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Abstract. Wireless network resource use depends in large part on the mobility 
of network users.  The ability to predict this mobility at least in part enables the 
network to anticipate resource use in the future and take precautionary measures 
if necessary.  This work presents a neural network prediction system that is able 
to capture some of the patterns exhibited by users moving in a wireless envi-
ronment and can then predict the future behaviour of these users.  These predic-
tions can then be used in a multitude of ways to ensure proper and predictable 
resource use. 

1 Introduction 

The popularity of wireless voice communication grew explosively during the end of 
the last century.  The next anticipated step in wireless communication is the delivery 
of data services, specifically internet services to mobile users.  It is anticipated that 
mobile users in the near future will not only be concerned with the availability of 
these wireless services, but also with the quality of these services. 

One mechanism proposed to aid in providing a certain quality of service is limiting 
the number of users accessing the network resources at a given point in time.  This is 
known as Admission Control (AC).  Many types of AC mechanisms have been pro-
posed for wireless networks [2], [6], [7].  This paper introduces a mobility prediction 
mechanism that can be used by AC mechanisms to better anticipate the future state of 
the network and thus make better call accept/reject decisions. 

The rest of this paper is organized as follows:  Section 2 introduces some back-
ground concepts, section 3 provides an overview of current research status, section 4 
describes the design of the neural network predictor, section 5 discusses the simula-
tions used to evaluate the predictor performance, section 6 presents the results and 
section 7 concludes the paper.   

2 Background 
2.1 Distributed Call Admission Control 

Distributed Call Admission Control is a type of AC that uses information from more 
than the network access point (NAP) the user is currently connected to, and deals with 



the granularity of calls.  One of the crucial decisions for any dCAC scheme is decid-
ing which of the NAPs will be involved in the admission decision.  This decision is 
not trivial since the group of NAPs that result in the best admission decision can vary 
according to many factors.  These factors can include global data such as the average 
congestion level in the network, time of day and day of week.  It is not difficult to see 
however that the optimal group of NAPs will be different for each call that is being 
admitted to the network, and thus more important to determining this optimal group 
of NAPs is local NAP data as well as specific call data.  Local NAP data is data such 
as traffic patterns observed at a specific NAP, or the congestion of the network in the 
neighbourhood of the NAP.  Data specific to the call being admitted is data such as 
the resource requirements of the call and the expected call duration.   

In trying to devise a way to determine the optimal group of NAPs to involve in a 
distributed admission decision, it quickly becomes evident that the question being 
asked is how to best predict which NAPs the MT requesting admission will visit dur-
ing the lifetime of the call.  Therefore the problem has been reduced to one of mobil-
ity prediction.   

2.2 Mobility Prediction 

Intuitively mobility prediction would be the determining of a mobile terminal (MT)’s 
future location.  Although this is the general idea, there are many details that must be 
specified in order to truly understand what is being described.  

The first item that needs further definition is ‘location’.  The location of the user 
carrying the MT is primarily thought of as their geographic coordinates.  It has been 
noted however that there are problems with associating the MT’s location directly 
with the user’s geographic location.  [11], [13] It is better to consider the motion of 
the MT through the network as the successive list of connections that the MT experi-
ences.  What this means exactly is that the MT location is always one of a finite set of 
locations representing one of the possible access points in the network (NAP).  This is 
illustrated in Figure 1 where the dashed line represents the user mobility and the loca-
tion of the MT changes as the connection to the network changes from one access 
point to another.  In this particular example, the MT starts at NAP 2, moves through 
NAPs 5, 6, 7, 11 and ends at NAP 13.  It is evident that the idea of a MT’s location is 
greatly simplified by adopting this abstraction from the user’s location.  The second 
item worth mentioning is the notion that a prediction is usually based on some previ-
ous knowledge.  The exact specification of what knowledge is used to make a predic-
tion is very crucial in determining the appropriateness of that prediction scheme.  If a 
prediction is based on data that is simply not available in a given situation, that pre-
diction scheme is useless in that scenario regardless of how well it performs in other 
scenarios.  An example of this is a requirement of privacy.  If the prediction scheme 
has to respect the privacy of users and is only allowed to query their MTs for a very 
short mobility history, it may not be able to function properly.  The data it requires 
may be present in the system but simply not accessible. 

