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Abstract. A general automatic method for clinical image segmentation
is proposed. Tailored for the clinical environment, the proposed segmen-
tation method consists of two stages: a learning stage and a clinical seg-
mentation stage. During the learning stage, manually chosen representa-
tive images are segmented using a variational level set method driven by
a pathologically modelled energy functional. Then a window-based fea-
ture extraction is applied to the segmented images. Principal component
analysis (PCA) is applied to these extracted features and the results are
used to train a support vector machine (SVM) classifier. During the clin-
ical segmentation stage, the input clinical images are classified with the
trained SVM. By the proposed method, we take the strengths of both
machine learning and variational level set while limiting their weaknesses
to achieve automatic and fast clinical segmentation. Both chest (thoracic)
computed tomography (CT) scans (2D and 3D) and dental X-rays are
used to test the proposed method. Promising results are demonstrated
and analyzed. The proposed method can be used during preprocessing
for automatic computer aided diagnosis.

Keywords: image segmentation, support vector machine, machine learn-
ing, principal component analysis, dental X-rays

1 Introduction

Image segmentation is an important component of medical imagery which plays a
key role in computer assisted medical diagnosis. Segmentation of medical images
is typically more challenging than the segmentation of images in other fields. This
is primarily due to a large variability in topologies, the complexity of medical
structures and poor image modalities such as noise, low contrast, several kinds
of artifacts and restrictive scanning methods. This is especially true for volumet-
ric medical images where a large amount of data is coupled with complicated
3D anatomical structures. This paper reports innovative work using machine
learning techniques such as the support vector machine (SVM) and principal
component analysis (PCA) learning with a pathologically modelled variational
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level set method to address the most challenging problems in the medical image
analysis: clinical image segmentation and analysis. Although the SVM has been
used in image segmentation, it is usually used during an intermediate step [1–
3]. This is the first such work which uses the SVM directly for medical image
segmentation, to the best of our knowledge.

One of latest techniques in medical image segmentation is based on a class of
deformable models, referred as “level set” or “geodesic active contours/surfaces.”
The application of the level set method in medical image segmentation is ex-
tremely popular due to its ability to capture the topology of shapes in medical
imagery. Codimension-two geodesic active contours were used in [4] for tubular
structures. The fast marching algorithm [5] and level set method were used in
[6] and [7], while Region competition, introduced in [8], was used in [9]. In [2, 3,
10], Li et al. applied a variational level set segmentation approach, accelerated
by an SVM, for medical image segmentation, analysis and visualization.

Although efficient, level set methods are not suitable for general use clinical
image segmentation due to several reasons: (1) high computational cost; (2) com-
plicated parameter settings; (3) sensitivity to the placement of initial contours.
With regard to the latter, as will be shown in experimental results, the running
time of the level set method heavily relies on the position and size of initial
curves and geometric and topological complexity of objects. Moreover for some
cases, the coupled level set method does not converge for some initial curves.

To overcome the current challenges in clinical image segmentation, in this
paper, we combine the level set method approach with a machine learning tech-
nique. We employ the level set method only during the training stage of the
SVM which limits the effect of the weaknesses (i.e., the slowness and lack of
stability) of the level set method. Through the application of PCA, we then use
the SVM exclusively for segmentation which leads to faster and more robust
segmentation.

2 Proposed Method

The proposed method consists of two stages: a learning stage and a clinical seg-
mentation stage. During the segmentation stage, a variational level set method
driven by a pathologically modelled energy functional is used. This is followed
by window-based feature extraction using PCA analysis. The extracted features
are used to train an SVM. During the clinical segmentation, the clinical image
is directly segmented by the trained SVM.

2.1 Level Set Method

Proposed by Osher and J. Sethian [5], level set methods have attracted much
attention from researchers from different areas. In problems of curve evolution,
the level set method and in particular the motion by mean curvature of Osher and
Sethian [5] have been used extensively. This is because these methods allow for
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curve characteristics such as cusps, corners, and automatic topological changes.
Moreover, the discretization of the problem is made on the regular grid.

