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Abstract. Mixture models, especially mixtures of Gaussian, have been
widely used due to their great flexibility and power. Non-Gaussian clus-
ters can be approximated by several Gaussian components, however, it
can not always acquire appropriate results. By cancelling the nonnega-
tive constraint to mixture coefficients and introducing a new concept of
“negative components”, we extend the traditional mixture models and
enhance their performance without increasing the complexity obviously.
Moreover, we propose a parameter estimation algorithm based on an it-
eration mechanism, which can effectively discover patterns of “negative
components”. Experiments on some synthetic data testified the reason-
ableness of the proposed novel model and the effectiveness of the param-
eter estimation algorithm.

1 Introduction

In the field of statistical learning, finite mixture models (FMM) have been widely
used and have continued to receive increasing attention over years due to their
great flexibility and power [1]. The capability of representing arbitrary complex
probability density functions (pdf’s) enables them to have many applications
not only in unsupervised learning fields [2], but also in (Bayesian) supervised
learning scenarios and in parameter estimation of class-conditional pdf’s [3].
Especially, Gaussian Mixture Models (GMM) have been widely employed in
various applications[1,2,3].

GMM can accommodate data of varied structure, since one non-Gaussian
component can usually be approximated by several Gaussian ones [4,5]. How-
ever, this approximation can not always acquire appropriate results. To form
an intuitive image of this fact, a sample set is generated by a Gaussian model
and partly “absorbed” by another one, i.e. there is a “hole” in the data cloud
as Fig.1a shows. Fitting this sample set by GMM yields a solution shown in
Fig.1b. This solution is achieved by the Competitive Expectation Maximization
algorithm (CEM) [6], and the component number is auto-selected by a criterion
similar to Minimum Message Length (MML) [7]. Although this solution is not
bad, it is obvious that in the “hole” area , densities are estimated higher than
they should be.
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Fig. 1. Samples generated by a component and partly absorbed by another one
(average log likelihood in (a) and (b) is 0.353 and 0.351, respectively ).

In the definition of traditional mixture models, the coefficients of mixture
components are nonnegative. In fact, to satisfy the constraint of pdf, it only
requires to meet the following two conditions: the sum of the mixture coefficients
equals 1, and the probability density at any point is nonnegative. The mixture
coefficients are not necessary to be nonnegative.

In this paper, we endeavor to extend mixture models by cancelling the non-
negative constraint to mixture coefficients. We introduce a new concept of “Neg-
ative Component”, i.e. a component with a negative mixture coefficient.

The rest of this paper is organized as follows. We will describe this proposed
model in Sect.2. A parameter estimation algorithm based on an iteration mecha-
nism is given in Sect.3. Experiments are presented in Sect.4, followed by a short
discussion and conclusion in Sect.5.

2 Finite Mixture Models with Negative Components

It is said a d-dimensional random variable x = [x1, x2, · · · , xd]T follows a k-
component finite mixture distribution, if its pdf can be written as

p(x|θ) =
∑k

m=1
αmp(x|θm), (1)

where αm is the prior probability of the mth component and satisfies

αm ≥ 0, and
∑k

m=1
αm = 1. (2)

Different descriptions of p(x|θm) can be assigned to different kinds of mixture
models. We focus on FMM and demonstrate algorithms by means of GMM.

If the nonnegative constraint of mixture coefficients is cancelled, mixture
models will be more powerful to fit data clouds. Equation (2) is modified to

∑k

m=1
αm = 1. (3)

To ensure p(x) satisfies the constraint of pdf, we should add a new constraint:

p(x) ≥ 0,∀x. (4)

For convenience, we call finite mixture models with negative components
NegFMM, and call the corresponding GMM version NegGMM.



2.1 An Interpretation to NegFMM

In NegFMM, a component with a positive coefficient is called a “Positive Com-
ponent” and the negative one a “Negative Component”. Let k+ and k− denote
the number of positive components and negative ones, respectively. k = k+ +k−

is the total component number. For convenience, positive components and neg-
ative ones are separated as follows

p(x|θ) =
∑k+

m=1
αmp(x|θm) +

∑k

m=k++1
αmp(x|θm) (5)

Defining a = −∑k
m=k++1 αm,

∑k+

m=1 αm = 1 + a. Let β+
m = αm/(1 + a), β−m =

−αk++m/a. Obviously, β+
m, β−m ≥ 0 , and

∑k+

m=1 β+
m = 1,

∑k−

m=1 β−m = 1.

Defining p+ =
∑k+

m=1 β+
mp(x|θm), p− =

∑k−

m=1 β−mp(x|θk++m), p+ and p− are
traditional mixture models. So NegFMM can be expressed as

pM = (1 + a)p+ − ap−. (6)

p+ is called “Positive Pattern” and p− is called “Negative Pattern”. When a = 0,
NegFMM will degrade to FMM. In this paper, we only focus on the case of a > 0.