The third item to consider is the classification of the prediction as one that predicts 
the time of an event or one that predicts the event at a time.  The time of an event type 



of prediction is one that is presented with an event that is expected to occur and is re-
quired to predict the time of this event.  An example of this is a prediction mechanism 
required to predict the time at which a given MT will handoff from one NAP to an-
other.  The event at time type of prediction is one that is required to predict the state 
of a system at a given time in the future.  An example of this type of prediction 
scheme is one that is asked what NAP an MT will be connected to at a time t in the 
future.  

The fourth and last item requiring discussion is the granularity of the prediction.  If 
the prediction mechanism is predicting the time of an event, to what accuracy is the 
time predicted?  Seconds, minutes etc.  If the prediction mechanism is on the other 
hand predicting the event at a time, this event is most likely defined at least in part by 
a location and thus the granularity of the location needs discussion.  This means that a 
location can be specified in geographical coordinates, a single NAP, a group of NAPs 
etc. 

3 Mobility Prediction Mechanisms  

There are many ways of attempting to solve mobility prediction which, result in many 
prediction mechanisms.  Each is unique and developed in order to solve a specific 
problem or specific type of problem but they are all related and many can be used in 
scenarios other than those they are proposed for.   

There are two main types of wireless networks where mobility is important.  These 
would be a system supported by infrastructure, such as a cellular system supported by 
base stations, etc. and a system that has no supportive infrastructure, such as ad-hoc 
networks.  The main difference is that an infrastructure supported system can refer to 
fixed NAP for location while an infrastructure-less system needs an abstract location 
reference.   

Mobility prediction research has mainly focused on supporting the next expected 
handoff.  [1], [3], [10], [12], [15], [16]  In reality, MTs will be able to move through-
out the network and experience multiple handoffs during the lifetime of a call.  It may 
therefore be necessary to predict more than just the next location the MT visits or the 
next event the MT will experience.  [7],[17],[21] 

Figure 1 



A large portion of recent research still assumes that user mobility and the connec-
tion trace for an MT are strongly dependent. There are a large number of prediction 
systems that have been proposed which attempt to measure or capture some regularity 
of the user’s mobility in order to extrapolate from this knowledge about the future be-
haviour of the user’s MT [1], [3], [12], [15], [16].  Real life mobility traces have 
shown that this assumption of user mobility and connection trace of the MT is not as 
valid as most researchers believe [11], [13].  This raises the issue that it will most 
likely be necessary to study the behaviour of the MT and its interaction with the net-
work directly. 

Another main distinction between prediction systems is whether data is stored on a 
per user basis or aggregated into some structure.  One of the most common per-user 
types of prediction mechanisms is based on the idea of path recognition [1], [9], [16].  
Aljadhai and Znati [17] also use a per user prediction system predicting a user’s most 
likely cluster of locations.  Biesterfeld et al. [20] propose a neural net scheme that 
learns a user’s mobility profile to use in prediction.  The general argument when using 
a per-user prediction system is that although the mobility patterns seen in the network 
as a whole are complex, these patterns become much simpler and more regular when 
viewed on a per-user basis and can thus be exploited more easily.  Prediction schemes 
that use aggregation argue that the user mobility is subject to geographical constraints 
at the place of each NAP and thus all users will exhibit similar behaviour at a given 
NAP.  Therefore it is possible to predict the future location of such a user knowing the 
aggregate behaviour of all or similar users at that NAP.  Soh and Kim [5] introduce a 
prediction technique that uses a road topology database that stores the probability of 
transfer from one road segment to another.  