Let Ω be a bounded open subset of R2, with ∂Ω as its boundary. Let U0:Ω →
R be a given image, and C : [0, 1] → R2 be a parameterized curve. The curve C is
represented implicitly via a Lipschitz function φ, where C = {(x, y)|φ(x, y) = 0},
and the evolution of the curve is given by the zero-level curve at time t as the
function φ(t, x, y). Evolving the curve C in normal direction with speed F leads
to the differential equation

{
∂φ
∂t = |∇φ|F
φ(0, x, y) = φ0(x, y)

(1)

where the set C = {(x, y)|φ0(x, y) = 0} defines the initial contour. A particular
case is the motion by mean curvature, when F = div( ∇φ

|∇φ| ) is the curvature.

2.2 Variational Level Set Method

Chan et al. [11, 12] proposed an Mumford-Shah functional for level set segmen-
tation. They add a minimal variance term EMV . The model is able to detect
contours both with or without a gradient. Objects with smooth boundaries or
even with discontinuous boundaries can be successfully detected. Moreover they
claim this model is robust to the position of initial the initial contour. The 2D
version of the model can be expressed as

inf(c1,c2,C)E = µ · Length(C) + v ·Area(Inside(C)) + EMV .

with

EMV = λ1

∫

inside(C)

|u0(x, y)− c1|dxdy + λ2

∫

outside(C)

|u0(x, y)− c2|dxdy

where ci are the averages of u0 inside and outside C, and µ ≥ 0, v ≥ 0, λ1 > 0
and λ2 > 0 are fixed parameters.

The level set function they obtain is given by




∂φ
∂t = δε(φ)[µ · div( ∇φ

|∇φ| )− v − λ1(u0 − c1)2 + λ2(u0 − c2)2] = 0
φ(0, x, y) = φ0(x, y) in Ω
δε(φ)∂φ
|∇φ|∂n = 0 on ∂Ω.

where n denotes the exterior to the boundary ∂Ω, ∂φ
∂n denotes the normal deriv-

ative of φ at the boundary and δε is the Dirac delta function.
The Chan and Vese functional is very good for segmenting an image into two

regions. To segment images with multiple regions we use Samson’s method. In
[13], Samson et al. presented a variational approach as shown in Eqs. 2 and 3.

inf E =
∑

1≤i≤j≤n

fijLength(Γij) +
∑

1≤i≤n

viArea(Inside(Ci))

+
∑

i

∫

Ωi

ei
(u0 − ci)

2

σ2
i

dxdy +
λ

2

∫
(

n∑

j=1

H(φj)− 1)2dxdy. (2)
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where Γij is the intersection of different regions and σi is the variance. The level
set function they obtain is given by

{
∂φi

∂t = δε(φi)
(
γidiv( ∇φ

|∇φ| )− ei
(u0−ci)

2

σ2
i

− λ
(∑n

j=1 H(φj)− 1
))

∂φi

∂n = 0 on ∂Ω.
(3)

where H(·) is the Heaviside function.

2.3 Pathologically Modelled Variational Level Set Method

In this work, we apply the variational level set method to segment the repre-
sentative images. First, with the assistance of a doctor or clinician, the energy
functional will be modelled according to the pathological meaning of different
regions in an image. In the following we are going to take chest CT (2D and 3D)
scans and dental X-ray images as examples as can be seen in Fig. 1.

Fig. 1. Pathological modelling for chest CT scans (a) and dental X-rays (b and c).

Chest CT Scan Fig. 1(a) demonstrates a pathological modelling for chest (tho-
racic) computed tomography (CT) scans. The images can be divided into four
regions of interest: the Background Region (ΩBR), the Skeletal Structure (bone)
Region (ΩSR), the Fatty Tissue Region (ΩFR) and the Muscle and Visceral Tis-
sue Region (ΩMR). Energy functional for the four coupled level set functions are
modelled as Eq. 4.

