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Abstract. The purpose of the present work is to compare three
classifiers: Fisher’s Linear Discriminant Analysis, Multilayer Perceptron
and Support Vector Machine to diagnosis of lung nodule. These
algorithms are tested on a database with 36 nodules, being 29 benigns
and 7 malignants. Results show that the three algorithms had similar
performance on this particular task.
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1 Introduction

Lung cancer is known as one of the cancers with shortest survival after
diagnosis [1]. Therefore, the sooner it is detected the larger the patient’s chance
of cure. On the other hand, the more information physicians have available, the
more precise the diagnosis will be.

Solitary lung nodules are an approximately round lesion less than 3 cm in
diameter and completely surrounded by pulmonary parenchyma. Larger lesions
should be referred to as pulmonary masses and should be managed as likely
malignant. In this situation, prompt diagnosis and staging are necessary to
choose the proper treatment [1].

On the other hand, manage a pulmonary nodule is always a challenge,
because in spite of benign possibility becoming more important as the nodule’s
dimension decreases, malignity has always to be excluded. If malignity has
more than 5% of chance to be present a biopsy method must be indicated
and for more than 60% the pacient is sent directly to ressection. Less than
5% allows a close following to prove stability. A recent problem, which has
been becoming more frequent nowadays, is that Computerized Tomography
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(CT) is finding nodules not visibles in a conventional chest X-ray in high risk
groups (ie. heavy smokers) and frequently their little dimensions make difficult or
impossible a biopsy procedure. On the other side, systematic ressection would
increase unnecessary surgery at unacceptables levels. In this circumstance, a
quantitative image method of volumetric determination are becoming recognized
as an important parameter to stablish following criteria.

Macroscopicaly, lung nodules have a very variable tissue’s structure. There
can be nodules with tissue alterations almost imperceptible to the human
eye and others presenting very noticeable alterations. The diagnosis gold
standard is the histological examination, but image methods and in special
Computed X-ray Tomography can aid diagnostic process in analyzing nodule’s
atributes like shape, presence and pattern of calcifications, walls of cavitations,
aerobronchogram and, more recentely, mean attenuation coefficient before and
after intravenous contrast standardized injection.

However, besides numerous reports of qualitative morphologic CT data in
medical literature, there are relatively few reports of quantitative CT data and it
seems that, in general, they are underutilized. We hipothetized that quantitative
CT data derived from geometric and texture parameters may contribute to
differential diagnosis between benign and malignant solitary pulmonary nodule,
even without contrast utilization. The top row in Figure 1 shows the texture for
two benign (a and b) and two malignant (c and d) nodules. The bottom row in
Figure 1 shows the shape for two benign (a and b) and two malignant (c and d).

Fig. 1. Examples of benign lung nodules and malignant lung nodules.

The purpose of the present work is to compare three classifiers: Fisher’s
Linear Discriminant Analysis, Multilayer Perceptron and Support Vector
Machine to diagnosis of lung nodule. Features extracted of nodules are based
on CT images and analysis is supplied regarding the 3D geometry of the nodule.
The validation of the classifiers is done by means of leave-one-out technique.
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The analysis and evaluation of tests was done using the area under the ROC
(Receiver Operation Characteristic) [2] curve.

2 Methods

2.1 Image Acquisition

The images were acquired with a Helical GE Pro Speed tomography under the
following conditions: tube voltage 120 kVp, tube current 100 mA, image size
512×512 pixels, voxel size 0.67 × 0.67 × 1.0 mm. The images were quantized in
12 bits and stored in the DICOM format [3].

2.2 3D Extraction and Reconstruction of Lung Nodules

In most cases, lung nodules are easy to be visually detected by physicians, since
their shape and location are different from other lung structures. However, the
nodule’s voxel density is similar to that of other structures, such as blood vessels,
which makes automatic computer detection difficult. This happens especially
when a nodule is adjacent to the pleura. For these reasons, we have used the 3D
region-growing algorithm with voxel aggregation [4]to make the nodule detection,
which provides physician greater interactivity and control over the segmentation
and determination of required parameters (thresholds, initial and final slice, and
seed).