Another difference in the approaches to solve the problem of mobility prediction 
seen in current work is whether the prediction produced is based on measurement of 
user or MT behaviour or matching the pattern of this behaviour with previous behav-
iour.  A measurement based approach will typically compute a probability of events 
occurring, depending on the value of some parameters. [17] Pattern matching tech-
niques on the other hand attempt to match the observed user behaviour with some 
previously observed behaviour and forecast the future based on the observed patterns.  
[1], [9], [16], [17], [18]  This distinction is most evident in the per-user type of predic-
tion mechanisms, since most of the schemes that use aggregation will attempt to cap-
ture patterns in an overall sense but perform each individual prediction using a meas-
urement of some kind.  [10], [12]  

4 Predictor Design  

We propose a mobility prediction system that uses a neural network to capture con-
nection trace patterns in wireless networks in order to predict future behaviour of 
MTs.  While there has been some research that uses neural networks for similar pur-
poses [19], [20], [21], our approach is novel in that our predictor learns general pat-
terns present at NAPs as opposed to user specific patterns.  As proposed in [5], [10], 
there is good reason to believe that mobility patterns will be influenced in a signifi-
cant way by the geographic limitations and trends present at the location of a NAP.  



We also note that although user mobility may be quite regular, there is a significant 
amount of independence between this regularity and regularity in the connection trace 
of an MT belonging to such a user [12], [14].  MT connection traces are influenced by 
the state of the network and there may be regularity in how a network behaves at par-
ticular locations which is a regularity of the network as opposed to a regularity of user 
mobility.  This regularity is impossible to extract from user behaviour.  This is best il-
lustrated with a simple example in Figure 2, where a user, represented by the dashed 
line, initiates a call and connects to either NAP 5 or NAP 2 depending on the state of 
the network.  The handoffs then proceed as illustrated, either from even numbered 
NAP to even numbered NAP or odd numbered NAP to odd numbered NAP due to 
some property of the network.  Knowing the exact mobility of the user will not de-
termine exactly the behaviour of the MT connection since each time this route is 
taken, there are two possible connection traces.  Studying the MT connection directly, 
the network regularity present can be observed. As a consequence, our prediction sys-
tem trains a separate neural network at each NAP using short connection trace histo-
ries of MTs that connect to that NAP.  The aim is to capture general patterns in local 
connection behaviour and use these to predict future behaviour of MTs that connect to 
this NAP.   There are a number of advantages to using a generalized pattern recogni-
tion mechanism as opposed to a user specific one.  First there is no need for each user 
to build up an individual history since there is an expectation that MT traces for users 
traveling along similar paths will share localized patterns.  Second, a general pattern 
predictor is better able to handle erratic behaviour by a single user.  In a per-user pre-
diction system, a user that behaves in a way he/she never has before will cause the 
predictor to perform poorly since this type of behaviour is not incorporated into the 
knowledge the predictor has about that user.  In a general pattern predictor, there is at 
least a chance that some other user has behaved in a way similar to the erratic user 
and thus the predictor is somewhat prepared for such behaviour.  Third, there is an is-
sue of privacy that may arise when keeping track of individual user travel patterns.  
This issue is not present when only immediate history is used to train a neural net-
work and thus aggregate the individual user travel patterns into more general ones.   

The complete predictor consists of a number of components built around the neural 
network classifier.  Initially it is necessary to collect and convert MT connection 
traces into data that can be used to train the neural network.  The neural net is then 
trained with this data and ready to predict.  The predictions from the neural net are not 
however of a form directly understandable and have to be translated into a set of 
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NAPs that the MT is expected to move to in the future.  Also, the neural net is trained 
to predict only the near future, so there is an external mechanism that allows for a re-
cursive prediction farther into the future.  Before these components are described in 
detail, some terminology must be introduced and a few concepts defined. 

