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Abstract. Human motion sequence-oriented spatio-temporal pattern
analysis is a new problem in pattern recognition. This paper proposes
an approach to human motion sequence recognition based on 2D spatio-
temporal shape analysis, which is used to identify diving actions. The
approach consists of the following main steps. For each image sequence
involving human in diving, a simple exemplar-based contour tracking
approach is first used to obtain a 2D contour sequence, which is fur-
ther converted to an associated temporal sequence of shape features.
The shape features are the eigenspace-transformed shape contexts and
the curvature information. Then, the dissimilarity between two contour
sequences is evaluated by fusing (1) the dissimilarity between the as-
sociated feature sequences, which is calculated by the Dynamic Time
Warping (DTW), and (2) the difference between the pairwise global mo-
tion characteristics. Finally, sequence recognition is performed according
to a minimum-distance criterion. Experimental results show that high
correct recognition ratio can be achieved.

1 Introduction

The recent years have seen a surge of interest in video-based human action
recognition [1][2][3][4] . However, due to the non-rigidity of human body, human
motion classification is a challenging problem. The key difficulty of classification
is how to derive the time-varying information from image sequences for action
segmentation [4] and motion sequence recognition [3]. Most works [2][4][5] have
been done on partitioning an image sequence involving human into key frames,
meta-actions, or meta-gestures for video content analysis, human computer in-
teraction, virtual reality, behavior understanding, or sign language recognition.
Instead of aiming at analyzing the details within a single image sequence, com-
paring between different image sequences is desired for intelligent surveillance,
content-based video retrieval, video-assisted analysis in athletic training and
heath-care arenas, and entertainment, etc..
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To obtain the motion information from an image sequence, the motion detec-
tion and human tracking methods [1][2] can be employed to obtain a sequence
of binary silhouettes or a sequence of pose parameters. Since this sequence is
associated with the human body, it can reflect the spatio-temporal motion in-
formation. We can then derive time-varying feature sequences [3][6] or calculate
some important motion properties, such as speed, period, amplitude, number of
somersaults in diving, etc.. For example, gait recognition [3] aims to signify the
identification of individuals in the image sequences by their gait styles. How-
ever, in many applications, identifying who is in an image sequence may be
unnecessary. Instead, identifying the motion type to which the motion belongs
is desired.

Since gait is a biometric feature, the methods [6] to be used to extract gait
feature sequences may not be directly applied to other motions, such as jumping,
diving, etc.. Sequence feature analysis for these situations is a new problem.

This paper aims to identify the action group to which the dive belongs. To this
end, each image sequence is converted to a 2D contour sequence by our exemplar-
based tracking approach. The reasons we analyze 2D contour sequences are: (1)
The deformations of the contour can reflect the changes of the pose configuration;
(2) Shapes are more robust to the changes of clothing and illumination than color
and texture.

The recognition strategy is constructed for the whole 2D contour sequences.
We use eigenspace-transformed shape contexts [7] and curvature information as
shape features. The features of all contours are listed over time to form a feature
sequence. Fig. 1 illustrates the process.
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Fig. 1. The process of sequence recognition

Besides the feature sequence, we also use the number of somersaults, which is
one of the most distinct global motion characteristics in diving, to describe the
2D contour sequence as a whole. The dissimilarity between two feature sequences
is computed by sequence matching through Dynamic Time Warping (DTW)
[8] approach. To decide the final dissimilarity between two contour sequences,
the dissimilarity of two feature sequences and the difference of global pairwise
characteristics are integrated together. Finally, sequence recognition is performed
according to a minimum-distance criterion (see Fig. 1).

