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Abstract. We propose universal clustering in line with the concepts
of universal estimation. In order to illustrate above model we introduce
family of power loss functions in probabilistic space which is marginally
linked to the Kullback-Leibler divergence. Above model proved to be
effective in application to the synthetic data. Also, we consider large web-
traffic dataset. The aim of the experiment is to explain and understand
the way people interact with web sites.
The paper proposes special regularization in order to ensure consistency
of the corresponding clustering model.

1 Introduction

Clustering algorithms group empirical data according to the given criteria into
several clusters with relatively stable and uniform statistical characteristics.

In this paper we consider prototype-based or distance-based clustering model.
The corresponding solution may be effectively approximated using k-means algo-
rithm within Clustering-Minimization (CM) framework [1] which may regarded
as an analog of the EM (Expectation-Maximization) framework for soft cluster-
ing or segmentation.

Recently, the Divisive Information-Theoretic Feature Clustering algorithm in
probabilistic space Pm was proposed by [2]. It provides an attractive approach
based on the Kullback-Leibler divergence. According to [3], the probabilistic
model can be extremely useful in many applications including information re-
trieval and filtering, natural language processing, machine learning from text
and in related areas.

As it is outlined in [4] and [5], in practice, however, an exact form of a loss
function is difficult to specify. Hence, it is important to study the domination cri-
terion simultaneously under a class of loss functions. Respectively, we introduce
the family of power loss functions in probabilistic space with KL-divergence as
a marginal limit.

Pollard [6] demonstrated that distance-based clustering model in R
m is con-

sistent under some conditions of general nature. Further, [7] introduced definition
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of trimmed or robustified k-means and proved consistency of the corresponding
model, [8] extended result of [6] to the clustering model with Projection Pursuit
which is regarded as a common technique in data analysis with such main advan-
tage as to reduce dimensionality of the data in order to improve its visualization.

We propose definition of α-regularized KL-divergence. On the one hand, in
most cases, the corresponding α-regularized clustering model may be made close
to the original model with KL-divergence according to the given requirements.
On the other hand, α-regularized model will be always consistent.

2 Prototype-based Approach

Suppose that X := {x1, . . . , xn} is a sample of i.i.d. observations drawn from
probability space (X ,A, P) where probability measure P is assumed to be un-
known.

We denote by Q ∈ X k a codebook as a set of prototypes q(c) indexed by the
code c = 1..k where k is a clustering size.

Following [6] we estimate actual distortion error

ℜ(k)[Q, Φ] := E Φ(x‖Q)

by the empirical error

ℜ(k)
emp[Q, Φ] :=

1

n

n
∑

t=1

Φ(xt‖Q) (1)

where Φ(x‖Q) := Φ(x, q(c(x))), Φ(·, ·) is a loss function, and

c(x) := argmin
c∈{1..k}

Φ(x, q(c)). (2)

Above rule will split the given sample X into k empirical clusters: Xc := {xt :
c(xt) = c}, X = ∪k

c=1Xc,Xi ∩ Xc = ∅, i 6= c. Similarly, we can define set of k

actual clusters Xc, c = 1..k.

Definition 1. We will call Q as an optimal actual codebook if

ℜ(k)[Q, Φ] := inf
Q∈Xk

ℜ(k)[Q, Φ]. (3)

We will call Qn as an optimal empirical codebook if

ℜ(k)
emp[Qn, Φ] := inf

Q∈Xk
ℜ(k)

emp[Q, Φ]. (4)

Note that an outcome of the k-means algorithm is not necessarily Qn as it
is defined in (4).



2.1 CM Framework

The algorithm 1 represents a typical structure of an algorithm within CM -
framework.

Algorithm 1. CM

1: Clustering: encode any observation xt according to the rule (2).
2: Minimization: re-compute centroids specifically for any particular empirical

cluster
q(c) := arginf

a∈X

∑

xt∈Xc

Φ(xt, a). (5)

3: Test: compare previous and current codebooks Q. Go to the step 1 if
convergence test is not fulfilled, alternatively, stop the algorithm.

The following Proposition 1, which may be proved similarly to the Theo-
rems 4 and 5 of [2], formulates the most important descending and convergence
properties of the CM -algorithm.

Proposition 1. The algorithm 1
1) monotonically decreases the value of the objective function (1);
2) converges to the local minimum in a finite number of steps if equation (5) has
unique solution.

3 Probabilistic Framework

Let Pm be the m-dimensional probability simplex or probabilistic space of all m-
dimensional probability vectors. Following [2] we assume that the probabilities
pit = P (i|xt),

∑m

i=1 pit = 1, t = 1..n, represent relations between observations xt

and attributes or classes i = 1..m, m ≥ 2. Accordingly, we define the clustering
model (Pm, KL) with Kullback-Leibler divergence:

KL(v,u) :=

m
∑

i=1

vi · log
vi

ui

= 〈v, log
v

u
〉,v,u ∈ Pm. (6)

The following notations will be used below p(xt) = {p1t, · · · , pmt}, q(c) =
{q1c, · · · , qmc}.