4.1 Concepts 

The predictor views MT connection traces on a discreet time scale of a chosen time 
unit t.  This time unit is known as a time step.  The time step scale needs to be small 
enough such that MT connection traces are approximately continuous.  

A network only experiences handoffs if there is more than one NAP present.  
NAPs that can handoff to each other are considered direct neighbours.  NAPs that 
cannot handoff to one another are indirect neighbours of a certain degree, this being 
the smallest number of handoffs that is required for a call to be transferred between 
these two NAPs.  These neighbour degrees enable the definition of an n-layer 
neighbour map.  An n-layer neighbour map of a NAP is the set of all NAPs that have 
a neighbour degree equal to or less than n.  A prediction of the future behaviour of an 
MT is represented as the set of NAPs that the MT will visit in the future time period 
specified.  This set is referred to as the Future Location Set.   

Table 1. Parameter Definitions Table 

FLSt(a) The Future Location Set at time t time units into the fu-
ture according to the predictor at NAP a.   

neighbours(a) The set of NAPs that are direct neighbours of NAP a.
T The threshold such that an output from a neural net pre-

dictor corresponding to a certain NAP will only result in 
this NAP being included in the FLS if this output is 
higher than or equal to T.
The lambda parameter affects the weight given to the ab-
solute length of time spent at a NAP as opposed to the 
relative time since that NAP has been visited.   

nno(a  b) The output corresponding to NAP b, from the neural net-
work predictor at NAP a.

Histlen The length of the history vector used to classify the MT.  
This is as far as the system can see in the past on a per 
user basis. 

4.2 Data Gathering and Input Generation 

As an MT hands-off from one NAP to another in the network, it creates a history of 
NAPs it has visited at times in the past.  The exact form of this history is an ID vector 



of length Histlen as defined in Table 1.  This history vector contains in it two types of 
information about the recent mobility behaviour of that MT.  The first piece of infor-
mation is when this MT connected to which NAPs.  Intuitively this information 
should represent a general direction of the MT’s motion.  The other piece of informa-
tion contained in this history vector is how long the MT spent at each NAP it con-
nected to.  This intuitively carries information about the speed of the MT.  A fast MT 
will spend less time at NAPs than a slow one.  

These two pieces of information about the recent connection behaviour of the MT 
need to be incorporated into one piece of input that can be presented to the neural 
network.  This input vector is created as follows:  The size of this input vector is de-
fined by the number of neighbours found in the n-layer neighbourhood of the current 
NAP (cNAP), where the cNAP is the NAP whose neural network is being trained.  
The parameter n is tuneable and represents how large a neighbourhood the cNAP 
should be aware of.  An n-layer neighbourhood map is created for the cNAP which is 
a mapping of some network imposed neighbour NAP ID to an index in the input vec-
tor.  The values of the input vector are then set to an initial value of 0.  The parameter 
lambda ( ) has a value in the range (0, 1], where a value of 1 places all the weight on 
the absolute time spent at a NAP and disregards any historical sequence and a value 
close to 0 puts almost all the weight on the historical sequence of NAPs and little on 
the absolute time spent there.  If the present time is t= 0, then t= -k is k time steps in 
the past.  The input vector is created by adding the value k+1 to the value in the input 
vector that represents the NAP the MT was connected to at time t= -k.  If this NAP is 
not in the neighbourhood of the cNAP, the value for that time step is ignored and its 
information lost.  An example can be seen in Figure 3 where each arrow represents 
one time step in the movement of an MT on its way to the cNAP.  The MT is cur-
rently in the cNAP for one time step, has spent the previous two time steps connected 
to NAP 7 and the two before that to NAP 8. The neighbourhood that cNAP is aware 
of is depicted by a circle, and if the neighbour mapping is such that the ID of the NAP 
is the position in the input vector and Histlen is 5, then the resulting input vector of 
this movement is:  [ 1,0,0,0,0, 2+ 3, 4+ 5] (shown transposed to save space)  
Mathematically the input vector can be expressed as: 

Figure 3 
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Pk is a position vector such that it has size equal to the input vector size, and has 0 
value for all positions other than the position representing the NAP where the MT was 
located at time t= -k which is equal to 1.  For example, P1 = [0,0,0,0,0,0,1,0].   