This paper is structured as follows. Section 2 briefly introduces the related
work. Section 3 details the proposed simple and effective approach to deformable
contour tracking. The feature analysis approaches to contour sequence are de-
scribed in Section 4. Section 5 outlines the algorithm of sequence recognition.
The experimental results are reported in Section 6, followed the conclusion in
Section 7.
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2 Related Work

This section briefly reviews the related work on shape representation and motion
sequence analysis. The literatures on shape representation are rich [9]. However,
we do not need those representations with rotation invariant features, such as
Hu moments, Fourier descriptors, and those wavelet based features (see [9] for
details), because diving motion is highly related to the rotation of the human
body. Whereas, most rotation sensitive representations can only capture the
global perception characteristics, for example the spatial moments [9], and hence
are incapable of describing the local shape feature well. Belongie et al. proposed
a novel method for shape representation and shape matching [7]. The basic idea
of their proposal is to construct a shape context for every discretized contour
point. Due to the detailed description, measuring the similarity between two
points from two shapes can be done explicitly.

From the point view of pattern recognition, two basic tasks are related to
image sequence analysis. One task is to partition a sequence into different meta-
poses or meta-actions [4]. The other task is to recognize image sequences based
on a sequence gallery by taking each of them as a probe sequence. Each probe
sequence is described by global motion characteristics or converted to an asso-
ciated feature sequence. The global characteristics can be derived from time-
independent features [10] or time-related features [11]. A feature sequence is a
temporal sequence of features, such as the sequences derived from gait styles
[3][10][12]. However, different kinds of motions have their own characteristics.
Thus, extracting the salient feature is crucial for sequence recognition.

Sequence recognition is performed according to feature comparison. Cur-
rently, most of the related works are developed for gait recognition [3][6][10][12]
. In contrast, the Hidden Markov Model (HMM) based methods [4][12] and the
DTW [8] based methods [3] are more suitable for general sequence comaparison.
To use HMM, it is necessary to partition the sequences into meta-actions, meta-
gestures or key frames as samples to learn the model parameters. The DTW
is a common technique since there is no need for one to learn the prior model.
However, we need to prepare the sequences to be recognized with roughly equal
sequence lengthes, according to the work of Rabiner et al. [8].

3 Contour Extraction

We use target tracking approach to extract the contours since the background is
non-static. For visual-based human tracking [2], Sequential Monte Carlo (SMC)
estimation [13] has proved to be a successful approach. In SMC framework, the
probability of the object configuration given the observation is described by
a set of weighted particles. Tracking process can then be viewed as a density
propagation governed by the dynamic model and observation model [14].

Dynamic model is highly related to contour representation. Due to non-rigid
motion and occlusions during diving, representing the 2D deformable diver con-
tours is a tough task. The efficient method with regards to processing defor-
mation is to define complex model with high dimensionality. However, in SMC
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framework, this leads that the density function which governs the distributions
of the target states would be propagated in a high-dimensional state space. It
seems that we can use parameterized curves to describe the contour. But due to
occlusions of arms, the changes of the 2D pose configuration are drastic.

However, we observe that in diving there exist fundamental poses, which can
be used to depict the new ones. To this end, we collect the fundamental contours
from different diving action groups to construct a database of exemplars (denoted
by E). We use the exemplars to describe the appearances of the target states
as well as guide the tracking process. As a result, we can only use three state
variables in dynamic model, namely, the centroid coordinate (x, y) and the scale
parameter s. Now we can write the dynamic equation as follow:

{
xt = xt−1 + Vt(x)
yt = yt−1 + Vt(y) (1)

where (xt,yt) is the centroid coordinate of the target state at time t, and Vt(x)
and Vt(y) bear normal distribution N(0, σx) and N(0, σy), respectively.

Each particle (xt,yt) employs an exemplar as its appearance, scaling a little
with parameter s. s is randomly set within the range of 0.9-1.1 since the camera
was always located in the same place at a distance from the diving platform.

We use the exemplars approximately corresponding to the standing poses to
initialize the particles’ appearances. After scaled with s, each of them is located
in the first frame by using fast Hausdorff distance mapping [15].

