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Abstract. This research presents a data mining technique for 
discovering masquerader intrusion. User/system access data are used as 
a basis for deriving statistically significant event patterns. These patterns 
could be considered as a user/system access signature. Signature-based 
approach employs a model discovery technique to derive a reference ground 
model accounting for the user/system access data. A unique characteristic of this 
reference ground model is that it captures the statistical characteristics of the 
access signature, thus providing a basis for reasoning the existence of a security 
intrusion based on comparing real time access signature with that embedded in 
the reference ground model. The effectiveness of this approach will be evaluated 
based on comparative performance using a publicly available data set that 
contains user masquerade. 

1   Introduction 

Different kinds of security intrusion could occur in a networked computing 
environment [1]. For example, network intrusion could be launched via a denial of 
service attack, while system intrusion in the application layer (or layer 7) could occur 
through user masquerade. Intrusion prevention involves IT security professions to 
define security policy rules that can be translated into event patterns that, through real 
time monitoring, could trigger an alert for a potential intrusion [2, 3]. 

The challenge for intrusion detection is to develop scalable, extensible data mining 
techniques that can efficiently examine the audit trials in real time to accurately 
pinpoint the occurrence of an intrusion. Instead of relying on event patterns that 
attempt to capture an intrusion, we propose to rely on event patterns that attempt to 
capture what is expected to be the normal behavior of users and systems. In other 
words, our research is focused on developing models that signify the access signature 
as opposed to the intrusion signature. The rationale behind this shift in paradigm is 
that data are readily available to derive the statistical information about the event 
patterns, and thus the access signature. On the other hand, significant statistical 
information from sporadic intrusion activities may hardly be available, if any. 

In this research we propose a signature-based approach for discovering 
masquerader intrusion. Masquerader intrusion refers to an intruder who executes 
system commands or requests system services under the identity of someone else, 
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often other legitimate user. In our proposed signature-based approach, statistically 
significant event patterns that characterize the user/system access behavior will be 
identified based on the concept of association patterns discussed in our previous 
research [9]. These statistically significant event patterns will be used to define a 
unique signature about the user/system access behavior. A probability model, referred 
to as a reference model, preserving the statistical information embedded in the unique 
signature will then be derived [10]. In the production cycle, statistically significant 
event patterns will be derived using windowed sequential real time user/system access 
data, and these event patterns of a windowed sequential data block defines a 
transitional signature. Inference about the existence of an intrusion will then be based 
on the degree of statistical deviation as measured by comparing the transitional 
signature with that embedded in the reference model.  

2 Background discussions 

The signature based approach for intrusion detection presented in this paper could be 
considered as a behavior-based approach for statistical anomaly detection; where the 
essence of the signature based approach is to capture normal behavior ─ as opposed 
to unusual behavior ─ in terms of signature patterns. 

Many different well-known techniques have been proposed for statistical anomaly 
detection. Many such techniques rely on detecting change point or outlier. One 
common approach towards change point or outlier detection is to determine how 
much an observed event (in question) is deviated from some reference “normal event 
set” using a distance measurement such as L-norm, Hamming distance, Manhattan 
distance, or vector cosine measure. Another common approach [13] is to determine 
whether an observed event (in question) appears in the low density regions of the 
probability distribution characterizing the “normal event set.” More recently, novel 
approach based on the use of n-gram matching rule [14] for positive and negative 
detection, as well as hybrid Markov model chain and rarity index model (based on 
extending the STIDE model) were also proposed [6,7].  