4.3 Training Data Generation 

In order to train the neural network, it is necessary to have input-output pairs that are 
examples of what the network is supposed to be able to produce once trained.  The in-
put vector of such a training data point is gathered and created as described above.  
The corresponding output vector of this data point needs to somehow represent the 
desired prediction output which is in essence some representation of the NAP that the 
MT will move to in the next time step.  This is obviously impossible to obtain at the 
time the input vector is created since the future behaviour of the MT is not known.  
This problem is solved by waiting until the next time step to see where the MT actu-
ally goes and creating the desired output vector accordingly.  This is then coupled to-
gether with the already existing input vector and stored as a training data point to be 
used when training the neural network.  

4.4 Output Interpretation 

There are essentially two types of output vectors in this prediction system.  The first 
kind are the artificial ones, that is to say the ones created by the system in order to 
train the neural network.  The second kind are the ones that are actually produced by 
the neural net after it has been trained.  These vectors are identical in structure, but 
there is a difference in the values they hold and in the interpretation of these values.  

The size of all output vectors is limited by the 0+1-layer neighbourhood of the 
cNAP.  In other words the size of the output vectors is equal to the number of direct 
neighbours that the cNAP has, plus one value for itself.  This is because the neural net 
is trained to predict one time step into the future, and there should be no possible way 
that the MT connects to a NAP other than one of the direct neighbours of the cNAP or 
itself, by definition of direct neighbour and the scale of time steps.          

The artificial output vector is constructed in a manner identical to the Pk vectors 
described in the input section, except for the stricter size limit.  The NAP that the MT 
moves to in the next time step is what defines which position in the otherwise zero-
vector has value 1.   

The true output vector as produced by the neural net depends on the characteristic 
of the neural network, but will have values that range from 0 to 1 in all positions.  
These are not probabilities even if the numbers would suggest it, although they are 
similar.  These are relative confidence values that the neural net has assigned to the 
respective NAPs in the direct neighbourhood of the cNAP and to the cNAP itself as 
potential future locations where the MT will be found in the next time step.  From 



these, the Future Location Set (FLS) is constructed.  The FLS is the set of locations, 
or NAPs, that the neural net has a sufficient confidence in as potential connections of 
MT in the next time step.  Sufficient confidence is defined by a tuneable threshold pa-
rameter T as defined in Table 1.  The higher this threshold, the more critical the pre-
dictor is of which NAPs will be part of the FLS.  Other than the specifics of the neural 
network, this is the general one time step prediction mechanism employed in this pre-
dictor.  In the case of multiple time step prediction, there is an additional step before 
the comparison of the confidence values and the threshold.  

4.5 Neural Network Specifics 

At the heart of the predictor lies the neural network.  The performance of the predic-
tion system is heavily influenced by the design choices made here.  Neural networks 
are not all alike, and each type of neural net is suited best for a different type of prob-
lem.  [22]  

The type of neural net used in this predictor is a back-propagation network.  The 
main idea behind a back-propagation network is that it starts out with a random pat-
tern encoded in it and as it is trained it modifies this random pattern based on how 
well the pattern performs on the training data.   Depending on how far off the guess is, 
the network adjusts its internal state and proceeds to the next training point. 