Then, we embed a process of contour recognition into the tracking process.
For the associated contour of a particle, we retrieval its neighbors from E as its
candidates, which are distributed in the current frame according to Equation 1,
respectively. After measured through observation model [16], the one with the
maximum posterior probability is selected and transferred to the next frame.

To fast retrieval the needed neighbors, the contours in E are organized as a
tree structure, based on all the two and three order contour moments.

Toyama et al. perform probabilistic tracking with exemplars in a metric space
[17]. There the exemplars are interpreted probabilistically. However, we use ex-
emplars as inputs for searching to find the candidates. Furthermore, we do not
need complex training process. Actually, neighbor search approach provides the
updating dynamics for particles’ appearances as well as the mechanism to guide
the tracker to find the candidates for each particle. Our method is a simple and
effective approach for the purpose of sequence recognition. Fig. 2 shows some
tracked frames from three image sequences.

The exemplar database includes 210 different 2D contours. During tracking,
the particle number is 4000 and the number of neighbors to be searched is 10.
We manually take σy = 2σx and σx = 8 since the motion of the centriod of
the diver body is roughly controlled by gravity and the motion in the horizontal
direction is limited.



A New Approach to Human Motion Sequence Recognition 5

Fig. 2. Some results of contour tracking from three image sequences, respectively

4 Sequence Recognition

4.1 Feature Sequence

To convert a contour sequence into a feature sequence, we need the shape features
with translation and scale invariance since the contours are translated to the
image centers and the body sizes of the divers may be slightly different.

We use shape context descriptor as shape feature. For each reference point, its
shape context is a log-polar histogram of the relative coordinates of the remaining
points. The shape context summarizes global shape in a rich and local descriptor.
Since each point can be associated with a histogram, we can get a shape context
matrix, which is a detailed description about the shape perception.

Invariance to translation is intrinsic to the shape context. To achieve scale
invariance, all radial distances by the median distance between all the point pairs
is normalized [7].

We observe that for most shape contexts a lot of bin values are zeros. This
results that the histograms are sparse. Directly using the χ2 statistics to measure
two sparse histograms may not reflect the similarity well [18]. Thus we apply
the eigenspace transformation based on Principal Component Analysis (PCA)
to the histograms to reduce the redundancy. The details are as follows:

We use all the shape contexts calculated from E as PCA training samples.
After performing PCA, we take k eigenvectors corresponding to the k largest
eigenvalues, {e1, e2, · · · , ek}, to form an eigenspace E = [e1, e2, · · · , ek]. For a
novel histogram vector X, we have:

Y = ET X (2)

On the other hand, the log-polar space makes the shape descriptor more
sensitive to the positions near the reference point. In fact, it is unable to robustly
reflect the local geometrical property very well. Actually, the degree of curvature
is highly related to a few neighbor points. We use it as an additional feature.

Now a contour is described as a group of features {C, K}, where C(∈ RN×k)
is the eigenspace-transformed shape context matrix, and K(∈ RN ) is the curva-
ture vector. Here N is the number of discretized points of the contour and M is
the number of the bins of the shape context histogram. As a result, a contour
sequence is naturally converted into a feature sequence.
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Let point P i
S belong to contour S, and P j

T belong to T , the distance between
P i

S and P j
T can then be computed as follow:

d(P i
S , P j

T ) = χ2(Ci
S ,Cj

T )+s1 ·ds2(Ci
S ,Cj

T )+s2 ·dk(κi
S , κj

T )+s3 ·dk2(κi
S , κj

T ) (3)

where Ci
S and κi

S denote the eigenspace-transformed shape context and the
curvature of the ith point of contour S. Cj

T and κj
T have the same meanings as

Ci
S and κi

S , respectviely. s1, s2 and s3 are weighting parameters, which are all
manually set as 0.001.

