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Abstract. In this paper, we attempt to solve the problem of min-cost multicast 
routing for multi-layered multimedia distribution. More specifically, for (i) a 
given network topology (ii) the destinations of a multicast group and (iii) the 
bandwidth requirement of each destination, we attempt to find a feasible 
routing solution to minimize the cost of a multicast tree for multi-layered 
multimedia distribution. This problem has been proved to be NP-hard. We 
propose two adjustment procedures, namely: the tie breaking procedure and 
the drop-and-add procedure to enhance the solution quality of the modified T-
M heuristic. We also formally model this problem as an optimization problem 
and apply the Lagrangean relaxation method and the subgradient method to 
solve the problem. Computational experiments are performed on regular 
networks, random networks, and scale-free networks. According to the 
experiment results, the Lagrangean based heuristic can achieve up to 23.23% 
improvement compared to the M-T-M heuristic. 

1   Introduction 

Multimedia application environments are characterized by large bandwidth variations 
due to the heterogeneous access technologies of networks (e.g. analog modem, cable 
modem, xDSL, and wireless access etc.) and different receivers’ quality requirements. 
In video multicasting, the heterogeneity of the networks and destinations makes it 
difficult to achieve bandwidth efficiency and service flexibility. There are many 
challenging issues that need to be addressed in designing architectures and 
mechanisms for multicast data transmission [1].  

Unicast and multicast delivery of video are important building blocks of Internet 
multimedia applications. Unicast means that the video stream goes independently to 
each user through point-to-point connection from the source to each destination, and 
all destinations get their own stream. Multicast means that many destinations share 
the same stream through point-to-multipoint connection from the source to every 
destination, thus reducing the bandwidth requirements and network traffic. The 
efficiency of multicast is achieved at the cost of losing the service flexibility of 
unicast, because in unicast each destination can individually negotiate the service 
contract with the source. 



Taking advantage of recent advances in video encoding and transmission 
technologies, either by a progress coder [2] or video gateway [3] [4], different 
destinations can request a different bandwidth requirement from the source, after 
which the source only needs to transmit signals that are sufficient for the highest 
bandwidth destination into a single multicast tree. This concept is called single-
application multiple-stream (SAMS). A multi-layered encoder encodes video data 
into more than one video stream, including one base layer stream and several 
enhancement layer streams. The base layer contains the most important portions of 
the video stream for achieving the minimum quality level. The enhancement layers 
contain the other portions of video stream for refining the quality of the base layer 
stream. This mechanism is similar to destination-initiated reservations and packet 
filtering used in the RSVP protocol [5]. 

The minimum cost multicast tree problem, which is the Steiner tree problem, is 
known to be NP-complete. Reference [6] and [7] surveyed the heuristics of Steiner 
tree algorithms. For the conventional Steiner tree problem, the link costs in the 
network are fixed. However, for the minimum cost multi-layered video multicast tree, 
the link costs are dependent on the set of receivers sharing the link. It is a variant of 
the Steiner tree problem. The heterogeneity of the networks and destinations makes it 
difficult to design an efficient and flexible mechanism for servicing all multicast 
group users.  

Reference [8] discusses the issue of multi-layered video distribution on multicast 
networks and proposes a heuristic to solve this problem, namely: the modified T-M 
heuristic (M-T-M Heuristic). Its goal is to construct a minimum cost tree from the 
source to every destination. However, the reference provides only experimental 
evidence for its performance. Reference [9] extends this concept to present heuristics 
with provable performance guarantees for the Steiner tree problem and proof that this 
problem is NP-hard, even in the special case of broadcasting. From the results, the 
cost of the multicast tree generated by M-T-M heuristics was no more than 4.214 
times the cost of an optimal multicast tree. However, no simulation results are 
reported to justify the approaches in [9]. The solution approaches described above are 
heuristic-based and could be further optimized. Consequently, for multimedia 
distribution on multicast networks, we intend to find the multicast trees that have a 
minimal total incurred cost for multi-layered video distribution. 