In comparison to the existing techniques for statistical anomaly detection, 
signature based approach presented in this paper is unique in two regards. First, 
“normal event set” is characterized by a set of statistically significant association 
patterns referred to as a signature. These statistically significant association patterns 
bear an important information-theoretic characteristic; namely, frequently co-occurred 
events in a pattern do not just happen by chance as measured by mutual information 
criterion. Second, the distance measurement is then conducted under a two-way 
mutual comparison as opposed to a one-way comparison as typical in standard 
posterior probability measure. In a one-way comparison, observed event sample is 
compared against normal event observation. In a two-way comparison, access 
signature is compared against the observed model (of possible intrusion), and the 
signature of observed events (of possible intrusion) is compared against the access 
model to arrive a composite measurement. These are the distinctions of the signature-
based approach in comparison to other approaches such as rarity criterion or 
posteriori probability based matching rule of n-gram samples.  
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3 Deriving statistically significant patterns 

In this research, the type of intrusion we focus on is masquerader intrusion in a 
Unix/Linux environment; i.e., an intruder injects operating system commands into the 
shell environment for a command execution under someone else identity. In a 
Unix/Linux system, “praudit” utility can be installed to keep track of the command 
execution history of a user [4]. Consider the following example of the command 
execution history of a user since a successful login session is established: pine, emacs, 
netscape, ssh, chmod, sftp, javac, java, …. 

The problem of discovering masquerader intrusion is to determine from 
the command execution history such as the one shown above whether some 
command(s) in the command execution history is/are injected by an 
intruder but not issued by the user who owns the successful login session. 

While it is conceivable to define sequential intrusion patterns as a basis for 
intrusion detection, there are three fundamental challenges of this approach [5,6,7]. 
First, the size of the security policy rule set and the corresponding intrusion patterns 
will grow over time as new intrusion methodologies are discovered. Second, real 
world intrusion seldom occurs frequent enough to accumulate statistical evidence for 
timely intrusion detection. Third, it may not be possible to always define security 
policy rules without causing conflict to what may be an expected acceptable activities. 
Consider a general security policy: “Change of the file access privilege on the 
password table should be trapped and interpreted as a potential intrusion,” this may be 
translated to an event trigger defined by “chmod 770 /etc/passwd”. Yet such a policy 
will cause interference on backup/recovery during the regular maintenance process.  

To address the limitations just mentioned, we propose a signature concept that 
attempts to capture the unique characteristic of a legitimate user. The premise of 
applying the concept of signature is that there exist some unique access patterns of a 
legitimate user. Imagine in an extreme case where each legitimate user always 
performs the same activity upon establishing a successful login session; e.g., checking 
email (using pine), launching emacs to write a report to the supervisor, launching 
netscape to check company news events, … etc. The likelihood of having two or more 
users with identical command execution sequence would be very small. Therefore, 
one may consider the entire command execution sequence of a user as an access 
signature. This is similar to the idea of uniqueness for intrusion detection discussed 
elsewhere [7]. Obviously defining an access signature based on the entire command 
execution sequence is unlikely to be computationally manageable. In addition, no user 
will have the execution sequence completely identical upon different successful login 
sessions ─ even certain commands or command sequence may always co-occur and 
appear as association patterns. An alternative approach is to consider categorizing the 
commands into few categories and to focus on low order association patterns [8] as an 
access signature. In doing so, it would be relatively more computationally manageable 
while we try to “optimize” the uniqueness of the access signature of a user. 

In this research every Unix/Linux command is categorized into one of the 
following five groups: (1) Networking, (2) OS/System application/shell script, (3) 
File access, (4) Security, and (5) Communication. 

The example of the command execution history shown earlier “pine, emacs, 
netscape, ssh, chmod, sftp, javac, java, ….” can then be translated into a category 
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sequence “5 3 2 5 4 3 2 2…” Furthermore, the category sequence can be shifted and 
aligned when considering the low order association event patterns. In this example, 
shift and alignment for considering 4th order association patterns that accounts for the 
4-tuple patterns (x1 x2 x3 x4) of the command execution history will be (x1:5 x2:3 
x3:2 x4:5), (x1:3 x2:2 x3:5 x4:4), (x1:2 x2:5 x3:4 x4:3), … etc. In this research, an 
access signature is defined as the collection of the statistically significant association 
patterns of 4th order (x1 x2 x3 x4) using the criteria below [9]: 