In Formula 3, χ2(P i
S , P j

T ) and ds2(P i
S , P j

T ) are calculated as the χ2 statistics
and the two order derivative of the eigenspace-transformed shape context cost at
the pair point of (P i

S , P j
T ) [19][20]. dk(P i

S , P j
T ) and dk2(P i

S , P j
T ) are the curvature

cost and the two order derivative of the curvature cost, respectively. The reason
here we use the two order derivatives is that close points on S should also be
close after matched to T .

Finally, the similarity between S and T can be determined, by performing
shape matching [7] based on Formula 3.

4.2 Global Motion Characteristics

The number of somersaults (denoted by Π) is a salient global motion charac-
teristic. To calculate Π, we track the position of the feet to form a trajectory
and then calculate the rotation number. It is feasible since during diving the
feet are always keeping straight and close together and seldom occluded by the
arms in the sky. This leads the diver contours have thin appearances. Thus we
can extract their skeletons. Now the steps to calculate Π can be summarized as
follows:

First, extract the skeleton by morphological thinning operation and trim off
the branches with small lengths. Then, detect the branch ends and track the
one corresponding to the feet based on the movement continuity. To perform
this step, all the vectors defined from the image center to the ends are first
normalized. The vector with minimum angle to the tracked vector in the previous
frame is selected as current result. Thus, we get a normalized trajectory. Due
to translation and normalization, it does not correspond to the real physical
one. However, this does not affect the calculation because the diver body turns
approximately along its own axis. Finally, Π can be computed as:

Π =
1
2π

N∑

i=1

sgn(vi−1 · vi) · arccos(vi−1 · vi) (4)

where sgn(vi−1 · vi) stands for the relative rotation direction from vi−1 to vi,
and N the is total frame number. sgn(vi−1 ·vi) = 1 means the rotation direction
is counter-clockwise, while sgn(vi−1 · vi) = −1 means the rotation direction is
clockwise. Here, v0 is the initial position vector.
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5 Sequence Recognition Algorithm

Note that the lengths of the image sequences would be very different. To make the
sequences to be recognized with almost equal lengthes for using DTW matching,
we cut off the frames corresponding to the preparing stage because the poses are
rest stances and hence weakly informative in the context of action recognition.

To this end, we use again the normalized trajectory. By finding the point
which begins to depart from the vertical position, we obtain the corresponding
image frame. Thus the sequence can be partitioned into two subsequences. We
take the later one for recognition.

The contour sequences may be different every time since the divers may
slightly adjust their poses and alter or control the motion speed. Directly per-
forming frame-to-frame matching is not realistic. Therefore, We use the DTW
to match the sequences and define the matching cost as dissimilarity [3][8].

Let S1 : {S1
1 , · · · , Sn

1 } and S2 : {S1
2 , · · · , Sm

2 } be two contour sequences. Let
Cj

i and Kj
i denote the eigenspace-transformed shape context matrix and the

curvature vector of Sj
i , respectively. Suppose the number of somersaults of Si be

Πi. We summarize the steps of computing the dissimilarity between S1 and S2

as follows:
Step1: Calculate Cj

1, Kj
1 (j = 1, · · · , n) and Cj

2, Kj
2 (j = 1, · · · ,m);

Step2: Transform Cj
1 (j = 1, · · · , n) and Cj

2 (j = 1, · · · ,m), according to
Formula 2;

Step3: Calculate the distance matrix M ∈ (Rn×m) for S1 and S2:
(1) for Si

1 and Sj
2 (i = 1, · · · , n; j = 1, · · · ,m), compute the pairwise

matching cost ei,j based on Formula 3,
(2) let Mi,j = ei,j ;

Step4: Based on M, use the DTW matching to calculate the matching cost,
and denote it by d1;

Step5: Calculate Π1 and Π2, and let d2 = |Π1 −Π2|;
Step6: Compute the dissimilarity between S1 and S2: d =

√
d2
1 + (wd2)2.

Finally, a probe sequence is identified based on the minimum-distance crite-
rion.