EMV (φi) =
∫

ΩBR

e1(u− cBR)2

σ2
NR

dxdy +
∫

ΩF R

e2(u− cFR)2

σ2
FR

dxdy +

∫

ΩSR

e3(u− cSR)2

σ2
SR

dxdy +
∫

ΩMR

e4(u− cMR)2

σ2
MR

dxdy (4)

where ci, i=1,. . . ,4, is the mean grey value of region Ωi.

Dental X-ray With prior information, this pathological modelling can also be
used for computer aided diagnosis. As shown in the Figs. 1 (b) and (c), X-ray
images can be divided into four regions of interest: the Normal Region (ΩNR),
the Potentially Abnormal Region (ΩPAR), the Abnormal Region (ΩAR) and
the Background Region (ΩBR). Since ΩAR and ΩBR are not separable in terms
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of intensity values, so in the segmentation, we take ΩAR and ΩBR to be one
region: the Abnormal and Background Region (ΩABR). Energy functional for
three coupled level set functions are modelled as Eq. 5.

EMV (φi) = e1

∫

ΩNR

(u− cNR)2

σ2
NR

dxdy + e2

∫

ΩP AR

(u− cPAR)2

σ2
PAR

dxdy

+e3

∫

ΩABR

(u− cABR)2

σ2
ABR

dxdy. (5)

The proposed pathological modelling explicitly incorporates regions of prob-
lems as part of the modelling, the identification of such areas would be an auto-
matic byproduct of the segmentation. Moreover those problem regions generally
indicate some possible areas of bone loss in teeth or the jaw or root decay, which
are the primary reasons that X-rays are taken in many countries. Early detection
of bone loss and root decay is very important since often they can be remedied by
dental procedures, such as a root canal, for example. Without early treatment,
bone loss may lead to tooth loss or erosion of the jaw bone.

2.4 Learning

As shown in Fig. 2, the learning phase consists of several steps. First, manually
chosen images are segmented by the variational level set described in section 2.3.
To avoid distraction, the high uncertainty areas are removed. Next, window-
based feature extraction is applied. The results will be used to train the SVM
after applying PCA learning to extract features.

Fig. 2. Learning phase diagram.

Uncertainty Removal Before feature extraction, those areas of high uncer-
tainty in the segmented image will be removed to avoid the possible distraction.
The uncertainty measurement is the product of two components: a numerical
solution uncertainty component ψ1(x, y) and a variance uncertainty component
ψ2(x, y) as shown:

ψ(x, y) = ψ1(x, y) · ψ2(x, y) =
1 + max(H(φi))

1 +
∑

H(φi)
·

∑
σiH(φi)∑ |u− ci|H(φi)
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Fig. 3. Feature extraction diagram.

Fig. 4. Window based features. Fig. 5. Average patch (first row)
and eigen patches.

Feature extraction and principal component analysis A window-based
feature extraction is applied to each segmented region in the image. This is
illustrated in Fig. 4. The PCA method used here is adapted from [14, 15]. Let
the features Γi (i = 1..M) constitute the training set (Γ ). The average matrix
(Γ ) and covariance matrix C are:

Γ =
1
M

M∑

i=1

Γi

Φi = Γi − Γ

C =
1
M

M∑

i=1

ΦT
i Φi = AAT

L = AT A(Ln,m = ΦT
nΦm)

ui =
M∑

k=1

vikΦk(l = 1, . . . , M) (6)

where L is a M ×M matrix, vik are the M eigenvectors of L and ui are eigen-
patches which was called eigenfaces in [14, 15]. The advantage of the PCA analy-
sis here is its ablity to remove the effects of noise and also to accelerate the
classification by reduced feature dimension.

SVM Training and Segmentation The strength of the SVM classifier has
been demonstrated in many research areas such as handwriting recognition ap-
plication, which is described in Dong et al. [16, 17]. The classifier we use is a
modified version of the SVM classifier proposed in [18].
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3 Results

To evaluate the proposed method, both chest CT scans (two dimensional and
three dimensional images) and dental X-ray images are used to test the proposed
method.