3.1 Power Loss Functions in Probabilistic Space

Let us consider 2 families of loss functions

LΦγ(v,u) :=

m
∑

i=1

v
1+γ
i u

−γ
i − 1, 0 < γ < ∞; (7)

RΦγ(v,u) := 1 −
m

∑

i=1

v
1−γ
i u

γ
i , 0 < γ < 1. (8)



Proposition 2. The loss functions (7) and (8) are non-negative and equal to 0
if and only if u = v.

Above statement may be proved using the method of mathematical induction.

Proposition 3. Suppose that v 6= u, min {vi} > 0 and min {ui} > 0. Then, the
loss function (7) is convex and strictly increasing as a function of γ.

Proof. The required result follows from the structure of the corresponding first

∂LΦγ(v,u)

∂γ
=

m
∑

i=1

vi log

(

vi

ui

) (

vi

ui

)γ

(9)

and second derivatives where the first derivative is strictly positive for γ = 0
and is strictly increasing for all γ > 0. �

Proposition 4. Suppose that v 6= u, min {vi} > 0 and min {ui} > 0. Then, the
loss function (8) is concave and strictly increasing locally as a function of γ at
the point of origin 0:

∃ε > 0 : RΦα(v,u) < RΦγ(v,u) ∀α, γ : 0 ≤ α < γ ≤ ε.

Proof. The required result follows from the structure of the corresponding deriva-
tive

∂RΦγ(v,u)

∂γ
= −

m
∑

i=1

vi log

(

ui

vi

) (

ui

vi

)γ

(10)

and
∂2RΦγ(v,u)

∂γ2
= −

∑

vi log2

(

ui

vi

) (

ui

vi

)γ

< 0 (11)

where the first derivative is strictly positive for γ = 0 and is strictly decreasing for
all 0 < γ ≤ 1. Respectively, ∃ε > 0 so that the first derivative is strictly positive
for 0 < γ ≤ ε as a continuous function of γ. �

We can compute centroids for the loss functions (7) and (8) in analytical
form similar to (12). For example, the following formula represents centroids for
(7)

qi(c) ∝
1+γ

√

Aic(γ), 0 ≤ γ < ∞, (12)

where Aic(γ) =
∑

xt∈Xc
p
1+γ
it .

Using result of the Proposition 2 we can define a new family of loss functions
as an average of (7) and (8)

Φγ(v,u) :=
1

2
(LΦγ(v,u) + RΦγ(v,u)) , 0 < γ < 1. (13)

The following result demonstrates that the KL-divergence may be regarded
as a marginal limit in relation to the family of loss functions (13).

Proposition 5. The family of power loss functions (13) is marginally linked to

the KL-divergence: limγ→0
Φγ(v,u)

γ
= KL(v,u).



Proof. The statement of the proposition follows from the structure of the deriva-
tive:

∂Φγ(v,u)

∂γ
=

1

2

m
∑

i=1

vi log
vi

ui

[(

vi

ui

)γ

+

(

ui

vi

)γ]

. (14)

In the case if γ = 0 the right part of (14) equals to the KL-divergence. �

Proposition 6. Suppose that v 6= u, min {vi} > 0 and min {ui} > 0. Then, the
loss function Φγ defined in (13) is strictly increasing locally as a function of γ

at the point 0 ∃ε > 0 : Φα(v,u) < Φγ(v,u) ∀α, γ : 0 ≤ α < γ ≤ ε.

Proof follows from above Propositions 3 and 4.

Remark 1. The results of the Propositions 4 and 6 may not necessarily take
place for ε = 1, because KL(u,v) → ∞ if v1 → 0 and min {ui} ≥ δ > 0. As a
consequence, the derivative (9) is limited. At the same time derivative (10) tends
to −∞ if γ → 1 (see Figure 1(d)).

Minimizing
∑

xt∈Xc
Φγ(p(xt), q) =

∑m

i=1

(

Aic(γ)q−γ
i − Aic(−γ)qγ

i

)

as a func-
tion of q ∈ Pm we will formulate iterative algorithm for the computation of
centroids in the sense of the loss function (13) with fixed value of the parameter
γ > 0

qi(c, j + 1) ∝
1+γ

√

Aic(γ) + Aic(−γ)q2γ
i (c, j) (15)

where j is a sequential number of iteration, initial values of q(c, 1) may be com-
puted using (12).