Support measure Pr(x1, x2, x3, x4) ≥ some predefined threshold            (1), and  
2/0)

'

ˆ
(2

)
2

)(
)4,3,2,1Pr(

1()4,3,2,1( E
E

Nxxxx
xxxxMI χ

→      (2) 

 where MI(x1,x2,x3,x4) = Log2Pr(x1 x2 x3 x4)/Pr(x1)Pr(x2)Pr(x3)Pr(x4) 
  N = sample population size 
  χ2 = Pearson chi-square test statistic defined as (oi – ei)2/ei  

       with oi = observed count = N Pr(x1 x2 x3 x4) 
                        ei = expected count under the assumption of independence 
             E

)
= Expected entropy measure of estimated probability model  

             E’ = Maximum possible entropy of estimated probability model 
              O = order of the association pattern (i.e., 4 in this case) 
The choice of the 4th order association patterns is ad-hoc but under a careful 

consideration on balancing the representational and computational complexities. 
Further details about statistically significant patterns could be found in our previous 
paper [9]. Note that the above two criteria guarantee that any pattern considered 
statistically significant would have appeared frequently, and the co-occurrence of the 
associated events in a pattern does not just happen independently and by chance [10]. 

Since there are only 625 4th order association patterns for five command categories, 
one could argue that an intruder just has to run commands that belong to the same 
group as the legitimate user to reduce the chances of detection. This is true under the 
assumption that the intruder has the prior knowledge about the behavior of the 
legitimate user. If this is the case, no behavior-based intrusion detection will succeed 
because the intruder and legitimate user will no longer be distinguishable. And if the 
intruder is trying to guess the command sequence of the patterns that represent the 
access signature, there are C(625,k) combinations; where k is the number of patterns 
defining the access signature. In this case, we will want to define the time period 
within which the legitimate user must reveal the access signature, while the likelihood 
of guessing the correct set of patterns defining the access signature is low. 

4   Identifying probability reference model 

Referring to the example in the previous section, there are 54=625 possible association 
patterns for (x1 x2 x3 x4). Let’s assume three statistically significant association 
patterns are found: (x1:3 x2:2 x3:5 x4:4) (x1:4 x2:3 x3:2 x4:2) (x1:5 x2:4 x3:3 x4:2). 
Let’s further assume the following probability information related to the three 
significant patterns just shown is available as below: 

    Pr(x1:3 x2:2 x3:5 x4:4) = 0.03  Pr (x1:4 x2:3 x3:2 x4:2) = 0.05 
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   Pr (x1:5 x2:4 x3:3 x4:2)=0.07  Pr(x1:3)=0.15  Pr(x1:4)= 0.37   Pr(x1:5) = 0.23 
   Pr(x2:2) = 0.13    Pr(x2:3) = 0.35    Pr(x2:4) = 0.14     Pr(x3:2) = 0.27 
   Pr(x3:3) = 0.17    Pr(x3:5) = 0.3     Pr(x4:2) = 0.45     Pr(x4:4) = 0.12 
Note that the degree of freedom of a joint probability model Pr(x1 x2 x3 x4) is 54 

(=625) - 1 – 14 (# of constraints) = 610. Therefore, there are multiple probability 
models that can satisfy the conditions. The process of model discovery is beyond the 
scope of this paper. Readers interested in further details are referred to chapter 9 of 
our book [10]. Nonetheless, we show one such probability model that is locally 
optimized to minimize the bias to unknown information:  