In this paper, we extend the idea of [8] for minimizing the cost of a multi-layered 
multimedia multicast tree and propose two more precise procedures (tie-breaking 
procedure and drop-and-add procedure) to improve the solution quality of M-T-M 
heuristic. Further, we formally model this problem as an optimization problem. In the 
structure of mathematics, they undoubtedly have the properties of linear 
programming problems. We apply the Lagrangean relaxation method and the 
subgradient method to solve the problems [10][11]. Properly integrating the M-T-M 
heuristics and the results of Lagrangean dual problems may be useful to improve the 
solution quality. In addition, the Lagrangean relaxation method not only gets a good 
feasible solution, but also provides the lower bound of the problem solution which 
helps to verify the solution quality. We name this method Lagrangean Based M-T-M 
Heuristics.   



The rest of this paper is organized as follows. In Section 2, we describe the detail 
of the M-T-M heuristic and present the evidence that the M-T-M heuristic does not 
perform well under some often seen scenarios. We propose two procedures to 
improve the solution quality. In Section 3, we formally define the problem being 
studied, as well as a mathematical formulation of min-cost optimization is proposed. 
Section 4 applies Lagrangean relaxation as a solution approach to the problem. 
Section 5, illustrates the computational experiments. Finally, in Section 6 we present 
our conclusions and the direction of future research. 

2  Heuristics of Multi-Layered Multimedia Multicasting  

Reference [12] proposes an approximate algorithm named T-M heuristic to deal with 
the Steiner tree problem, which is a min-cost multicast tree problem. The T-M 
heuristic uses the idea of minimum depth tree algorithm (MDT) to construct the tree. 
To begin with, the source node is added to the tree permanently. At each iteration of 
MDT, a node is temporarily added to the tree until the added node is a receiver of the 
multicast group. Once the iterated tree reaches one of the receivers of the multicast 
group, it removes all unnecessary temporary links and nodes added earlier and marks 
the remaining nodes permanently connected to the tree. The depth of the permanently 
connected nodes is then set to zero and the iterations continue until all receivers are 
permanently added to the tree. In [8], the author gives examples of the performance 
of the T-M heuristic and shows that in some cases the T-M heuristic does not achieve 
the optimum tree.  

 Reference [8] modified the T-M heuristic to deal with the min-cost multicast tree 
problem in multi-layered video distribution. For multi-layered video distribution, 
which is different from the conventional Steiner tree problem, each receiver can 
request a different quality of video. This means that each link’s flow of the multicast 
tree is different and is dependent on the maximum rate of the receiver sharing the link. 
The author proposes a modified version of the T-M heuristic (M-T-M heuristic) to 
approximate the minimum cost multicast tree problem for multi-layered video 
distribution. 

The M-T-M heuristic separates the receivers into subsets according to the 
receiving rate. First, the M-T-M heuristic constructs the multicast tree for the subset 
with the highest rate by using the T-M heuristic. Using this initial tree, the T-M 
heuristic is then applied to the subsets according to the order of receiving rate from 
high to low. For further details of the M-T-M heuristic, please refer to reference [8]. 

2.1   Some Scenarios of the Modified T-M Heuristic 

In most networks, the performance of the Modified T-M heuristic is better than the T-
M heuristic in multi-layered video multicasting. But, in some scenarios, we have 
found that the M-T-M does not perform well. 



Consider the network in Figure 1 with node 1 as the source and nodes 3 and 4 as 
the destinations requiring rates 2 and 1, respectively. Assume the base costs of all 
links are the same, which is 1.  First, the M-T-M heuristic separates the receivers into 
two subsets, one for rate 1 and the other for rate 2. It then runs a MDT algorithm such 
as Dijkstra algorithm to construct the tree with the highest rate subset. At Step 4, the 
T-M heuristic reaches the destination with the highest rate and removes all 
unnecessary intermediate links. After setting the depth of the permanently connected 
nodes to zero, it continues the search process for the other destinations. At Step 5, the 
M-T-M heuristic tree is found and the sum of the link costs is 5. But the sum of the 
link costs for the optimum tree shown is 4. 

