting the problems of dealing with uncertainty in data streams, and gives
an extensive statement of our problem. Section 3 presents our solution to this
problem, and its properties. Section 4 presents experimental results, and Section
5 concludes the paper with future avenues for research.

2 Problem Statement

The huge size of data streams for real-world domains compared to the limited
amounts of resources to mine them makes it necessary to cope with uncertainty
to achieve reasonable processing time and/or space. A significant body of previ-
ous works has addressed the accurate storing of the data stream history [1, 3, 10].

Our setting is a bit more downstream, as we question the forecasting on the
data stream future. Ideally, this information is sought to be accurate not only on
the data stored, but also on the whole data stream itself. For example, it’s not
enough to observe some item as frequent in the data stored; it is much more im-
portant to predict if it is really frequent in the whole data stream. Similarly, it’s
not enough to observe that some itemsets doesn’t meet the observed frequency
requirements to argue that it is really not frequent on the whole data stream.

From the estimation standpoint, there are two sources of error:

1. it is possible that some itemsets observed as frequent might in fact not be
frequent anymore;

2. on the other hand, some itemsets observed as not frequent may well in fact
be frequent from a longer history of the data stream.
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Fig. 1. Problem statement.

Should it rely on frequencies estimations, any loss due to the imperfection of
the information stored is incurred by at least one of these sources of error. The
point is that it is statistically hard to nullify both of them [17]. It is also generally
impossible to capture the missing informations from the data stream to make
a fully accurate prediction. Our paper is aimed at obtaining a solution to the
following problem, which is a convenient relaxation of this unsatisfiable goal:

(a) the user chooses a source of error, and fixes some related parameters;
(b) the source of error chosen is nullified with high probability, while the other

one incurs a limited loss.

It turns out that in many domains [18, 16], the relative importance of the two
sources of error is not the same, and one may be much more important to control
than the other one. For these domains, our approach may be a very convenient
way to cope with uncertainty in finding frequent itemsets.

Now, let us skip to a slightly more formal presentation. The data stream
is supposed to be obtained from the repetitive sampling of a potentially huge
domain X which contains all possible itemsets, see Figure 1. Each itemset is
sampled independently through a distribution D for which we make absolutely
no assumption, except that it remains fixed (no drift). The reader may find
relevant empirical studies on concept drift for supervised mining in [5, 20]. The
user specifies a real θ, the theoretical support, and wishes to recover all the true
θ-frequent patterns of X . This set is called Xθ in Figure 1.

Definition 1.

∀0 ≤ θ ≤ 1, Xθ = {T ∈ X : ρX(T ) ≥ θ} , (1)

with ρX(T ) =
∑

T ′∈X:T≤tT ′ D(T ′), and T ≤t T ′ means that T generalizes T ′.

The recovery of Xθ faces two problems. Apart from our statistical estimation
problem, there is a combinatorial problem which comes from the fact that X
is typically huge, even when finite. The set of observed itemsets which we have
sampled from X , hereafter called S, has a size |S| = m (|S| << |X |). In our
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Fig. 2. The error estimation.

framework, we usually reduce this difference with some algorithm returning a
superset S∗ of S, having size |S∗| = m∗ > m. Typically, S∗ contains additional
generalizations of the elements of S [13]. This is not the purpose of this paper
to cover this combinatorial problem; the key point is that S∗ is usually still not
large enough to cover Xθ, regardless of the way it is built (see Figure 1), so that
the pregnancy of our statistical estimation problem remains the same.

Our statistical estimation problem can be formalized as follows:

• approximate as best as possible the following set:

X∗
θ = Xθ ∩ S∗ , (2)

for any S and S∗ (see Figures 1 and 2).

Remark that ∀T ∈ S∗, we cannot compute exactly ρX(T ), since we do not know
X and D. Rather, we have access to its best unbiased estimator ρS(T ):

∀T ∈ S∗, ρS(T ) =
∑

T ′∈S:T≤tT ′
w(T ′) , (3)

with w(T ′) the weight (observed frequency) of T ′ in S. We adopt the following
approach to solve our problem:

• find some 0 < θ′ < 1 and approximate the set X∗
θ by the set of observed

θ′-frequent of S∗, that is:

S∗
θ′ = {T ∈ S∗ : ρS(T ) ≥ θ′} . (4)

Before computing θ′, we first turn to the formal criteria appreciating the goodness-
of-fit of S∗

θ′ The two sources of error, committed with respect to X∗
θ , come from

the two subsets of the symmetric difference with S∗
θ′ , as presented in Figure 2.