Moving p− to the left side, (6) can be rewritten as

p+ = 1
1+apM + a

1+ap−. (7)

Then the positive pattern p+ is expressed as a mixture of the model pM and the
negative pattern p−. This expression clearly shows that the negative pattern can
not exist independently and it is only a part of the positive pattern.

2.2 The Nonnegative Density Constraint for NegGMM

NegFMM introduces the nonnegative density constraint (4). In this section, we
will further analyze this constraint in the case of NegGMM.

This constraint is to ensure (1 + a)p+ − ap− = p+ + a(p+ − p−) ≥ 0. When
p+ − p− ≥ 0, pM ≥ 0 is met. When p+ − p− < 0, it means

a ≤ p+
/
(p− − p+). (8)

We will show that this constraint can be decomposed to two parts, i.e. the
constraint to covariance matrices and the constraint to a, corresponding to the
nonnegative condition for infinite x and finite x, respectively.

The Covariance Constraint. For Gaussian distribution, the covariance ma-
trix describes the density decaying rate in any direction. For a direction r
(‖r‖ = 1), the variance satisfies σ2

r = rT Σr, because

σ2
r =

∫
[rT (x− µ)]2p(x)dx = rT [

∫
(x− µ)(x− µ)T p(x)dx]r = rT Σr.



For the case of k+ = k− = 1, if there is a direction r where the variance of p− is
larger than p+, the right side of (8) will approach zero when x goes to infinite
along the direction r. This will lead to a = 0. So the covariance constraint is
σ2

1r ≥ σ2
2r, ∀r, ‖r‖ = 1. Fig.2 illustrate this case: the model in Fig.2a satisfies

the covariance constraint while the model in Fig.2b does not.

(a) (b)

Fig. 2. Illustration of the covariance constraint.

In the general case of NegGMM with arbitrary k+ and k−, the constraint
will be similar. In any direction, variances of all negative components must be
not larger than the maximum variances of all positive components,

max
1≤m≤k+

{σ2
mr) ≥ max

k++1≤m≤k
{σ2

mr), ∀r, ‖r‖ = 1. (9)

The Constraint to a. If NegGMM satisfies the covariance constraint, there
exists a threshold aT > 0. If a = aT , min

x
p(x) = 0. So the constraint to a is

a ≤ aT , (10)

where aT = min
x∈{x|p−−p+>0}

{p+/(p− − p+)}.

3 A Framework of Parameter Estimation

Assuming that samples in the set X = {x1, x2, · · · , xn} are independently drawn
from the NegGMM model, how to estimate parameters of the model from X is
a difficult problem, since no samples originate from the negative pattern.

To estimate an appropriate number of components, many deterministic cri-
teria are proposed [1]. In this paper, we do not consider the problem of choosing
the numbers of components. We take the Maximum Likelihood (ML) estimation
as our object function,

J =
1
n

∑n

i=1
log(p(xi|θ)). (11)

The EM algorithm is a widely used class of iterative algorithms for Maxi-
mum Likelihood or Maximum A Posteriori (MAP) estimation in problems with
incomplete data, e.g. parameter estimation to mixture models [8,9]. However,
the EM framework is difficult to be directly used in NegGMM, because of the
existence of negative coefficients terms.



3.1 Basic Ideas

Parameters of negative pattern p− can not be directly estimated from the sample
set X. According to (7), p− can be viewed as the result of subtracting pM from
p+, where p+ can be estimated, but pM is unknown. Intuitively, pM can be
approximated by the sample density function ps which can be estimated by the
Parzen window based methods. Then (7) can be approximated as

p+ = 1
1+aps + a

1+ap−. (12)

At first p+ is estimated according to X, then p− is estimated according to
(12). After that a is estimated under the nonnegative density constraint. Then
p+ is reestimated using the information of p− and a, and so on.

p+, p− and a are optimized separately, i.e. when one part is being optimized,
the other parts are fixed. This is similar to the idea of Gibbs Sampling [10].

In order to estimate p−, we first sampling p+ to get a sample set. Then, based
on (12), we use a modified EM algorithm to estimate p− with a fixed mixture
component ps.

In order to estimate p+, we sampling p− and weight the sample set according
to a. The union of the weighted sample set and X can be viewed as a sample
set generated by p+. Then p+ can be estimated by EM.

In order to estimate a, we first estimate the threshold aT . Then, under the
constraint of a ≤ aT , we search for the most appropriate a which leads to the
highest likelihood value.

The Manifold Parzen Window Algorithm. To estimate p−, the sample
density function ps needs to be estimated to approximate pM . To ensure a satis-
fying result, this estimation should be as accurate as possible. Usually, the sample
distribution is inhomogeneous, so the traditional Parzen window method can not
promise to obtain a good estimation due to a uniform isotropic covariance.