Remark 2. According to [5], it seems rather natural to investigate the situation
where the estimator is the same for every loss from a certain set of loss functions
under consideration. In line with Propositions 3, 4 and 6 we can use parameter
γ in order to increase differentiation between observations. Comparing clustering
results for different input parameters γ we can make assessment of the stability
of clustering: the smaller fluctuation of the centroids will indicate the higher
quality of clustering (see Figure 1).

3.2 Consistency of the Clustering Model

According to [9], p. 33, it is extremely important to use concepts that describe
necessary and sufficient conditions for consistency. This guarantees that the con-
structed theory is general and cannot be improved from the conceptual point of
view.

Definition 2. We say [9] that the clustering model (X , Φ) is consistent if

ℜ(k)
emp[Qn, Φ] ⇒

n→∞
ℜ(k)[Q, Φ] a.s. (16)

We say [6] that the clustering model (X , Φ) is ν-strongly consistent if

ν(Qn,Q) −→
n→∞

0 a.s. (17)

where ν is a distance in X k.



Definition 3. We will call the element v ∈ Pm as 1) an uniform vector if
vi = 1

m
, i = 1..m; and 2) as i-margin if vi = 0.

Definition 4. We will call KLα(v,u) := KL(vα,uα) as α-regularized KL-
divergence where vα = αv + (1 − α)v0 and uα = αu + (1 − α)v0, v0 is an
uniform vector and 0 < α ≤ 1.

The following result represents an essential generalization of the Lemma 3
[2].

Proposition 7. Centroids q(c) in (Pm, KLα) are not dependent on 0 < α ≤ 1
and must be computed using k-means (12).

Corollary 1. Suppose that q(c) ∈ Qn and qi(c) = 0. Then, P (i|xt) = 0∀xt ∈
Xc. Suppose that q(c) ∈ Q and qi(c) = 0. Then, P (i|x) = 0∀x ∈ Xc a.s.

Theorem 1 Suppose that the clustering size k and parameter 0 < α < 1 are
fixed. Then, the model (Pm, KLα) is consistent.

Proof. The required result

ℜ
(k)
emp[Q

(α)
n , KLα] ⇒

n→∞
ℜ(k)[Q

(α)
, KLα] a.s.

follows from uniform continuity of the KLα(v,u) as a function of both arguments

if 0 < α < 1 where Q
(α)
n and Q

(α)
are optimal empirical and actual codebooks

which correspond to KLα. �

Corollary 2. Suppose that the optimal actual codebook Q
(α)

is unique. Then,
the model (Pm, KLα) is ν-strongly consistent where a distance ν may be defined

as maxk
c=1 mink

j=1 KL(qn(c), q(j)) where qn(c) ∈ Q
(α)
n and q(j) ∈ Q

(α)
.

3.3 Extension to the Euclidean Space

Monograph [10], pp. 255-258, discusses characterization of families of distribu-
tions for which the Pitman estimator of the location parameter in R does not
depend on the loss function. Generally speaking, for the same distribution func-
tion F , the Pitman estimator differs from loss function to loss function. However,
if F is a normal distribution function, then it is easy to see that, for quadratic
trigonometrical and following below exponential loss functions (18), the Pitman
estimator is one and the same, namely, sample mean.

The G-means algorithm [11] which is based on the Gaussian fit of the data
within particular cluster is relevant here. The G-means algorithm is based on
a statistical test for the hypothesis that a subset of data follows a Gaussian
distribution. G-means runs k-means with increasing k in a hierarchical fashion
until the test accepts the hypothesis that the data assigned to each centroid are
Gaussian.

Similar to the Sect. 3.1 we can define model of universal clustering in R
m

with the following family of exponential loss functions: Φγ(v,u) := ϕγ(v − u)
where v,u ∈ R

m, and γ ∈ R
m
+ is m-dimensional regulation parameter,
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Fig. 1. 3D-synthetic data, n = 3000 with 6 clusters, (a): k=6: random selection of the
cluster seeds; centroids were re-computed using loss function (13) with γ = 0.09+0.13 ·
(i − 1), i = 1..8; symbol ⊙ marks centroids which corresponds to γ = 0.09; ∗ marks
centroids which corresponds to γ = 1.0, other centroids are marked by bold black dots
·; (b): k=5; (c): k=7; (d): loss (13) as a function of γ where m = 10, ui = 1

m
, i = 1..m,

v1 = ε, vi = 1−ε

m−1
, i = 2..m, ε = 0.001

ϕγ(v) :=

m
∑

i=1

cosh(γi · vi) − m, (18)

and corresponding centroids:

q
(γ)
i (c) =

1

2γi

log

∑

xt∈Xc
eγixti

∑

xt∈Xc
e−γixti

which represent a unique k-means solution for the loss function (18).

4 Experiments

The sample of the 3D-probability data, which is displayed in the Figures 1 was
generated using the following procedure.



Table 1. Simulation coefficients for the 3D-synthetic data, see Figure 1.