To quantify them, let us define:

TP =
∑

T∈S∗
θ′∩X∗

θ

D(T ) (5)

FP =
∑

T∈S∗
θ′\X∗

θ

D(T ) (6)

FN =
∑

T∈X∗
θ
\S∗

θ′

D(T ) (7)

TN =
∑

T∈S∗\(S∗
θ′∪X∗

θ
)

D(T ) (8)
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The precision allows to quantify the proportion of estimated θ-frequent that
are in fact not true θ-frequents, out of S∗

θ′ :

P = TP/(TP + FP ) . (9)

Maximizing P leads to minimize our first source of error. Symmetrically, the
recall allows to quantify the proportion of true θ-frequent that are missed in S∗

θ′ :

R = TP/(TP + FN) . (10)

Maximizing R leads to minimize our second source of error. We also make use
of a quantity in information retrieval, which is a weighted harmonic average of
precision and recall, the Fβ-measure. Thus, we can adjust the importance of one
source of error against the other by adjusting the β value:

Fβ = (1 + β2)PR/(R + β2P) , (11)

A naive approach to approximate X∗
θ would typically be to fix θ′ = θ. Unfortu-

nately, the main and only interesting property of S∗
θ′ is that it converges with

probability 1 to X∗
θ as m → ∞ from the Borel-Cantelli Lemma [4]. Glivenko-

Cantelli’s Theorem gives a rate of convergence as a function of m, but this is
only useful to yield the maximization of P and R in the limit.

3 Choosing θ′

Informally, our approach boils down to picking a θ′ different from θ, so as to
maximize either P or R. Clearly, extremal values for θ′ would do the job, but
they would yield very poor values for Fβ , and also be completely useless for data
mining. For example, we could choose θ′ = 0, and would obtain S∗

0 = S∗, and
thus R = 1. However, in this case, we would also have P = |X∗

θ |/|S∗|, a too small
value for many domains and values of θ, and we would also keep all elements
of S∗ as true θ-frequents, a clearly huge drawback for mining issues. We could
also choose θ′ = 1, so as to be sure to maximize P this time; however, we would
also have R = 0, and would keep no element of S∗ as θ-frequent. These extremal
examples show the principle of our approach. Should we want to maximize the
precision, we would pick a θ′ larger than θ to guarantee with high probability
that P = 1, yet while keeping large enough values for R (or Fβ), and a set S∗

θ′

not too small to contain significant informations. There is obviously a statistical
barrier which prevents θ′ to be too close to θ to keep the constraint P = 1
(Cf Section 2, last §). The objective is to be the closest to this barrier, which
statistically guarantees the largest recall values under the constraint.The same
principle holds for the maximization of the recall.

The following Theorem states explicitly our bound for the maximal P. Its key
feature is that it holds regardless of the domain, the distribution of the itemsets,
the size of S∗, or the user-fixed parameters (support, statistical risk). It relies
only on a rather mild assumption for sampling the itemsets out of the stream.
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Database θ sampling1 sampling2 δ

Accidents [.3, .9] / .05 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02
Retail [.05, .1] / .01 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02
Kosarak [.05,.1] / .01 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02

Fig. 3. Range of parameters for the experiments in the form [a, b]/c, where a is the
starting value, c is the increment, and b is the last value.

Theorem 1. ∀X, ∀D, ∀m > 0, ∀0 ≤ θ ≤ 1, ∀0 < δ ≤ 1, we pick ε satisfying:

ε ≥
√

1
2m

ln
|S∗|
δ

.

If we fix θ′ = θ + ε in eq. (4), then P = 1 with probability at least 1 − δ.

Theorem 2. ∀X, ∀D, ∀m > 0, ∀0 ≤ θ ≤ 1, ∀0 < δ ≤ 1, we pick ε satisfying:

ε ≥
√

1
2m

ln
|S∗|
δ

.

If we fix θ′ = θ − ε in eq. (4), then R = 1 with probability at least 1 − δ.

These Theorems are proven using standard tools on concentration inequali-
ties [14]; due to the lack of space, we skip their proofs. The main point is that
the values of θ′ seem to be very close to the statistical barriers [17, 11] that still
guarantee the maximal values for the precision or recall.

4 Experiments

We focus on evaluating how our statistical support can be helpful to mine fre-
quent itemsets on a data stream, given a fragment of this stream. For this pur-
pose, we use the previously defined measures: P (9), R (10) and Fβ (11).

We have chosen three real life databases from the Frequent itemsets Mining
Dataset Repository [9] and an association rule mining algorithm, kdci [15]. The
first dataset, named “Accidents” (34k transactions), holds form for each traffic
accident that occurs with injured or deadly wounded casualties on a public road.
The second data set, named “Retail” (88k transactions), holds customers bas-
ket from a retail supermarket store. The last dataset, named “Kosarak” (990k
transactions), holds anonymized click-stream data of an on-line news portal.