Pr(x1:1 x2:1 x3:2 x4:2) = 0.057272747 Pr(x1:1 x2:2 x3:5 x4:1) = 0.057272717 
Pr(x1:1 x2:3 x3:1 x4:1) = 0.12454547 Pr(x1:1 x2:4 x3:5 x4:4) = 0.010909086 
Pr(x1:3 x2:1 x3:2 x4:1) = 0.12  Pr(x1:3 x2:2 x3:5 x4:4) = 0.03 
Pr(x1:4 x2:1 x3:1 x4:2) = 0.09727271 Pr(x1:4 x2:1 x3:5 x4:1) = 0.026363678 
Pr(x1:4 x2:3 x3:2 x4:2) = 0.05  Pr(x1:4 x2:3 x3:5 x4:2) = 0.1754545 
Pr(x1:4 x2:4 x3:3 x4:1) = 0.020909093 Pr(x1:5 x2:1 x3:3 x4:4) = 0.079090910 
Pr(x1:5 x2:2 x3:2 x4:1) = 0.042727260 Pr(x1:5 x2:4 x3:1 x4:1) = 0.038181823 
Pr(x1:5 x2:4 x3:3 x4:2) = 0.07 

Where the remaining Pr(x1 x2 x3 x4)s equal to 0. 
The significance of an optimal probability model just shown is that it preserves the 

statistical properties of the significant association patterns while minimizing bias. In 
other words, the probability information of the model will reveal the statistically 
significant association patterns that define an access signature. This optimal 
probability model will be referred to as a reference model for a user.   

5   Chi-square goodness of fit for intrusion detection  

To determine masquerader intrusion, the command execution history will be 
examined in a regular time interval. If the command execution history of a user within 
some time interval could not produce a matching access signature with sufficient 
confidence level, then it will serve as a basis to suspect the existence of a 
masquerader intrusion. In the statistical inference framework, Chi-square test statistic 
λ2 is used to determine the goodness of fit between the access signature revealed in 
the command execution history and that in the reference model. Specifically, we test 
the following null hypothesis versus the alternative hypothesis: 
Null Hypothesis: 
   Masquerader intrusion exists if λ2 = ∑i=1

k (oi – ei)2/ei > χ2
(1-α,d) where  

    k is the number of significant patterns {sspi: i=1 ..k}  revealed in the source model, 
   N is the size of the command execution history within some given time interval, 
   ei = N·Prsource(sspi) is the expected count of the ith pattern sspi derived from source model, 
   oi = N·Prtarget(sspi) is the observed count of the ith pattern sspi derived from target model,  
   χ2

(1-α,d) is the value of the Chi-square random variable with a degree of freedom d = k -1;     
where 0 <α < 1 is the significance level. 

Alternative Hypothesis: 
   Masquerader intrusion does not exist if λ2 = ∑i=1

k (oi – ei)2/ei ≤ χ2
(1-α,d) 
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In the formulation just shown, if sspis are statistically significant patterns revealed 
in the reference model, then the source model is the reference model described in the 
previous section. The target model is then the probability distribution estimated by 
observing the actual frequency count of the occurrence of the sspis in the command 
execution history within the given time interval. On the other hand, if sspis are 
significant patterns revealed in the data block pertaining to the command execution 
history, then the source model is the probability distribution estimated from the data 
block while the target model is the reference model described in the previous section.  

In other words, the goodness of fit statistical test will be conducted twice. First, it 
will be from the perspective of the reference model by comparing the access signature 
of the data block against its own signature. Second it will be from the perspective of 
the access data block by comparing the access signature in the reference model 
against its own signature. By combining the result of the statistical inference tests, a 
strong conclusion on the existence of masquerader intrusion could be drawn if the null 
hypothesis survives in both tests, or a weak conclusion on the existence of 
masquerader intrusion could be drawn if the null hypothesis survives in at least one 
test. 

