
A Performance-oriented Management

Information Model for the Chord Peer-to-peer
Framework

Guillaume Doyen, Emmanuel Nataf, and Olivier Festor

The Madyne Research Team
LORIA, 615 rue du Jardin Botanique

54602 Villers-lès-Nancy, France
Guillaume.Doyen@loria.fr

Abstract. In this paper we propose an abstract model dedicated to the
performance management of the Chord peer-to-peer framework. It cap-
tures information about a Chord community, the associated resources,
the participating elements, as well as the global performance of the in-
stantiated services. Our model enables the evaluation of the global health
state of a Chord community and to act consequently.

1 Introduction

Chord [1] is a lookup protocol dedicated to Internet applications that need to
discover any type of resources (files, CPU, services, . . .) maintained by users
that form a Chord community. It provides an elementary service: for a given
key, Chord returns a node identifier that is responsible for hosting or locating
the resource. Chord is deployed in several applications: CFS (Collaborative File
System) [2] which is an Internet scale distributed file system, ConChord [3] which
uses CFS to provide a distributed framework for the delivery of SDSI (Simple
Distributed Security Infrastructure) security certificates and finally DDNS (Dis-
tributed DNS) [4] that proposes a P2P implementation of the DNS (Domain
Name Service).

Chord offers performance levels in terms of load balancing, consistency and
average path length for requests routing. In order to ensure such a performance, it
executes dedicated services. However, the performance, as perceived by applica-
tions, highly relies on the conditions of the underlying network and the behavior
the various and heterogeneous participants. To include these constraints in the
evaluation, a performance measurement framework needs to be in place.

In this article, we propose a performance-oriented model for the Chord frame-
works. We have chosen this particular P2P system among others (e.g. CAN,
Pastry, Tapestry, D2B, Viceroy, . . .) mainly because an implementation is avail-
able. In a general way, the information model we propose provides a manager
with an abstract view of a Chord community, the participating nodes, the shared
resources and the different instantiated services. Our model focuses on the per-
formance aspect of the framework and, to reach this objective, we specify a set

of metrics that feature the Chord framework in terms of service performance,
ring consistency and node’s equity. This model is built on a previous work that
provides a general information model for the management of P2P networks and
services [5]. In addition to the embedded features of the Chord framework, having
an abstract view of a Chord community, being able to evaluate its global perfor-
mance, and having the possibility to react consequently, is a major step toward
providing a P2P infrastructure aware of Quality of Service (QoS) constraints.

The paper is organized as follows: section 2 provides an overview of the
P2P discipline and its management. Then, section 3 presents the Chord P2P
framework and its properties. The definition of performance metrics and criteria
is addressed in section 4 and the proposed information model is presented in
section 5. A summary of the contribution is given in section 6 and future work
is outlined.

2 Related Works

Peer-to-peer (P2P) networking is built on a distributed model where peers are
software entities which both play the role of client and server. Today, the most
famous application domain of this model concerns the file sharing with appli-
cations like E-mule, Napster, Gnutella and Kazaa among others. However, the
P2P model also covers many additional domains [6] like distributed comput-
ing (Seti@Home [7], the Globus Project [8]), collaborative work (Groove, Magi)
and instant messaging (JIM [9]). To provide common grounds to all these ap-
plications, some middleware infrastructures propose generic frameworks for the
development of P2P services (Jxta, Anthill [10], FLAPPS).

While some applications use built-in incentives as a minimal self management
feature [11], advanced management services are required for enterprise oriented
P2P environments. The latter are the focus of our attention and deserve the
availability of a generic management framework.

The first step toward this objective has consisted in designing a generic man-
agement information model for P2P networks and services that can be used
by any management application as a primary abstraction. The work we have
done in this direction has led to a model [5] that aims at providing a general
management information model, that addresses the functional, topological and
organizational aspects for such a type of application.

We have chosen CIM [12], [13] as the framework for the design of our generic
P2P information model because of its richness in terms of classes covering several
domains of computing that can be easily reused and extended.

The model we have designed covers several aspects of the P2P domain. First
it deals with the notion of peer and its belonging to one or several commu-
nities. A particular association class allows the link of peers together in order
to establish a virtual topology. One may note that, according to the context,
different criteria can be considered to link two peers; for example, it can be
based on knowledge, routing, interest or technological considerations. Then, our
model features the available resources in a community and especially the ones

shared by its composing peers. We particularly address the fact that a resource
can be spread in a community and thus (1) we differentiate owners and hosts
of shared resources and (2) we split resources into physical (e.g. the chunk of a
file on a file system) and logical ones (the aggregation of the different chunks).
Moreover, these latter are consumed or provided in the context of services that
is the fourth aspect of our model. Indeed, a P2P service is a basic functionality
that is distributed among a set of participating peers; thus our model enables
the global view of a service as well as the local one. Finally, we have identified
particular basic services offered by any P2P framework; it concerns, for exam-
ple, the way packets are routed in a P2P environment of an overlay type. We
have thus modeled routing and forwarding services and the routing tables they
generate or use.