 
Fig. 1. Example of the M-T-M heuristic for multi-layered distribution with constant link cost. 

 
Fig. 2. Example of the M-T-M heuristic for multi-layered distribution with arbitrary link cost. 

Consider the other network in Figure 2 with node 1 as the source and nodes 2 and 
4 as the destinations requiring rates 1 and 2, respectively. The link costs are indicated 
by the side of the links.  At Step 6, the M-T-M heuristic tree is found and the sum of 
the link costs is 11. But, the sum of the link costs for the optimum tree shown is 10. 



2.2   Enhanced Modified T-M Heuristic  

With reference to the above scenarios, we propose two adjustment procedures to 
improve the solution performance. The first one is the tie breaking procedure, which 
is used to handle the node selection when searching the nearest node within the M-T-
M heuristic. The second is the drop and add procedure, which is used to adjust the 
multicast tree resulting from the M-T-M heuristic in order to reach a lower cost. 

Tie Breaking Procedure.   For the MDT algorithm, ties for the nearest distinct node 
may be broken arbitrarily, but the algorithm must still yield an optimal solution. Such 
ties are a signal that there may be (but need not be) multiple optimal solutions. All 
such optimal solutions can be identified by pursuing all ways of breaking ties to their 
conclusion. However, when executing the MDT algorithm within the M-T-M 
heuristic, we found that the tie breaking solution will influence the cost of the 
multicast tree.  For example in Figure 2, the depth of nodes 2 and 4 is the same and is 
minimal at Step 1. The tie may therefore be broken by randomly selecting one of 
them to be the next node to update the depth of all the vertices. In general, we choose 
the node with the minimal node number within the node set of the same minimal 
depth for implementation simplicity. Although we choose node 1 as the next node to 
relax, node 2 is the optimal solution. 

We propose a tie breaking procedure to deal with this situation. When there is a 
tie, the node with the largest requirement should be selected as the next node to join 
the tree. The performance evaluation will be shown in section 5. 

Drop and Add Procedure.  The drop and add procedure we propose is an 
adjustment procedure to adjust the initial multicast tree constructed by M-T-M 
heuristic. Nevertheless, redundantly checking actions may cause a serious decline in 
performance, even if the total cost is reduced. Therefore, we consider the most useful 
occurrence to reduce the total cost and control the used resources in an acceptable 
range. The details of procedures are: 

1. Compute the number of hops from the source to the destinations. 
2. Sort the nodes in descending order according to {incoming traffic/its own 

traffic demand}. 
3. In accordance with the order, drop the node and re-add it to the tree. Consider 

the following possible adding measures and set the best one to be the final tree. 
Either adds the dropping node to the source node, or to other nodes having the 
same hop count, or to the nodes having a hop count larger or smaller by one.  

3   Problem Formulation 

3.1   Problem Description 

The network is modeled as a graph where the switches are depicted as nodes and the 
links are depicted as arcs. A user group is an application requesting transmission in 



this network, which has one source and one or more destinations. Given the network 
topology, the capacity of the links and bandwidth requirement of every destination of 
a user group, we want to jointly determine the following decision variables: (1) the 
routing assignment (a tree for multicasting or a path for unicasting) of each user 
group; and (2) the maximum allowable traffic rate of each multicast user group 
through each link. 

By formulating the problem as a mathematical programming problem, we intend 
to solve the issue optimally by obtaining a network that will enable us to achieve our 
goal, i.e. one that ensures the network operator will spend the minimum cost on 
constructing the multicast tree. The notations used to model the problem are listed in 
Table 1. 