6   Experimental study and result discussion 

The proposed signature-based approach for masquerader intrusion is evaluated using 
the masquerade data available in the public domain for comparing various intrusion 
detection methods [11]. The masquerade data consists of 50 groups ─ each group is 
the access data of one user. Each data group for a user contains 15000 commands. 
The first 5000 commands within each data group do not contain any masqueraders 
and are used for the training purposes. The remaining 10000 commands are divided 
into 100 blocks. Within each block there are 100 commands that are used for testing 
purposes. The data blocks for testing are seeded with user masquerade that simulates 
masquerader intrusion. The location of masquerader intrusion is also provided in the 
masquerade data for evaluation purposes. About 5% (231 out of 5000) of the test data 
contain masquerades. 

The masquerade data also provide additional information. At any given block after 
the initial 5000 commands a masquerade starts with a probability of 1%. If the 
previous block was a masquerade, the next block will also be a masquerade with a 
probability of 80%. However, this information is not used in this experimental study. 
The following procedure is applied to each one of the 50 users in the study: 

Step 1: Reproduce the data column of the first 5000 commands by shifting the data 
by one time unit. Repeat it 4 times to get a 4-column data table in which each row is a 
sequential pattern of 4 Unix commands appearing in the command execution history. 

Step 2: Extract the first 5000 rows of the four-column data. Apply the function 
made available elsewhere [10] that implements the two criteria described in section 3 
to discover statistically significant patterns. This set of statistically significant patterns 
defines the access signature of a user. 

Step 3: Based on the set of the statistically significant patterns that defines the 
access signature, define the constraint set similar to that described in section 4.  
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Step 4: Apply the model discovery utility made available elsewhere [10] to derive 
the probability reference model for a user. This probability reference model, Prref, 
reveals the access signature and has the (local) minimum biased information.  

Step 5: For each one of the 100 test data block that has been enumerated into four-
column data, apply the following procedure: 

   Step 5a: Reproduce the data column of the 100 Unix commands in the block by 
shifting the data by one time unit. Repeat it four times to get a four-column data table 
similar to that described in step 1. 

   Step 5b: Apply the function made available elsewhere [10] that implements the 
two criteria described in section 3 to discover statistically significant patterns. This set 
of statistically significant patterns defines the access signature of the test data. 

   Step 5c: For each statistically significant pattern of a target user, derive the 
observed count oi. Likewise, derive the expected count ei as described in section 5. 

   Step 5d: Apply statistical inference based on Chi-square goodness of fit as 
described in section 4 to determine whether masquerader intrusion exists.  

Step 6: Derive the correct detection rate, the false positive rate, and the false 
negative rate based on the result of the 100 test data blocks in step 5. 

 
In order to determine the effectiveness of the approach, Receiver Operating 

Characteristic (ROC) curve [12] analysis is used to evaluate the result. The followings 
are the parameters used in a ROC curve analysis: 

AP = Actual total positive counts in the test data (masquerader intrusion) 
AN = Actual total negative counts in the test data (no masquerader intrusion) 
PP = Number of predicted true positive counts 
PF = Number of predicted false positive counts 
FP = False positive rate = PF/AN 
TP = True positive rate = PP/AP 

An ROC curve is a graphical plot of FP (X-axis) against TP (Y-axis). Note that 
both FP and TP are between 0 and 1. An ideal intrusion detector will have a 
performance where TP = 1 and FP = 0; i.e., every masquerader intrusion is accurately 
captured with no false alarm. When TP = 1 and FP = 0, it also implies that there is no 
false negative (since TP = 1) and all negative counts in the test data are correctly 
concluded by the detection system as no intrusion. 

Referring to the threshold value χ2
(1-α,d) defined in section 4, FP and TP will vary 

with different choices of α. An ROC curve shows the changes of TP vs. FP as 
different threshold values are applied. An intrusion/anomaly detector is optimized if 
its threshold value χ2

(1-α,d) yields a point (FP, TP) that has the shortest distance to (0,1) 
in an ROC curve. 