In this paper, we use the manifold Parzen window algorithm proposed by
Vincent [11]. The main idea is that the covariance matrix of sample xi is calcu-
lated by its neighbor points

ΣKi =

∑
j 6=i K(xj ;xi)(xj − xi)(xj − xi)T

∑
j 6=i K(xj ;xi)

, (13)

where the neighbor constraint K(x;xi) could be soft, e.g. a spherical Gaussian
centered on xi, or hard, e.g. only assigning 1 to the nearest k neighbors and
0 to others. Vincent used the latter in his experiments. Considering the data
sparsity in high-dimension space, Vincent added two parameters to enhance the
algorithm, i.e. the manifold dimension d and the noise variance σ2. The first d
eigenvectors with large eigenvalues to ΣKi are kept, zeroing the other eigenvalues
and then adding σ2 to all eigenvalues. Based on a criterion of average negative
log likelihood, these three parameters are determined by cross validation.

In low-dimension space, ΣKi
is supposed to be nonsingular. So only one

parameter, i.e. the neighbor number k, needs to be predetermined. The compu-
tational cost for cross validation will be reduced greatly.



Grid Sampling. In order to estimate p−, we can randomly sampling p+. But
the randomicity will lead to very unstable estimations of p− because of small
number of sampling. To solve this problem, we can increase the amount of sam-
pling which will make the succeeding algorithm very slow, or change random
sampling to grid sampling which is adopted in this paper.

For the standard Gaussian model N(0, I), all grid vectors whose lengths are
less than dscope will be preserved, and the weight of a grid vector is in proportion
to the model density at the point. In our experiments, dscope is determined
by experience. The grid space dspace can be determined according to precision
requirement and computational cost. Let (Sg, Wg) denote the grid set, where Sg

are grid vectors and Wg the corresponding grid point weights. Fig.3 shows the
Grid sampling for the standard 2D Gaussian model.
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Fig. 3. Grid sampling for standard 2D Gaussian model, dscope=3.5, dspace=0.08.

For a general Gaussian model N(µ,Σ), where Σ = UΛUT , the grid sampling
set (S, W ) is converted from the standard set (Sg, Wg ) by W = Wg and
S = UΛ1/2Sg + µ · [1, 1, · · · , 1]1×|Sg|.

For traditional Gaussian mixtures, the grid sampling set (S, W ) is the union
of grid sets of all components, weighting W by component priors once more.

Estimating p− with one fixed component by EM. EM is widely used
to estimate the parameters of mixture models [8,9]. Our goal is to estimate p−

based on (12). Now we have a sample set (S, W ) originating from p+ (by grid
sampling), a component ps with fixed parameters (estimated using the manifold
Parzen window method) and fixed mixture coefficients (determined by a).

For maximum likelihood estimation, the object function is

∑
wi ln(

a

1 + a
p−(si) +

1
1 + a

ps(si))

Similar to the EM algorithm for mixture models[8], the updating formulas
can be deduced easily.
E-Step: The posterior to the lth component of p− can be calculated as



p(l|si) =
aβ−l p−l (si)

ap−(si) + ps(si)
, l = 1, 2, · · · , k−.

This formula is similar to the E-Step in the standard GMM-EM algorithm,
except that the denominator contains an additional term ps(si).
M-Step: The updating formulas to the lth component are very similar to the
M-Step in the standard GMM-EM algorithm,

β−l =
∑

i wli∑k−
m=1

∑
i wmi

, µ−l =
∑

i wlisi∑
i wli

, Σ−
l =

∑
i wli(si − µ−l )(si − µ−l )T

∑
i wli

,

where wli denotes the weight of si to the lth component, and wli = wip(l|si).

3.2 Scheme of the Parameter Estimation Algorithm

To sum up, the scheme is described as follows:

1. Initialization:
Assign numbers of components k+ and k−;
Estimate sample density function ps by manifold Parzen window algorithm;
On the sample set X, estimate p+ using the standard EM algorithm;
Initialize p− randomly or by k-means based methods on the grid sampling
set of p+ ( ps is used in this step);
Set a to be a small number, e.g. a = 0.01, and set iteration counter t = 0.

2. One iteration:
Fixing p+ and a, estimate p− by the modified EM algorithm described above;
Fixing p− and a, estimate p+ by EM, where the sample set is the union of
X (weight is 1) and the grid sample set (S−, W−) of p− (weight is a);
Fixing p+ and p−, estimate a under the constraint (10), maximizing (11);
The counter t = t + 1 .

3. End condition:
Repeat the iteration 2, until the object function does not change or arrives
at the maximal steps. Ouput θ∗ with the maximal J .