In this way, our CIM extension for P2P networks and services provides an
abstract view of a P2P network as well as the deployed services located in a
manageable environment.

3 Chord

Chord is a framework that aims at providing routing and discovery mechanisms
in a P2P environment. It is built on a ring topology in which nodes know their
predecessor and successor. A consistent hash method generates a key for each
node from its IP address. Then, each node is located in a ring in order to ar-
range keys in an increasing order. Each Chord node ni is responsible for the
]predecessor(ni),ni] range of keys.

Lookup(K54)

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56 K54
Lookup(K54)

N1

N8

N14

N21

N32
N38

N42

N48

N51

N56 K54

Finger table

N8+1 N14
N8+2 N14
N8+4 N14
N8+8 N21
N8+16 N32
N8+32 N42

(a) (b)

Fig. 1. Extract from [1].(a) Request routing by following the ring topology. (b) Request
routing through fingers.

Consider a NT nodes ring. The routing tables maintained by each node ni

will contain about O((log2 NT)2) entries. Indeed, if the simple knowledge of

its predecessor and next node enables the construction of a ring topology, it has
poor performance in terms of number of nodes that enter the routing of requests;
Figure 1.a illustrates this kind of problem on a ring containing 10 nodes that
uses a [0, 64[range of addresses. One can see that a request for k54 initiated by
node n8 will be routed in 8 hops.

In order to solve this problem, for a key domain comprised in the [0, 2m[
interval, each node ni maintains a routing entry towards nodes, called fingers
that own the successor(ni+2k−1) identifier (with 1 ≤ k ≤ m). Thus the number
of node involved in a request routing is about O(log2 NT). Figure 1.b shows that
with finger tables, the same request for key k54 is routed in 3 hops.

4 Metrics for the Chord Performance Monitoring

Chord announces performance guarantees in agreement with its main core prin-
ciples: the distribution of nodes in a ring topology, the use of a finger table, a
consistent hash for nodes and keys, and the regular execution of a stabilization
process. These concepts are claimed as providing an embedded way of ensuring
a good service operation of the framework.

Nevertheless there is no way to monitor a Chord ring and to know the health
state of such a P2P community. In order to allow a potential manager to evalu-
ate the current Chord performance, we have defined several metrics. These are:
the ring dynamics, the discovery performance, the node’s equity and the ring
consistency. By enabling a manager to monitor a Chord ring and to react conse-
quently, we aim at providing a P2P framework that can effectively ensure QoS
specifications on varying condition in the network.

To express our performance metrics, we introduce the following variables:

NMAX : The upper bound for identifying nodes and keys. We assume the Chord
hash method will generate identifier contained in the [0, NMAX [range. More-
over, all Chord operations are done modulo NMAX ;

ni: a node with the i identifier.
N : the set of nodes ni that are currently present in a ring, with N = {ni}.
NT : the total number of nodes in a Chord ring, with NT = Card(N).
ki: a key with the i identifier;
Ki: the number of keys the node ni is responsible for, with

Ki = Card({kj}) with id(pred(ni)) ≤ j ≤ i.
KT : the total number of keys currently stored in the ring, with KT =

∑
i∈N Ki.

K: the average number of keys per node, with: K = KT

NT

4.1 Measuring the Ring Dynamics

In order to make Chord performance measurements meaningful, we have to
present them in their execution context. Indeed, due to dynamic phenomena,
performance of Chord may vary strongly. Thus, we have defined metrics for
measuring the ring stability.

The two elements that are submitted to dynamics are nodes and keys. Nodes
can join and leave a ring in an unpredictable way while keys can dynamically
be inserted or removed, or migrate in order to ensure their persistency. Thus
for these two elements we have featured (1) their mean time of stability and (2)
their change frequency.

Concerning the nodes, we assume that the arrival and departure times are
known. For a particular node, all its joining and leaving operations will be stored
in a log. Thus we can easily determine its mean time of presence in the ring.

Moreover, in a global way, we propose to evaluate the current arrival and
departure frequency with the relations 1 and 2. Whenever a node joins or leaves
the ring, the current time is first collected to update the JoinFrequency and
LeaveFrequency indicators and then is stored in the corresponding last time
variable.