Table 1. Description of Notations 

Given Parameters 
Notation Description 

la  Transmission cost associated with link l 

gdα  Traffic requirement of destination d of multicast group g 
G  The set of all multicast groups 
V  The set of nodes in the network 
L  The set of links in the network 

gD  The set of destinations of multicast group g 

gh  
The minimum number of hops to the farthest destination node in multicast 
group g 

vI  The incoming links to node v 

gr  The multicast root of multicast group g 

gr
I

 The incoming links to node gr  

gdP  The set of paths destination d of multicast group g may use 

plδ  The indicator function which is 1 if link l is on path p and 0 otherwise 
Decision Variables 

Notation Descriptions 

gpdx  1 if path p is selected for group g destined for destination d and 0 otherwise 

gly  
1 if link l is on the subtree adopted by multicast group g and 0 
Otherwise 

glm  The maximum traffic requirement of the destinations in multicast group g 
that are connected to the source through link l 

3.2   Mathematical Formulation 

According to the problem description in pervious section, the min-cost problem is 
formulated as a combinatorial optimization problem in which the objective function is 
to minimize the link cost of the multicast tree. Of course a number of constraints must 
be satisfied.  
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The objective function of (1) is to minimize the total transmission cost of servicing 

the maximum bandwidth requirement destination through a specific link for all 
multicast groups G, where G is the set of user groups requesting connection. The 
maximum bandwidth requirement on a link in the specific group mgl can be viewed so 
that the source would be required to transmit in a way that matches the most 
constrained destination. 

Constraint (2) is referred to as the capacity constraint, where the variable mgl can 
be interpreted as the “estimate” of the aggregate flow. Since the objective function is 
strictly an increasing function with mgl and (1) is a minimization problem, each mgl 
will equal the aggregate flow in an optimal solution. Constraint (3) is a redundant 
constraint which provides upper and lower bounds on the maximum traffic 
requirement for multicast group g on link l. Constraints (4) and (5) require that the 
number of links on the multicast tree adopted by the multicast group g be at least the 
maximum of hg and the cardinality of Dg. The hg and the cardinality of Dg are the 
legitimate lower bounds of the number of links on the multicast tree adopted by the 
multicast group g. Constraint (6) is referred to as the tree constraint, which requires 
that the union of the selected paths for the destinations of user group g forms a tree. 
Constraints (7) and (8) are both redundant constraints. Constraint (7) requires that the 
number of selected incoming links ygl to node is 1 or 0, while constraint (8) requires 
that there are no selected incoming links ygl to the node that is the root of multicast 
group g. As a result, the links we select can form a tree. Finally, constraints (9) and 
(10) require that only one path is selected for each multicast source-destination pair. 



4   Solution Approach 

4.1   Lagrangean Relaxation 

Lagrangean methods were used in both the scheduling and the general integer 
programming problems at first. However, it has become one of the best tools for 
optimization problems such as integer programming, linear programming 
combinatorial optimization, and non-linear programming [10][11].  

The Lagrangean relaxation method permits us to remove constraints and place 
them in the objective function with associated Lagrangean multipliers instead. The 
optimal value of the relaxed problem is always a lower bound (for minimization 
problems) on the objective function value of the problem. By adjusting the multiplier 
of Lagrangean relaxation, we can obtain the upper and lower bounds of this problem. 
The Lagrangean multiplier problem can be solved in a variety of ways. The 
subgradient optimization technique is possibly the most popular technique for solving 
the Lagrangean multiplier problem [10] [13]. 

By using the Lagrangean Relaxation method, we can transform the primal problem 
(IP) into the following Lagrangean Relaxation problem (LR) where Constraints (2) 
and (6) are relaxed. For a vector of non-negative Lagrangean multipliers, a 
Lagrangean Relaxation problem of (1) is given by 

Optimization problem (LR): 
( , ) min   

                          
g gd g

g gd

D l gl gdl gpd gd pl gdl gl
g G l L g G d D l L p P g G d D l L
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          (11) 

subject to: (3) (4) (5) (7) (8) (9) (10). 
Where βgdl, θgl are Lagrangean multipliers and βgdl, θgl ≥0. To solve (11), we can 

decompose (11) into the following three independent and easily solvable optimization 
subproblems. 
Subproblem 1: (related to decision variable xgpd) 

1( , ) min  [ ( )]
g gd

Sub pl gdl gd gl gpd
g G d D p P l L

Z xβ θ δ β α θ
∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑  
(12) 

subject to: (9) (10). 
Subproblem 1 can be further decomposed into |G||Dg| independent shortest path 

problems with nonnegative arc weights. Each shortest path problem can be easily 
solved by Dijkstra’s algorithm. 