An ROC curve is derived for every single user based on the six steps described 
previously. An ROC curve using all the data ─ referred to as overall ROC ─ is also 
derived to illustrate the overall performance. In the case of overall ROC, all 5000 
blocks (100 blocks for each of the 50 users) are used as testing data. Again, an overall 
ROC curve is obtained by varying the threshold χ2

(1-α,d). 
Referring to section 4, a Chi-square test statistic λ12 could be derived by using the 

training data as the source, and the testing data as the target. Likewise, another Chi-
square test statistic λ22 could be derived by using the testing data as the source, and 
the training data as the target. We then derive an overall Chi-square test statistic λ2 
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based on the linear combination of λ12 and λ22; i.e., λ2 = (1-w) ·λ12 + w·λ22. The 
choice of w varies from 0 to 1 with an increment of 0.1. In applying the statistical 
inference described in section 4 using the test statistic λ2 = (1-w) ·λ12 + w·λ22, the 
optimal setting for w is 0.1. Using the test statistic λ2, the overall ROC curve and the 
ROC curves for the 50 users (but skipping those with a testing data set that has no 
intrusion) are shown in Fig.1. 

Fig. 2 shows the ROC band envelope that encloses all the ROC curves, the overall 
ROC curve, and the estimated ROC curve. The estimated ROC curve is based on 
“averaging” all ROC curves. Fig. 2 also shows the ROC curves that are one and two 
standard deviation away from the estimated ROC curve. In Fig. 2, one could note that 
the ROC band is wide due to a wide variation across all 50 users. Consequently, it is 
no surprise that the estimated ROC matches closely to the overall ROC curve only 
partially at FP < 0.2 or FP > 0.8.  

Fig. 3 and Fig. 4 show the ROC curves of different selected users. Fig. 5 shows the 
ROC curve for six different approaches reported elsewhere [7]. Fig. 5 is reproduced 
for gaining insights into achievable performance. An interesting observation in 
comparing Fig. 1 and Fig. 3 is that the overall optimal performance for 50 users is 
better than that for 8 selected users as shown in the corresponding ROC curve. But by 
comparing Fig. 3 and Fig. 4, the optimal performance for 6 selected users is better 
than that of all 50 users and 8 selected users. In other words, one must be mindful that 
performance comparison is only meaningful when the ROC curves generated for 
different methods are based on the same population of sample users. 

One final note about the experimental result is that only normal event/behavior 
instances are available in the training data set for deriving access signature and 
reference model. If we are willing to reduce the size of the testing data, it is 
conceivable to include some of the masquerade intrusion test data as training data to 
explore the idea of incorporating both access signature and intrusion signature in a 
reference model. To extend the signature-based approach to incorporate intrusion 
signature, we only need to modify the statistical hypothesis test by introducing two 
additional test statistics in additional to λ12 and λ22 described earlier to account for the 
consideration of known intrusion patterns. This additional study will be included in 
our next report. 

7   Conclusion 

A signature-based approach is presented for discovering masquerader intrusion. In 
this proposed approach we introduce the concept of an access signature, which is a 
collection of statistically significant association patterns. The concept of an access 
signature is appealing because it allows one to derive a probability model that 
captures the uniqueness of the access behavior of a user while taking into the 
consideration of the intra-usage variation. Equally important, the derived probability 
model provides a basis for detecting masquerader intrusion efficiently. As shown in 
this paper, efficient detection on masquerader intrusion is simply a process of 
matching the real time online access signature against the one in the probability 
reference model based on Chi-square statistical test for goodness of fit. The 
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experimental study also shows an encouraging result in the comparative evaluation. 
Although we focus on this paper only the masquerader intrusion, the signature-based 
approach is extensible for incorporating intrusion signatures, as well as for 
discovering other kinds of intrusion; e.g., network intrusion. This will be the focus of 
our future research. 
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Fig. 1.:ROC curves of all 50 users        Fig. 2. ROC band and estimated ROC curve 
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Fig. 3. ROC curve of 8 selected users Fig. 4. ROC curve of 6 selected users 

 
Fig. 5. ROC curves for six different approaches 