JoinFrequency =
1

CurrentT ime − LastArrivalT ime
(1)

LeaveFrequency =
1

CurrentT ime − LastDepartureT ime
(2)

Finally, the global presence mean time is calculated by considering a temporal
range T . The size of this range is determined according to the context1. For all
the nodes, all the collected presence times that are contained in this range will
be averaged in order to provide a global presence mean time of nodes. Equation
3 calculates it.

PresenceMeanT ime =

∑
i∈N

∑
t∈Ti

t
∑

i∈N Card(Ti)
with (3)

T : the considered range of time. T = [TBegin, TEnd].
Ti: the set of presence time records for ni in range T .

Ti = {t | t = (TDeparture − TArrival); TDeparture, TArrival ∈ T }
Now concerning the keys, we have collected the same type of values, which

allows us to determine the global InsertionFrequency, MigrationFrequency
and RemovalFrequency of keys.

To conclude, the metrics defined in this section allow a manager to be aware
of the dynamics of a Chord community. This evaluation is crucial because it
allows all the following performance measurements to be analyzed in a particular
context of dynamics, which gives them all the more sense.

4.2 Measuring the Discovery Performance

One of the core concepts of the Chord framework is the use of finger tables. It
provides a good and stable performance on the average number of hops required
to route discovery messages. Chord claims that this average is about O(log2 NT).
1 it may be since the last hour, day, month, . . .

We have chosen to monitor this crucial value for several reasons. First, it
enable the manager to confirm that Chord respects the announced performance.
Then, it is a meaningful indicator of the good state of the ring. Indeed, a sig-
nificant increase of this value will indicate a problem of stability or consistency
that must be due to important join or leave operations of nodes. Thus, for a
manager, applying a threshold that can launch an alarm may be useful.

The way we propose to concretely evaluate this value is described in Equation
4. For each node ni, we define the following metrics:

NInitiatedRequestsi: The total number of discovery requests that the consid-
ered node has initiated;

NForwardedRequestsi: The total number of requests that the considered node
has received and forwarded to another node;

NReceivedRequestsi: The total number of requests destined to the considered
node.

Then, we sum each of these metrics and deduce the real average number of
hops per request. This value may be compared to the theoretical 1

2 log2 NT .

AveragePathLength =

∑
i∈N

NReceivedRequestsi +
∑

i∈N
NForwardedRequestsi∑

i∈N
NInitiatedRequestsi

(4)

By this way, we are able to monitor the performance of the discovery service
that is the main function provided by the Chord framework and the only visible
to a user.

4.3 Measuring the Nodes Equity

Contrary to the client/server model, the P2P one is a model where resources
are distributed. This feature improves the load-balancing and enables the equity
between all the participants. Moreover, it avoids any bottleneck that would con-
centrate the traffic and stand for central points of failure. In the case of Chord,
ensuring a well balanced distribution of the keys among the different partici-
pating nodes is essential to guaranty a good performance of the system. In the
opposite case, if some nodes host the major part of the keys, the Chord perfor-
mance would collapse due to the too strong solicitation of these nodes; finally,
the ring would tend to operate in a client/server way with nodes that are not
dedicated to this task.

From this point, we have established a metric that can evaluate the distribu-
tion of the keys among the nodes. Chord claims that each node will be responsible
for no more that (1+ε)K keys and we propose to monitor this value. As shown in
Equation 5, it consists in evaluating the variance of the key repartition in a ring.
For each node ni, we consider difference between the current hosted number of
keys and the ideal average value and average this value on the whole ring.

NodesEquity% = 1 − 1
KT

∑

i∈N

� | Ki − K | � (5)

The node’s equity measurement is a useful indicator of the keys distribution
in a Chord ring. This knowledge, added to the average number of keys per
node and the effective number of keys a node hosts, indicates precisely any ring
unbalance and we may imagine that, in this case, a manager could assign new
nodes identifier and so redistribute the keys in order to improve the ring balance.

4.4 Measuring the Ring Consistency

The performance guarantees announced by Chord concerning the lookup service
are respected if the ring is consistent. In case of an inconsistency, performance
will collapse and the number of hops involved in request routing may increase
from O(log2 NT) to O(NT). To monitor the ring consistency, we have used the
constraints defined in [1]. These are:

– Constraint 1 Consistence of the immediate successor relations. This con-
straint is completed if, given the current presence of nodes in the ring, each
node is effectively the predecessor of its successor.