Subproblem 2: (related to decision variable ygl) 

2 ( ) min  ( )Sub gl g gl
g G l L

Z D yθ θ
∈ ∈

= −∑∑  (13) 

subject to: (4) (5) (7) (8). 
The algorithm to solve Subproblem 2 is: 

Step 1 Compute max{hg, |Dg|} for multicast group g. 
Step 2 Compute the number of negative coefficients (-θgl |Dg|) for all links in 

the multicast group g. 



Step 3 If the number of negative coefficients is greater than max{hg, |Dg|} for 
multicast group g, then assign the corresponding negative coefficient 
of ygl to 1 and 0 otherwise. 

Step 4 If the number of negative coefficients is no greater than max{hg, |Dg|} 
for multicast group g, assign the corresponding negative coefficient 
of ygl to 1. Then, assign [max{hg, |Dg|}− the number of positive 
coefficients of ygl] numbers of the smallest positive coefficient of ygl  
to 1 and 0 otherwise. 

Subproblem 3: (related to decision variable mgl) 

3 ( ) min  ( )
g

Sub l gdl gl
g G l L d D

Z a mβ β
∈ ∈ ∈

= −∑∑ ∑  
(14) 

subject to: (3). 
We decompose Subproblem 3 into |L| independent problems. For each link  l L∈ :  

3.1( ) min  ( )
g

Sub l gdl gl
g G d D

Z a mβ β
∈ ∈

= −∑ ∑  
(15) 

subject to: (3).  
The algorithm to solve (15) is:  

Step 1 Compute                           for link l of multicast group g. 
Step 2 If          is negative, assign the corresponding mgl to the 

maximum traffic requirement in the multicast group, otherwise 
assign the corresponding mgl to 0. 

According to the weak Lagrangean duality theorem [13], for any βgdl, θgl ≥0, 
ZD(βgdl, θgl) is a lower bound on ZIP. The following dual problem (D) is then 
constructed to calculate the tightest lower bound. 

Dual Problem (D): 
Dmax ( , )D gdl glZ Z β θ=  (16) 

subject to: 
βgdl, θgl ≥0 

There are several methods for solving the dual problem (16). The most popular is 
the subgradient method, which is employed here [14]. Let a vector s be a subgradient 
of ZD(βgdl, θgl).  Then, in iteration k of the subgradient optimization procedure, the 
multiplier vector is updated by ωk+1=ωk+tksk. The step size tk is determined by  
tk=δ(Zh

IP – ZD(ωk))/||sk||2. Zh
IP is the primal objective function value for a heuristic 

solution (an upper bound on ZIP). δ is a constant and 0< δ  ≤ 2. 

4.2   Getting Primal Feasible Solutions 

After optimally solving the Lagrangean dual problem, we get a set of decision 
variables. However, this solution would not be a feasible one for the primal problem 
since some of constraints are not satisfied. Thus, minor modification of decision 
variables, or the hints of multipliers must be taken, to obtain the primal feasible 
solution of problem (IP). Generally speaking, the better primal feasible solution is an 
upper bound (UB) of the problem (IP), while the Lagrangean dual problem solution 

g
l dgld D

a β
∈

−∑
g

l dgld D
a β

∈
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guarantees the lower bound (LB) of problem (IP). Iteratively, by solving the 
Lagrangean dual problem and getting the primal feasible solution, we get the LB and 
UB, respectively. So, the gap between UB and LB, computed by (UB-LB)/LB*100%, 
illustrates the optimality of problem solution. The smaller gap computed, the better 
the optimality. 

To calculate the primal feasible solution of the minimum cost tree, the solutions to 
the Lagrangean Relaxation problems are considered. The set of xgpd obtained by 
solving (12) may not be a valid solution to problem (IP) because the capacity 
constraint is relaxed. However, the capacity constraint may be a valid solution for 
some links.  Also, the set of ygl obtained by solving (13) may not be a valid solution 
because of the link capacity constraint and the union of ygl may not be a tree. 