Two other resources provide greater control in the segmentation procedure:
the barrier and the eraser. The barrier is a cylinder placed around the nodule by
the user with the purpose of restricting the region of interest and stopping the
segmentation by voxel aggregation from invading other lung structures. The
eraser is a resource of the system that allows physicians to erase undesired
structures, either before or after segmentation, in order to avoid and correct
segmentation errors [5]. The bottom row in Figure 1 shows the 3D reconstruction
of the nodules in the top row and exemplifies the nodule segmentation.

2.3 Lung Nodule Features

Skeletonization is a convenient tool to obtain a simplified representation of
shapes that preserves most topological information [6]. A skeleton captures the
local symmetry axes and is therefore centered in the object. In image analysis,
features extracted from skeletons are commonly used in pattern-recognition
algorithms [7]. Skeletons contain information about shape features which are
very important in this work context.

We have used Zhou and Toga’s algorithm [8] in the skeletonization process.
They have proposed a voxel-coding approach to efficiently skeletonize volumetric
objects. Each object point has two codes. One is the Boundary Seeded code (BS),
which coincides with the traditional distance transform to indicate the minimum
distance to the object’s boundary. The second code is the so-called Single Seeded
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code (SS), which indicates the distance to a specific reference point. SS code is
used to extract the shortest path between a point in the object and the reference
point. These paths are represented by sequential sets of voxels that will compose
the initial skeleton. The key idea of voxel coding is to use the SS codes to generate
a connected raw skeleton and the BS codes to assure the centeredness of the final
skeleton.

Figure 2 shows the application the skeleton algorithm based on the nodules
in Figure 1(a), (b), (c) and (d), respectively. It is easy observe that malignant
nodules have more segments than benign nodules.

Fig. 2. Application of the skeleton algorithm based on the nodules in Figure 1(a),
(b), (c) and (d).

We have extracted ten measures based on skeletons to analyze lung nodules,
six of them have been used to describe the nodule’s geometry. They are :

a) Number of Segments (NS)
b) Number of Branches (NB)
c) Fraction of Volume (FV): FV is defined by

FV =
v

V

where v is the skeleton volume and V is the lung nodule’s volume.
d) Length of Segments (LS):Defined by

LS =
L

3
√

V

where L is the length of all segments and V is the lung nodule’s volume.
e) Volume of the Skeleton Convex Hull (VCH)
f) Rate between the number of segments and the volume of the convex hull

(NSVCH) [7]
Trying to charcaterize the nodule based on the skeleton texture we compute
the density histogram of the N larger skeleton segments, where N is the
smaller number of segments in the nodule’s database. From this histogram
e compute:

g) Variation Coefficient (VC): The VC is a measure of relative dispersion and
is given by

V C =
σ

µ
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, where σ is the standard deviation and µ is the mean.
h) Histogram Moments (variance (M2), skewness (M3), kurtosis (M4)) defined

as:

Mn =
∑

(xi − µ)n
fi

N
(1)

where n = 2, 3, 4 , µ is the mean, N denotes the number of voxels in the
segment, and fi is the histogram.
More detailed information on moment theory can be found in [9].

2.4 Classification Algorithms

A wide variety of approaches has been taken towards the classification task.
Three main historical strands of research can be identified [10]: statistical, neural
network and machine learning. This section give an overview of Fisher’s Linear
Discriminant Analysis, Multilayer Perceptron and Support Vector Machine
based on paradigms cited above.

Fisher’s Linear Discriminant Analysis - FLDA: Linear discrimination,
as the name suggests, looks for linear combinations of the input variables that
can provide an adequate separation for the given classes. Rather than look for a
particular parametric form of distribution, LDA uses an empirical approach to
define linear decision planes in the attribute space i.e. it models a surface. The
discriminant functions used by LDA are built up as a linear combination of the
variables that seek to somehow maximize the differences between the classes [11]:

y = β1x1 + β2x2 + · · · + βnxn = β
′
x (2)

The problem then reduces to find a suitable vector β. There are several
popular variations of this idea, one of the most successful being the Fisher Linear
Discriminant Rule. Fisher’s Rule is considered a “sensible” classification, in the
sense that it is intuitively appealing. It makes use of the fact that distributions
that have a greater variance between their classes than within each class should
be easier to separate. Therefore, it searches for a linear function in the attribute
space that maximizes the ratio of the between-group sum-of-squares (B) to the
within-group sum-of-squares (W ). This can be achieved by maximizing the ratio