There are a few design decisions that need to be made regarding the neural net-
work.  First the number of layers in the network needs to be decided.  A typical back-
propagation network consists of three layers, which is also the number of layers used 
for this predictor network.  There is an input layer, a hidden middle layer and an out-
put layer.  Each of these layers server a specific function, refer to [22] for a complete 
discussion.  Then the number of neurons in each layer needs to be decided.  The input 
layer was created such that it could be presented with the input vector, and thus the 
number of neurons in this layer is the same as the number of entries in the input vec-
tor.  The number of output layer neurons is similarly dictated by the size of the output 
vector.  The middle layer is then the only layer for which the number of neurons is not 
dictated by the design of the system.   

Second, the transfer functions between the neuron levels need to be decided.  There 
is a number of these, the most common being sigmoid and linear functions.  These are 
mathematical functions that determine how the inputs to an individual neuron deter-
mine the output of that neuron.  The neural network in this system uses a log-sigmoid 
function between the input layer and the middle layer and a linear function between 
the middle layer and the output layer.  This configuration is a typical configuration for 
a back-propagation neural network.  

The last major decision that needs to be made is the learning algorithm used to 
train the network.  A typical back-propagation neural network uses a gradient descent 
algorithm which is what was chosen for the predictor.   

The neural network used in this predictor is a typical back-propagation neural net 
that is quite generic and can likely be improved with studies similar to that in [20].  
The focus of this paper is the design of a complete predictor and therefore a generic 
neural network is sufficient.    



4.6 Predicting Multiple Time Steps  

So far the system has been described as only able to predict one time step into the fu-
ture.  Since the size of a time step has to be small relative to the call length, the pre-
dictor needs to be able to predict farther into the future in order for the prediction to 
be useful to a dCAC scheme.  While it is possible to train a neural network to predict 
for times farther in the future, such a network is required to capture patterns that are 
much more complex than those of a one time step prediction and is thus more difficult 
to create successfully.  Due to this, the multiple time prediction system is designed 
such that only one time step predictions are required.  This is achieved using a recur-
rence relation that defines a prediction of arbitrary time step number as a function of 
previous predictions.  The main idea behind this recurrence relation is that the predic-
tion of some future time step t depends on the prediction of the previous time step t-1,
such that the one step prediction of all the NAPs from t-1 will create the prediction 
sought after for time step t.  The exact recurrence relation is:  

}))((|),{()( 1 TwaFLSneighboursbwbaFLS btbt (2)
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The only information missing in equation 3 is how wb is computed.  There are three 
methods of combining the outputs from multiple NAPs in order to compute wb.  The 
combination method presented in equation 4 represents a method based on the idea of 
voting.  Each NAP in the FLS at time t-1 produces some output confidence value for 
all its direct neighbours.  Then all the output confidence values for a given NAP are 
added up, and if there is enough combined confidence, the NAP in question is in-
cluded in the FLS for time t.  A potential problem with this method is that an error in 
prediction at one time step that produces a large FLS will propagate and create a very 
large FLS from that point on.   

aFLScbcnnow tb 1
(4)

The combination method presented in equation 5 attempts to prevent the potential 
problem with the voting method.  This is done by taking the maximum individual 
confidence value as the confidence value compared to the threshold.  In essence it 
means that there is some NAP that expects the MT to travel to the NAP being pre-
dicted with a confidence that is enough such that the predicted NAP will be included 
in the FLS for time t. 

aFLScbcnnoMaxw tb 1
(5)

The last combination method presented in equation 6 is similar to the way prob-
ability is computed for multiple events.  This method is identical to the voting method 
except it includes a weight on each vote.  This means that the confidence values pro-
duced by each NAP are modified according to the confidence with which the NAP 
was predicted in the previous time step. 
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The threshold value to be used in any of these methods has to be determined ex-
perimentally with regard to each situation the predictor would be used in. 