Here we propose a comprehensive, two-part method to obtain a primal feasible 
solution. It utilized a Lagrangean based modified T-M heuristic, followed by 
adjustment procedures. While solving the Lagrangean relaxation dual problem, we 
may get some multipliers related to each OD pair and links. According to the 
information, we can make our routing more efficient. We describe the Lagrangean 
based modified T-M heuristic below. 

[Lagrangean based modified T-M heuristic] 
Step 1 Use                          as link l’s arc weight and run the M-T-M heuristic. 
Step 2 After getting a feasible solution, we apply the drop-and-add procedure 

described earlier to adjust the result. 

Initially, we set all of the multipliers to 0, so we will get the same routing decision 
as the M-T-M heuristics followed by the drop-and-add procedure at the first iteration. 

5   Computational Experiments 

In this section, computational experiments on the Lagrangean relaxation based 
heuristic and other primal heuristics are reported. The heuristics are tested on three 
kinds of networks- regular networks, random networks, and scale-free networks. 
Regular networks are characterized by low clustering and high network diameter, and 
random networks are characterized by low clustering and low diameter. The scale-
free networks, which are power-law networks, are characterized by high clustering 
and low diameter. Reference [15] shows that the topology of the Internet is 
characterized by power laws distribution. The power laws describe concisely skewed 
distributions of graph properties such as the node degree.  

Two regular networks shown in Figure 3 are tested in our experiment. The first 
one is a grid network that contains 100 nodes and 180 links, and the second is a 
cellular network containing 61 nodes and 156 links. Random networks tested in this 
paper are generated randomly, each having 500 nodes. The candidate links between 
all node pairs are given a probability following the uniform distribution. In the 
experiments, we link the node pair with a probability smaller than 2%. If the 
generated network is not a connected network, we generate a new network. 

g
l dgld D

a β
∈

−∑



 
Fig. 3. Regular Networks 

Reference [16] shows that the scale-free networks can arise from a simple dynamic 
model that combines incremental growth with a preference for new nodes to connect 
to existing ones that are already well connected. In our experiments, we applied this 
preferential attachment method to generate the scale-free networks. The 
corresponding preferential variable (m0, m) is (2, 2). The number of nodes in the 
testing networks is 500. 

For each testing network, several distinct cases, which have different pre-
determined parameters such as the number of nodes, are considered. The traffic 
demands for each destination are drawn from a random variable uniformly distributed 
in pre-specified categories {1, 2, 5, 10, 15, 20}. The link costs are randomly 
generated between 1 and 5. The cost of the multicast tree is decided by multiplying 
the link cost and the maximum bandwidth requirement on a link. We conducted 2,000 
experiments for each kind of network. For each experiment, the result was 
determined by the group destinations and link costs generated randomly. Table 2 
summaries the selected results of the computational experiments.  

In general, the results of LR are all better than the M-T-M heuristic (MTM), the 
M-T-M heuristic with tie breaking procedure (TB), and the M-T-M heuristic followed 
by drop-and-add procedure (DA). This is because we get the same solution as the M-
T-M heuristic at the first iteration of LR. For each testing network, the maximum 
improvement ratio between the M-T-M heuristic and the Lagrangean based modified 
T-M heuristic is 16.18 %, 23.23%, 10.41 %, and 11.02%, respectively. To claim 
optimality, we also depict the percentile of gap in Table 2. The results show that 60% 
of the regular and scale free networks have a gap of less than 10%, but the result of 
random networks show a larger gap. However, we also found that the M-T-M 
heuristic perform well in many cases, such as the case D of grid network and case D 
of random network.  

According to the experiments results, we found that the tie breaking procedure we 
proposed is not uniformly better than random selection. For example, the case H of 
cellular network, the performance of M-T-M (1517) is better than TB (1572). 
Consequently, we suggest that in practice we can try both tie breaking methods 
(randomly select or the method we proposed), and select the better result. The 
experiments results also show that the drop and add procedure does reduce the cost of 
the multicast tree.  