β′Bβ

β′Wβ
(3)

and it turns out that the vector that maximizes this ratio, β, is the eigenvector
corresponding to the largest eigenvalue of W−1B i.e. the linear discriminant
function y is equivalent to the first canonical variate. Hence the discriminant
rule can be written as:

x ∈ i if
∣∣βT x − βT ui

∣∣ <
∣∣βT x − βT uj

∣∣ , for all j �= i (4)
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where W =
∑

niSi and B =
∑

ni(xi − x)(xi − x)
′
, and ni is class i sample size,

Si is class i covariance matrix, xi is the class i mean sample value and x is the
population mean.

Stepwise discriminant analysis [11] was used to select the best variables to
differentiate between groups. These measures were used in the FLDA, MLP and
SVM classifiers.

Multilayer Perceptron: The Multilayer Perceptron - MLP, a feed-forward
back-propagation network, is the most popular neural network technique in
pattern recognition [12], [13]. Briefly, MLPs are supervised learning classifiers
that consist of an input layer, an output layer, and one or more hidden layers
that extract useful information during learning and assign modifiable weighting
coefficients to components of the input layers. In the first (forward) pass, weights
are assigned to the input units and to the nodes in the hidden layers and between
the nodes in the hidden layer and the output, determine the output. The output
is compared with the target output. An error signal is back propagated and
the connection weights are adjusted correspondingly. During training, MLPs
construct a multidimensional space, defined by the activation of the hidden
nodes, so that the two classes (benign and malignant nodules) are as separable
as possible. The separating surface adapts to the data.

Support Vector Machine: The Support Vector Machine (SVM) introduced
by V. Vapnik in 1995 is a method to estimate the function classifying the data
into two classes [14], [15]. The basic idea of SVM is to construct a hyperplane as
the decision surface in such a way that the margin of separation between positive
and negative examples is maximized. The SVM term comes from the fact that
the points in the training set which are closest to the decision surface are called
support vectors. SVM achieves this by the structural risk minimization principle
that is based on the fact that the error rate of a learning machine on the test
data is bounded by the sum of the training-error rate and a term that depends
on the Vapnik-Chervonenkis (VC) dimension.

The process starts with a training set of points xi ∈ �n,i = 1, 2, · · · , l where
each point xi belongs to one of two classes identified by the label yi ∈ {−1, 1}.
The goal of maximum margin classification is to separate the two classes by
a hyperplane such that the distance to the support vectors is maximized. The
construction can be thought as follow: each point x in the input space is mapped
to a point z = Φ(x) of a higher dimensional space, called the feature space, where
the data are linearly separated by a hyperplane. The nature of data determines
how the method proceeds. There are data that are linearly separable, nonlinearly
separable and with impossible separation. This last case be still tracted by the
SVM. The key property in this construction is that we can write our decision
function using a kernel function K(x, y) which is given by the function Φ(x)
that maps the input space into the feature space. Such decision surface has the
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equation:

f(x) =
l∑

i=1

αiyiK(x, xi) + b (5)

where K(x, xi) = Φ(x).Φ(xi), and the coefficients αi and the b are the solutions
of a convex quadratic programming problem [14], namely

min
w,b,ξ

1
2wT · w + C

l∑
i=1

ξi

subject to yi

[
wT · φ (xi) + b

] ≥ 1 − ξi

ξi ≥ 0.

(6)

where C > 0 is a parameter to be chosen by the user, which corresponds to
the strength of the penalty errors, and the ξi’s are slack variables that penalize
training errors.

Classification of a new data point x is performed by computing the sign of the
right side of Equation 5. An important family of kernel functions is the Radial
Basis Function, more commonly used for pattern recognition problems [14],
which has been used in this paper and is defined by:

K(x, y) = e−γ‖x−y‖2
(7)

where γ > 0 is a parameter that also is defined by the user.

2.5 Validation and Evaluation of the Classification Methods

In order to validate the classificatory power of the discriminant function,
the leave-one-out technique [16] was employed. Through this technique, the
candidate nodules from 35 cases in our database were used to train the classifier;
the trained classifier was then applied to the candidate nodules in the remaining
case. This technique was repeated until all 36 cases in our database had been
the “remaining” case.