5 Simulation 

In order to validate the performance of the proposed prediction mechanism, a simula-
tion was performed.  The simulation consists of a number of parts.  The first and un-
derlying part is the mobility model that dictates how users move throughout the net-
work and the structure of the network itself.  For this we chose the activity based 
model as presented in [4].  We modify the network structure however such that there 
are only 16 NAPs as opposed to the original 45.  The network is also constructed such 
that there are two separate clusters divided by a linear structure.  This attempts to 
model two cities connected by a highway, and is intended to represent the different 
types of environments that the predictor may have to be used in.  The number of users 
in the simulation is 1000 and each one of these follows the activity based model.  The 
second part of the simulation is the neural network prediction system.  Six neurons 
were used at the middle layer at each NAP, as this number seemed to be reasonable 
after some initial experimentation. One minute represented one time unit in this simu-
lation.  The lambda parameter used to create the input vector was set at 0.5 in order to 
create a balance between the absolute and relative time spent at every previous NAP.  
The length of the history vector used was 30 time units, or 30 minutes.  The 
neighbourhood depth each NAP is aware of is two levels. The predictor has been 
tested on a 7 minute into the future prediction, and as configured, the mobility model 
allows users to traverse up to three NAPs in the 7 minute interval, thus the two level 
neighbour maps.  The 1000 users were allowed to move around the network for 24 
hours during which training data was gathered.  After this the neural network at each 
NAP was trained with the data collected. The next 100 minutes of the simulation were 
used to test the predictor.  Various threshold values were tested at each NAP to dis-
cover which would provide the best performance.  The range of threshold values 
tested was [0.15, 0.2].  This range was selected as a result of a number of previous 
short experiments. 

5.1 Evaluation Methodology 

Due to the widely varied methods of evaluating mobility prediction mechanisms pre-
sent in current literature [9], [11], [12], [14] and none of these evaluating the type of 
prediction that our system produces, we chose to evaluate our system by comparing it 
to an ideal predictor of the same type as our predictor.  What this means with respect 
to the proposed prediction mechanism is that one and only one NAP should be pre-
dicted for any time step.  This would be the NAP where the MT will actually be con-
nected to at that time.  A predictor that is capable of such accurate prediction is a per-
fect predictor.  We use two numeric parameters to perform this evaluation. The first 



parameter is what’s called a correctness ratio.  This ratio is calculated by comparing 
the number of times the predicted FLS actually contains the NAP that the MT will be 
connected to at the time being predicted to the total number of predictions.  The sec-
ond parameter is the predicted set size.  The smaller the set size, the more accurate 
predictor is, as long as the predicted set contains the real future location of the MT.  It 
is obvious that there is a trade-off between the correctness ratio and the set size.   

6 Results  

Three simulations were performed in total, each one with a different combination 
method for the inter-time step predictions. As stated each prediction was performed 
with a number of thresholds.  The overall prediction performance per threshold was 
then calculated using the correctness ratio and set size parameters.  The aim was to 
see how small the average set size could get given a required correctness ratio.  Figure 
4 shows the smallest average set size per NAP in the network using the different con-
fidence methods for correctness ratio of 0.8.  More results are available but not pre-
sented due to space constraints. Note that when the correctness ratio could not be 
reached, it was assumed that the whole network would have to be included in the FLS 
and therefore the value reflected in the graphs as the FLS size is the size of the net-
work.  In order to gauge the complexity of the patterns that are present at the various 
NAPs, it is important to note that a high number of users were seen in NAPs 5, 7, 8, 9, 
and 16 while the other NAPs only had a low to moderate number of users pass 
through them.  

6.1 Result Analysis 

There is a general trend in all the results that the NAPs encountering a large number 
of unique users are ones where the predictor performs poorly.  This can be seen in 
NAPs 5, 7, 9 10, 16.  NAPs 5, 7, 10 and 16 are NAPs that are frequently visited by 
MTs since they are on the main route in the network (the line from one cluster to the 
other), but are not in an area that would impose strict geographical restrictions such as 
NAP 8, 9.  These represent the highway like scenario that is somewhat one dimen-
sional and thus imposes considerable geographical limits on motion.  We say some-
what represents because MTs can still reach an FLS of size 7 from each of there in the 
7 time steps.  NAPs 8 and 9 would then be expected to have a predictor with better 
performance than the other main-line NAPs.   The outer cluster NAPs would also be 
expected to have a well performing predictor since not as many users are expected to 
pass through them.  In general we see that these expectations are met; however there 
is some unexpected behaviour that happens with each combination method 