4 Experiments

Example 1. We use 1000 samples from a 2-component 2-dimension NegGMM
shown in Fig.1a. The parameters are: α1 = 1.05, α2 = −0.05, µ1 = [0, 0]T ,

µ2 = [1.5, 1]T , Σ1 =
[

4
1

]
, and Σ2 =

[
0.2 −0.1
−0.1 0.4

]
.

Fig.4 shows the optimization procedure. In this paper, real line and dashed
denote positive and negative components respectively, and p− is initialized by
k-means based methods. Fig.4a shows one initial state. Fig.4b∼f show some
intermediate states of the searching procedure. The best estimation is given in
Fig.4f (9th iteration).
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(c) 2, 0.023, 0.352
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(d) 3, 0.032, 0.355
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(f) 9, 0.074, 0.359

Fig. 4. Example 1: (a) Initialization (b-e) 1st ∼5th iterations (f) the best esti-
mation (values of t, a, J are given below each graph ).

Example 2. We use 1000 samples from a 5-component 2-dimension NegGMM
shown in Fig.5a, where k+ = 2, k− = 3 and a = 0.05. The parameters are:

α1 = 0.63, α2 = 0.42, α3 = −0.01, α4 = −0.03, α5 = −0.01
µ1 = [1.5, 0.2]T , µ2 = [−1.5, 0.3]T ,

µ3 = [1.2, 0.4]T , µ4 = [−1.6, 0.4]T , µ5 = [0.2, − 0.5]T

Σ1 =
[

0.2 0.1
0.1 0.2

]
, Σ2 =

[
0.1 −0.05
−0.05 0.1

]

Σ3 =
[

0.01 −0.002
−0.02 0.02

]
, Σ4 =

[
0.02 0.01
0.01 0.02

]
, Σ5 =

[
0.01

0.01

]

Fig.5b∼f plot some intermediate states of the searching procedure. The final
parameter estimation is given in Fig.5f (4th iteration) where J = 0.293. If use
the traditional GMM, the best estimation given by CEM is the same as p+ in
the initial state (plotted by real lines in Fig.5b) and the corresponding J equals
0.275.

In our experiments, we do not check the covariance constraint (9). Because
the sample set to estimate p− originates from p+, and p+ contains a fixed com-
ponent ps, the estimation of p− will satisfy the covariance constraint in general.
This is also testified by experiments.

For p− and a, there is observable difference between estimations and true
values. It is mainly due to two reasons. The first is the large sampling error
between X and the true model (this is also supported by comparing likelihood
between the estimation and the true model). The second is that the samples
from p− can not be observed and the estimation algorithm may bring bias.
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(e) 3, 0.047, 0.292
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(f) 4, 0.059, 0.293

Fig. 5. Example 2: (a) TRUE model (b) Initialization (c-e) 1st ∼3rd iterations
(f) the best estimation (values of t, a, J are given below each graph ).

Some Interesting Examples. Fig.6 illustrates some interesting results. The
first column contains sample sets, the second column contains estimations by
GMM-CEM where component numbers are auto selected, and the last column
contains estimations by NegGMM where component numbers are assigned by
us. The first row is a synthetic ring with 500 samples (Fig.6a), the second row
is 654 samples drawing from an image of digital “8” (Fig.6d). To traditional
GMM, estimations of 7 and 13 components are given respectively (Fig.6b and
Fig.6e). These solutions are very good. For NegGMM, estimation results are very
interesting (Fig.6c and Fig.6f), though likelihood is lower.

5 Discussion and Conclusion

In this paper, we extend the traditional mixture models by cancelling the nonneg-
ative constraint to mixture coefficients and introduce the concept of “negative
pattern”. The power and flexibility of mixture models are enhanced without
increasing the complexity obviously.

The proposed parameter estimation framework can effectively discover pat-
terns of lower density relative to positive pattern p+ due to three tricks. The
manifold Parzen window algorithm proposed by Vincent gives a very good es-
timation of sample density function ps. The grid sampling helps to gain a very
stable estimation of the nonnegative pattern. And the modified EM algorithm
gives a final estimation effectively.

Due to the data sparsity, mixture models are difficult to be directly employed
in high-dimension space. For the high-dimension case, there are two classes of
processing methods. The first is to reduce the data dimension by linear or nonlin-
ear methods, and the second is to constraint the model by priors or hypotheses.
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Fig. 6. Some interesting results: (a,d) Sample Sets; (b,e) GMM Estimation by
CEM; (c,f) NegGMM Estimation(k+, k−, a, J).

In complex situations, it is very difficult to find an acceptable solution for
mixture models by standard EM because of its greed nature. In the future, it
is necessary to do more research on split, merge and annihilation mechanism of
NegFMM as our previous work[6].
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