3.1 Chest CT Scans

Two Dimensional Scans Figs. 6 and 7 show the results of two dimensional
image segmentation. Fig. 6 shows the results of pathological variational level
set segmentation which divides the image into four regions of background, the
skeletal structure (bone), the fatty tissue, and the muscle and visceral tissue,
as defined in section 2.3. However the variational level set method is a time
consuming method which generally takes longer than 10 minutes to segment a
256 × 256 image for a PC (Pentium 1G Hz and 1GRAM). Moreover, for some
cases, level set methods, especially for coupled level set methods, may not con-
verge for some initial curves as pointed out in [3, 19, 20] which limit the usage
of the level set method in clinical image processing which has high requirements
on speed and robustness. Fig. 7 demonstrates the segmentation results using the
proposed method which just takes around 1 second.

Fig. 6. Experimental Results on CT scans. (a) Iteration 0. (b) Iteration 20. (c) Iteration
50. (d) Iteration 100.

Three Dimensional Scans Figs. 8 and 9 show results on three dimensional
image segmentation. Fig. 8 shows variational level set segmentation on volumet-
ric CT scan image (256 × 256 × 100) which usually takes longer than 2 hours
while with our proposed method takes around 20 seconds.



8 Li et al.

Fig. 7. Experimental Results on CT scans. (a) (c) Original images. (b) (d) Segmented
images.

Fig. 8. Volumetric coupled level set segmentation results. (a) Iteration 0. (b) Iteration
30. (c) Iteration 80. (d) Iteration 120.

Fig. 9. Volume rending of segmentation results of using proposed method on chest CT
scans. (a) One View. (b) Another view.

3.2 Dental X-ray Images

Dental X-ray segmentation is a challenging problem for classic methods due to
the following characteristics: (1) poor image modalities: noise, low contrast, and
sample artifacts; (2) complicated topology; and (3) there may not be clear edges
between regions of interest which is especially true for dental images with early
stage problem teeth. Fig. 10 demonstrates the variational level set segmentation
described in section 2.3 on dental X-ray images. As can be seen, the variational
level set method is able to successfully segment with the given pathological mod-
elling which provides automatic feature extraction for PCA and SVM training.
Fig. 11 shows the results by the proposed method. Since pathological modelling
explicitly incorporates regions of problems as part of the modelling, the identi-
fication of such areas is an automatic byproduct of the segmentation.

4 Conclusion

This paper proposes a general automatic clinical image segmentation method.
The proposed segmentation method contains two stages: a learning stage and
a clinical segmentation stage. During the learning stage, manually chosen rep-
resentative images are segmented using a variational level set method driven
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Fig. 10. Coupled level sets segmentation. (a) Iteration 0. (b) Iteration 100. (c) Iteration
500. (d) Iteration 2000. (f) Iteration 2500.

Fig. 11. Experimental Results on Dental X-rays. (a) (c) Original image with problem
area circled by dentist. (b) (d) Segmented image.

by a pathologically modelled energy functional. Then a window-based feature
is extracted from the segmented images and the principal component analysis
is applied to those extracted features. These results are used to train a support
vector machine classifier. During the segmentation stage, the clinical images are
classified with the trained SVM. The proposed method takes the strengths of
newly developed machine learning and the variational level set methods while
limiting their weaknesses to achieve a automatic and fast clinical segmentation.
The method is tested with both chest CT scans and dental X-ray images. These
results show that the proposed method is able to provide a fast and robust clini-
cal image segmentation of both 2D and 3D images. Due to the use of pathological
modelling to define the regions of interest, the segmentation results can be used
to further analyze the image. The proposed method can be used as pre-processing
step for automatic computer aided diagnosis. We are currently studying other
machine learning algorithms for the analysis of segmented images to provide
further improved assistance to the doctor or clinician.
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