In order to evaluate the ability of the classifier to differentiate benign
from malignant nodules, the area (AUC) under the ROC (Receiver Operation
Characteristic) [2] curve was used. In other words, the ROC curve describes
the ability of the classifiers to correctly differentiate the set of lung nodule
candidates into two classes, based on the true-positive fraction (sensitivity) and
false-positive fraction (1-specificity). Sensitivity is defined by TP/(TP + FN),
specificity is defined by TN/(TN + FP ), and accuracy is defined by (TP +
TN)/(TP +TN +FP +FN), where TN is true-negative, FN is false-negative,
FP is false-positive, and TP is true-positive.

3 Results

The tests described in this paper were carried out using a sample of 36 nodules, 29
benign and 7 malignant. It is important to note that the nodules were diagnosed
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by physicians and that the diagnosis was confirmed by means of surgery or
based on their evolution. Such process takes about two years, which explains the
reduced size of our sample.

There were no specific criteria to select the nodules. The sample included
nodules with varied sizes and shapes, with homogeneous and heterogeneous
characteristics, and in initial and advanced stages of development.

SPSS (Statistical Package for the Social Sciences) [17], LIBSVM [18] and
NeuralPower [19] were used to training and classification of lung nodules to
FLDA, MLP and SVM, respectively. ROCKIT [20] software was used to compute
and compare the area under the ROC curve.

Stepwise discriminant analysis [11] was used to select the best variables to
differentiate between groups, and the measures selected were NS, VCH and VC
(with N as 1). These measures were used to FLDA, MLP and SVM classifiers.

We use the following parameters in the MLP classifier: one hidden layer with
four units, hiperbolic tangent as the activation function, the value of 0.15 for the
learning ratio, the value of 0.75 for the momentum.

In the classification via SVM a proposed procedure by the authors of
LIBSVM [18] was used to obtain the best constants C and γ with a process
of 36-fold cross-validation. In our case, C = 2.0 and γ = 2.0.

Table 1 shows the results of studied classifiers applied to nodule’s 3D
geometry. Based on the area of the ROC curve, we have observed that: (i)
All classifiers have value AUC above 0.800, which means results with accuracy
between good and excellent [21]. (ii) SVM have the minor value of sensitivity. (iii)
The difference between the ROC curve using the FLDA and the MLP classifiers
did not reach statistical significance (p = 0.641). The difference between the
ROC curve using the FLDA and the SVM classifiers did not reach statistical
significance (p = 0.523). The difference between the ROC curve using the MLP
and the SVM classifiers did not reach statistical significance (p = 0.799).

Classifiers Specificity Sensitivity Accuracy AUC ± SE
% % %

FLDA 89.7 71.4 86.1 0.946 ± 0.061
MLP 89.7 85.7 88.8 0.906 ± 0.079
SVM 89.7 57.1 83.3 0.892 ± 0.084

Table 1. Analysis of FLDA, MLP and SVM classifiers.

The number of nodules studied in our dataset is too small to allow us to
reach definitive conclusions, but preliminary results from this work are very
encouraging, demonstrating the potential for multiple variables used in a pattern
classification approach to discriminate benign from malignant lung nodules.
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4 Conclusion

FLDA, MLP and SVM have been applied to many classifications problems,
generally yielding good performance. In this paper, we have compared these
three classification algorithms on diagnosis of lung nodule. Results based on the
analysis of the ROC curve have shown that the three algorithms had similar
performance on this particular task. But a more accurate analysis of the SVM
shows that it results in a not so good sensitivity, being less apropriated for
a clinical use. Based on these results, we have observed that such measures
provide significant support to a more detailed clinical investigation, and the
results were very encouraging when nodules were classified with these classifiers.
Nevertheless, there is the need to perform tests with a larger database and more
complex cases in order to obtain a more precise behavior pattern.

Despite the good results obtained only by analyzing the geometry, further
information can be obtained by analyzing the texture. As a future work, we
propose a combination of texture and geometry measures for a more precise and
reliable diagnosis.

Acknowledgments

We would like to thank Dr. Rodolfo A. Nunes and his team for the clinical
support, and the staff from Instituto Fernandes Figueira, particularly Dr. Marcia
Cristina Bastos Boechat, for the images provided.

References
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