With the Voting method, the outer cluster NAPs have predictors that are able to 
achieve quite high correctness ratios with FLS sizes that are reasonably small.  There 
are a few NAPs that can achieve over 80% correctness with an FLS size of only 2 or 
3, and some of these can achieve even higher correctness ratios with such small FLS 
sizes, such as NAPs 4 and 14.  NAP 8 also has a well performing predictor.  The 
NAPs that are expected to have predictors of a lesser performance quality due to their 
geographic location also fall within expectation, these being NAPs 5, 7, 10 and 16. 
NAP 9 was expected to have a predictor comparable in performance to NAP 8, how-
ever this is not the case.  Further investigation into raw data shows that NAP 9’s pre-
dictor is of quality comparable to that of NAPs 5, 7, 10 and 16.  The reason for this in 
unclear but there are a number of explanations discussed later on. 

The maximum method is identical in performance to the voting method; again 
most expectations are met as before.  Further investigation into the result data shows 
that this method does vary slightly in some scenarios, but the close similarity to the 
voting method is intriguing. 

The results for the weighted method are quite different than those of the previous 
two methods, since the predictor seems to work either quite well or not at all.  This 
can be seen when the outer cluster NAPs are considered vs. the NAPs on the main 
line between the two clusters.  Most of the outer cluster NAPs show predictor is with 
very good performance and FLS sizes of less than four.  The main line NAPs and two 
of the outer cluster NAPs (13, 14) however contain predictors that show very poor 
performance.  This suggests that this method is highly sensitive to the pattern com-
plexity present at a location, since the predictions are either very accurate or not accu-
rate at all. 
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6.5 General Comments 

Is clear that the neural net predictor is very successful in certain situations.  It is also 
clear however that there are situations where the performance is unacceptable.  There 
are a number of potential causes of this.  First it is possible that the neural net used is 
simply too small or too simple to be able to capture the complexity of the patterns 
present at those locations.  It’s also possible that there simply are no patterns at those 
locations or the patterns present are very faint.  The possibility is there that the neural 
predictor simply cannot be used in such situations, however the success of the neural 
predictor in other situations would lead us to believe that such a conclusion is prema-
ture and requires more proof.  Although the neural net predictor obviously requires 
more work in order to be successful in the simulated scenario, we feel it is more im-
portant to focus on the development of a mobility model that is more reflective of re-
ality than the one currently used.  The extent of mobility models in research today is 
not sufficient such that a model exists which reflects real mobility in wireless net-
works [8], [11], [13].  Too many mobility models make assumptions that are not real-
istic and have an extreme influence on the performance of mechanisms like ours.   

7 Conclusion 

In this paper we present a mobility predictor that is able to learn and predict connec-
tion patterns of MTs and abstracts completely from user mobility.  The predictor is an 
aggregating predictor, in that it does not keep any per user information but rather fo-
cuses on using a general behaviour exhibited by MTs at a certain location.  This en-
sures user privacy.   

The performance of the predictor was measured using a simulation based on the 
activity based mobility model [4].  Multiple prediction methods were tested and the 
general result was that the prediction mechanism is quite successful in some scenar-
ios, while not successful in others.  While it is possible to tune the predictor for each 
simulated scenario, there is no simulation scenario available that is close enough to 
real mobile networks and thus makes this tuning a marginally useful effort.  Therefore 
the current results are sufficient to conclude that the presented prediction mechanism 
is useful, and further improvements in its performance will need to be made only after 
it has been tested either in a real wireless network or with a simulator that is suffi-
ciently reflective of a real wireless network.   
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