Cluster Coefficients Probabilities

c b1 b2 b3 e p

1 1 -1 -1 0.5 0.15
2 -1 1 -1 0.5 0.15
3 -1 -1 1 0.5 0.15
4 -0.4 -0.4 -0.8 0.4 0.25
5 -0.4 -1.9 -0.4 0.3 0.15
6 -1.9 -0.4 -0.4 0.3 0.15

Firstly, the cluster code c was drawn randomly according to the probabilities
p, see Table 1, using standard uniform random variable. Secondly, we used the
multinomial logit model in order to generate coordinates of the 3D-probability
data: vi ∝ exp {bci + ecr},

∑3
i=1 vi = 1, where r is a standard normal random

variable.

By definition, the family of power loss functions (13) is marginally linked to
the KL-divergence if γ → 0. By the increase of γ we will increase the power of
diversification. Respectively, any centroid, which corresponds to a non significant
empirical cluster will move around. Figure 1 illustrates that centroids of the
“strong” empirical clusters are stable as a consequence of correct selection of the
number of clusters k = 6.

Algorithm 2. (Universal Clustering)

1: Order number of clusters k, and select randomly initial codebook with k

probability vectors which will be used for all τ ≥ 2 runs of the CM algorithm
in the next step.

2: Run CM -algorithm using loss function (13) with γ = γ0 +(j−1) ·δ, j = 1..τ,

where 0 < γ0 < 1 and 0 < δ ≤ 1−γ0

τ−1 . As an outcome we obtain a set of k · τ
probability vectors {q̃(j, c), j = 1..τ, c = 1..k}.

3: Compute maximum distance between first and other codebooks

D := C · max
c=1..k

max
j=2..τ

KL(q̃(1, c), q̃(j, c)) (19)

where C > 0 is a constant.

The second experiment was conducted using a large Web navigation msnbc

dataset. This dataset comes from Internet Information Server msn.com for the
entire day of September, 28, 1999 [12]. The dataset [13] includes n = 989818
sequences of events with lengths ranging from 1 to 12000.



Table 2. 3D-probabilistic synthetic data: determination of the clustering size k where
D is defined in (19), used parameters: γ0 = 0.002, δ = 0.01, τ = 20, C = 1000.

k: 3 4 5 6 7 8 9

D: 0.6478 0.0263 0.0045 0.0011 0.8535 0.9264 2.7150

k: 10 11 12 13 14 15 16

D: 0.8041 1.9056 0.1474 0.3063 0.9377 5.0651 12.1121

Each sequence in the dataset corresponds to page views of a user during that
twenty-four hour period. Each event in the sequence corresponds to a user’s
request for a page. In total, there are 4698794 events.

The page categories were developed prior to investigation. There are m = 17
particular web categories. The number of pages per category ranges from 10 to
5000.

Analysis of the msnbc data had revealed the following general properties: 1)
users have tendency to stay within particular category; 2) transitions from one
category to another are relatively rare.

Respectively, we considered an ultimate simplification of the model by ignor-
ing 1) dependencies between subsequent events and 2) length of the sequence of
events for any particular user. As a result, we reduced the given variable-length
data to the fixed length data where any user is represented by the m-dimensional
probability vector of the frequencies of m categories.

The aim of this experiment is to explain and understand the way people
interact with web sites, explore human behavior within internet environment.
Briefly, we observed that the table of centroids in the case of k = 8 demonstrates
clearly user’s preferences. Detailed numerical and graphical illustrations may be
found in [1].

Also, the paper [1] introduced clustering regularisation based on the balanced
complex of two conditions: 1) significance of any particular cluster; 2) difference
between any 2 clusters. Subject to some input regulation parameters the corre-
sponding system detected the interval 34 ≤ k ≤ 47 as the most likely range for
the number of significant clusters in msnbc. Another solution for the same task
may be found using principles of universal clustering.

A Pentium 4, 2.8GHz, 512MB RAM, computer was used for the compu-
tations. The overall complexity of a CM cycle is O(k · n · m). The computer
conducted computations according to the special program written in C. The
computation time for one CM cycle in the case of 51 clusters was 110 seconds.

5 Concluding Remarks

Experiments on the real and synthetic data had confirmed fast convergence of
the CM -algorithm [1]. Unfortunately, the final results of the CM -algorithm de-
pend essentially on initial settings, because the algorithm may be trapped in



local minimum. In this regard, the proposed in the Section 3.2 α-regularization
is significant because it will guarantee consistency of the corresponding cluster-
ing model. On the other hand, the proposed in the paper universal clustering
represents a promising direction. We can make an assessment of quality of clus-
tering using set of codebooks as a function of regulation parameter. The quality
function may be computed as a decreasing function of the fluctuation of code-
books.
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