To analyze the correctness of our statistical supports, we need to evaluate
as many situation as possible, that is, we need to use our method with a range
as large as possible for each of the free parameters. These parameters that vary
during our experiments are described in Fig. 3.
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Better than using a real data stream, we have chosen to simulate data streams
assuming the complete knowledge of the domains, thus allowing to compute
exact values for the performance measurements. More precisely, we simulate
data streams by sampling each database into fragments. For example, we could
consider that data arrive in a timely manner from the “Accidents” database,
and that only 20% of the data is stored. So we pick 20% of the transactions of
this database, we consider that it is the data stored. We have chosen to sample
the database on a broad range of percentages using two scales. The first allows
a fine sampling of the database, for values ranging from 1% to 10% by steps of
1% (“sampling1” in Fig. 3), and typically gives an idea of what may happens for
very large, fast data streams.We have completed this first range with a coarse
range of samplings, from 10% to 100% by steps of 3% (“sampling2”) which gives
an idea of the average and limit behaviors of our method.

Finally, δ has been chosen to range through an interval of values for common
statistical risks, i.e. from 1% to 11% by steps of 2% (see Fig. 3). Due to the very
large number of experiments and the lack of space to report them all, we have
put all resulting plots into web pages3.

Figure 4 shows result from experiments on the Accidents and Retail databases
with δ = .05. Each plot describes for one database and one support value, either
P or R of the three methods which consist in keeping S∗

θ−ε, S
∗
θ , and S∗

θ+ε.
A first glance at these plots reveals that their behavior is almost always the

same. Namely:

– the P increases with θ′ (eq. 4), while the R decreases with θ′,
– the P equals or approaches 1 for mostly storing sizes when θ′ = θ + ε,
– the R equals or approaches 1 for mostly storing sizes when θ′ = θ + ε.

These observations are in accordance with the theoretical results of Section 3.
There is another phenomenon we may observe: the R associated to θ′ = θ + ε
is not that far from the R of θ′ = θ. Similarly, the P associated to θ′ = θ − ε is
not that far from the P of θ′ = θ. This shows that the maximization of P or R is
obtained at a reduced degradation of the other parameter. We also remark that
the P plots tend to be better than the R plots. This is not really surprising, as
advocated in Section 3, since the range of values for P is smaller than that of R.

A close look at small storing sizes of the streams (before 10%) also reveals
a more erratic behavior without convergence to maximal P or R. This behavior
is not linked to the statistical support, but to the databases used. Indeed, small
databases lead to even smaller storing sizes, and frequent itemsets kept out of
small databases are in fact trickier to predict than for bigger ones. This point is
important as, from a real-world standpoint, we tend to store very large databases,
so we may expect this phenomenon to be reduced.

On the smallest databases, such as Retail and Kosarak, another phenomenon
seems to appear. First of all, because of the small values for θ, some tests have not
be performed because θ−ε was < 0. Furthermore, the greater difference observed
between the curves seems to stem out from the different sizes of databases.
3 http://www.univ-ag.fr/grimaag/statisticalsupports/
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Fig. 4. Examples of plots with δ = .05 and three θ values. For theses values we give the
P (left plot) and R (right plot) for the three methods consisting in picking S∗

θ−ε, S
∗
θ , S∗

θ+ε.

For example, the Retail database is smaller than the Accidents database by a
factor 3. In addition, the number of frequent itemsets found in this database is
smaller than a hundred. For the sake of comparison, the Accidents database for
the smallest θ gives hundreds of thousands frequent itemsets. This, we think,
explains the greater differences between the curves: they are mostly a small
database phenomenon, and may not be expected from larger databases.

In Figure 5, two sets of two plots taken from the Accidents database plot the
Fβ measure, against the size of the stream used (in %). The values of β have
been chosen different from 1 but not too small or too large to yield a reasonable
prominence of one criterion (.2 and 1.8, see Figure 5). In each plot, the Fβ

value displays the advantage of choosing θ′ = θ ± ε against the choice θ′ = θ.
Moreover, R that this is obtained while statistically guaranteeing the maximal
value for whichever of P or R criterion, as chosen by the user.

5 Conclusion

One very promising research direction would be to integrate our approach with
the approaches that consisting in somehow reducing the size of the data stored
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Fig. 5. Two sets of plots of the Fβ value from the Accidents database, with β = .2 for
the left plots and β = 1.8 for the right plots.

out of the database, so as to keep the property that itemsets observed as fre-
quent still remain frequent with high probability [10]. In the framework of data
streams, where we feel that such approaches take all their importance, it would
be much more efficient from a statistical standpoint to keep the itemsets that are
truly frequent (better than simply observed as frequent). This would basically
boil down to mixing our approach with them, so as to keep maximal recall (this
can straightforwardly be replaced by the constraint to keep maximal precision).
Because of the technical machinery used in these papers (e.g. Blum filters [10]),
mixing the approaches into a global technique for reducing the error in maintain-
ing frequent itemsets from data streams may be more than simply interesting:
it seems to be very natural.
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