6 Experimental Evaluation

The raw video data involving the divers in training was taken at a distance by
a CCD camera in different days. To keep the diver figures in the range of the
image plane, the camera may slightly rotate along the camera support.

We use the second and fourth group of the international standard diving
actions to test our method. The second group action, denoted by ‘2’, is the back
group (face to the platform or springboard at the beginning, diving backward).
The forth group (‘4’) is the inward group (diving inward). There have four fun-
damental pose groups, denoted by ‘A’ (straight), ‘B’ (pike), ‘C’ (tuck) and ‘D’
(free), respectively. The parameters about somersaults are complex. ‘1’ stands
for ‘0.5’ number of somersaults, ‘2’ for ‘1.0’ number of somersaults, etc. Thus,
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according to international diving criteria, ‘21A’ means “the second group, 0.5
number of somersaults, straight pose”.

Fig. 3. Some 2D poses and their skeletons extracted by morphological thining

We build a gallery including of 10 groups of diving actions from a single
diver: 21A, 23A, 23B, 25B, 23C, 25C, 21D, 23D, 43B, 43C. All the ten image
sequences are converted into ten 2D contour sequences by hand. Then a database
consisting of 210 different poses is constructed by selecting the same pose once.
It is used for both contour tracking (see Sect. 3) and PCA training.

The size of the shape context histogram is 5×12. The number of the dis-
cretized contour points is 80. Thus, there are totally 16800 samples for PCA
training. When taking the eigenvectors, we let k = 20.

(a) (b)

Fig. 4. Two 2D contour sequences extracted by using the method in Sect. 3

Fig. 3 shows the 2D poses and their branch-trimmed skeletons. Fig. 4 gives
two translated sequences. The diving code in Fig. 4(a) is ‘43B’, while the code
in Fig. 4(b) is ‘25C’. Fig. 5 demonstrates the translated and normalized tra-
jectories. The trajectories demonstrated in Fig. 5(a) and Fig. 5(b) correspond
to the sequences in Fig. 4(a) and Fig. 4(b), respectively. We can see that two
sequences have the same length. But they show different pose configuration and
different rotation direction (See in Fig. 5). The real values of the numbers of
somersaults of the diving actions shown in Fig. 4(a) and Fig. 4(b) are 1.5 and
-2.5, respectively. The corresponding values calculated from Formula 4 are 1.45
and -2.38, respectively.

The testing set includes 50 image sequences involving four divers. Each im-
age sequence is used as a probe sequence. The task is to recognize the gallery
sequence corresponding to the probe sequence. We use contour tracking to ob-
tain a 2D contour sequence for a probe sequence. The action group of the probe
sequence is identified as that of the gallery sequence with which the matching
distance is minimum, according to the algorithm in Sect. 5. We achieve 100%
correct recognition ratio for 50 testing sequence.



A New Approach to Human Motion Sequence Recognition 9

(a) (b)

Fig. 5. The translated and normalized trajectories

7 Conclusion

This paper aims to recognize diving actions directly based on image sequences.
Different from the traditional work on action recognition, we treat the sequence
as a whole, rather than partition it into different meta-actions or key frames.
We use exemplar-based contour tracking to convert an image sequence into a 2D
contour sequence. The eigenspace-transformed shape context histogram matrix
and curvature information are used as shape features to form a feature sequence.
The dissimilarity of two feature sequences is determined by sequence matching.

The global motion characteristics and motion type determined by the recog-
nition framework of this paper are important video contents for content-based
video retrieval and video mining. The meta-data based methods can only summa-
rize the global perception information, which is produced jointly by the humans
and the other uninteresting objects.

Although the work is developed on diving actions, the proposed approaches
to visual tracking, sequence feature analysis may be applied to other visual
computations or video analysis tasks since the related problems are general. In
the future, experiments on bigger database and more actions will be carried
out to test our method. And we would like to develop more general method for
human motion sequences-oriented spatio-temporal pattern analysis.
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