Table 2. Selected Results of Computational Experiments 

CASE Dest. # M-T-M TB DA UB LB GAP Imp. 
       Grid Network Max Imp. Ratio: 16.18 % 

A 5 332 330 332 290 286.3714 1.27% 14.48% 
B 5 506 506 506 506 503.6198 0.47% 0.00% 
C 10 158 153 148 136 123.1262 10.46% 16.18% 
D 10 547 547 547 547 541.8165 0.96% 0.00% 
E 20 522 507 502 458 397.8351 15.12% 13.97% 
F 20 1390 1405 1388 1318 1206.235 9.27% 5.46% 
G 50 2164 2229 2154 1940 1668.448 16.28% 11.55% 
H 50 759 700 759 693 588.3226 17.79% 9.52% 

       Cellular Network Max Imp. Ratio: 23.23 % 
A 5 182 167 172 167 160.4703 4.07% 8.98% 
B 5 119 119 119 109 105.9671 2.86% 9.17% 
C 10 194 185 190 180 156.9178 14.71% 7.78% 
D 10 174 174 170 150 138.0774 8.63% 16.00% 
E 20 382 349 382 310 266.1146 16.49% 23.23% 
F 20 815 800 811 756 689.6926 9.61% 7.80% 
G 50 602 595 602 567 479.9626 18.13% 6.17% 
H 50 1517 1572 1503 1357 1187.332 14.29% 11.79% 

       Random Networks Max Imp. Ratio: 10.41 % 
A 5 107 107 107 107 94.70651 12.98% 0.00% 
B 5 88 88 88 86 74.63349 15.23% 2.27% 
C 10 170 170 170 170 134.6919 26.21% 0.00% 
D 10 123 125 123 123 97.90988 25.63% 0.00% 
E 20 317 317 317 284 221.2635 28.35% 10.41% 
F 20 226 216 226 216 168.0432 28.54% 4.42% 
G 50 850 860 850 806 558.5077 44.31% 5.18% 
H 50 702 715 702 690 446.9637 54.37% 1.71% 

       Scale-Free Networks  Max Imp. Ratio: 11.02 % 
A 5 82 82 82 82 78.35047 4.66% 0.00% 
B 5 79 75 75 75 73.70663 1.75% 5.33% 
C 10 210 210 210 208 196.3969 5.91% 0.96% 
D 10 528 528 528 506 505.4039 0.12% 4.35% 
E 20 886 896 886 854 770.9776 10.77% 3.75% 
F 20 1068 1050 1022 962 920.2371 4.54% 11.02% 
G 50 1869 1871 1869 1754 1502.061 16.77% 6.56% 
H 50 1911 1946 1911 1891 1598.817 18.27% 1.06% 

TB: The result of the modified T-M heuristic with the tie breaking procedure 
DA: The result of the modified T-M heuristic followed by the drop-and-add procedure 
UB and LB: Upper and lower bounds of the Lagrangean based modified T-M heuristic 
GAP: The error gap of the Lagrangean relaxation 
Imp.: The improvement ratio of the Lagrangean based modified T-M heuristic  

6   Conclusions 

In this paper, we attempt to solve the problem of min-cost multicast routing for multi-
layered multimedia distribution. Our achievement of this paper can be expressed in 
terms of mathematical formulation and experiment performance. In terms of 
formulation, we propose a precise mathematical expression to model this problem 



well. In terms of performance, the proposed Lagrangean relaxation and subgradient 
based algorithms outperform the primal heuristics (M-T-M heuristic). According to 
the experiment results, the Lagrangean based heuristic can achieve up to 23.23% 
improvement compared to the M-T-M heuristic. We also propose two adjustment 
procedures to enhance the solution quality of the M-T-M heuristic. 

Our model can also be easily extended to deal with the constrained multicast 
routing problem for multi-layered multimedia distribution by adding capacity and 
delay constraints. Moreover, the min-cost model proposed in this paper can be 
modified as a max-revenue model, with that objective of maximizing total system 
revenues by totally, or partially, admitting destinations into the system. These issues 
will be addressed in future works. 
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