– Constraint 2 Consistence of the successors lists. Each node maintains a
list of the k first successor in the ring. The constraint is completed if, given
the current presence of nodes in the ring, (1) the lists maintained by each
node effectively contain the immediate successors and (2) these successors
are available.

– Constraint 3 Consistence of the finger tables. This constraint is completed
if, given the current presence of nodes in the ring, for each node ni, a finger
(1) matches the following relation successor(ni + 2k−1), where 1 ≤ k ≤ m
and (2) is available.

We consider a Chord ring is consistent if each of the above constraints are
completed. In order to enable a manager to evaluate the consistency of a ring,
each node must make information about its successor, its successor list and its
finger table, available.

Concerning the management data, we have defined several elements to in-
dicate the ring consistency. Locally, we have defined four boolean values that
can inform the node of the consistency of its information. These boolean values
will be evaluated by a manager and pushed in the MIB of the concerned node.
Consider a node ni. The first value, named IsConsistenti, deals with the global
consistency of the node; it is true if the constraints 1, 2 and 3 are completed.
The next three, named SuccessorIsConsistenti, SuccessorListIsConsistenti
and FingerTableIsConsistenti inform about the respect of constraints 1, 2 and
3 respectively.

Now, considering the global consistency of a ring, we have defined the Is-
GloballyConsistent boolean value that indicates if the ring is consistent, with:

IsGloballyConsistent =
∧

i∈N

IsConsistenti (6)

Then, as shown in Relation 7, to have a more precise estimation of the ring
consistency, we have defined a percentage value that indicates the consistency
level. The valueOf function returns 1 when the IsConsistenti value is set to
true and 0 otherwise.

GloballyConsistencyLevel% =
1

NT

∑

i∈N

valueOf(IsConsistenti) (7)

Lastly, in order to help a manager to locate a consistency problem, we have
defined, for each node, a counter that references the number of times the con-
sidered node is badly referenced by others ones.

To conclude, the different local and global consistency indicators enable a
manager to be aware of the good state of a ring. From this point, in case of
inconsistency one may envisage several management actions like stopping the
current forwarding of requests, forcing the execution of the stabilization pro-
cess on some nodes that present obsolete knowledge and finally let the stopped
request go on.

5 A Chord Information Model

Given our objective of Chord global model and the preceding performance mea-
surement definitions, we propose a management model for Chord that is perfor-
mance-oriented. It lies on a generic model for P2P networks and services that
we have designed. The following sections present our Chord model and the way
we have applied the preceding theoretical metrics to it.

5.1 Chord Node, Chord Ring and Virtual Topology

In the Chord framework, nodes are organized in an ordered ring. In this way,
we consider that a Chord ring represents a community of peers. The model
we propose is represented on Figure 2. In order to model a Chord ring, we
have designed the ChordRing class that inherits from the Community class. The
properties of the ChordRing are divided into two sets. the first one provides
general information about the ring and the second one contains performance
data, according to the metrics defined above.

Chord nodes are modeled through the ChordPeer class. This class inherits
from the Peer one and defines several properties. The first set of properties
contains general information about the node and the second one informs about
the load of the node. It deals with the total number of keys hosted by a node,
and the size of its routing informations expressed for the successor list and the
finger table.

CommunityId: string {key}
Name: string {override, key}

Community

HashMethod: string
IdentifierLength: uint8
TopologyModel: string

NumberOfNodes: uint64
NumberOfKeys: uint64
AverageNumberOfKeys: uint32

NodeLastArrivalTime: Date
NodesJoinFrequency: uint32
NodesLeaveFrequency: uint32
NodesPresenceMeanTime: uint64

KeyLastArrivalTime: uint32
KeysInsertionFrequency: uint32
KeysRemovalFrequency: uint32
KeysMigrationFrequency: uint32
KeysPresenceMeanTime: uint64

ChordRing

CreationClassName: string {key}
Name: string {override}
PeerId: string {key}
IsBehindFirewall: boolean
ArrivalTime: Date

Peer

ParticipatingPeers
1..n W 1..n

IsVirtualPeer: boolean
IsLeaving: boolean

NumberOfKeys: uint16
NumberOfSuccessor: uint8
NumbeOfFingers: uint8

ChordPeer

**
P2PTopologicalLink

Fig. 2. The Chord Peer and community model

Concerning the topology, each Chord node knows its predecessor and its suc-
cessor. Thus, by extending this mutual local knowledge to all the nodes of a
ring, Chord establishes a virtual ring topology. In our model, we use the P2P-
TopologicalLink association class to represents these links. The Description at-
tribute allows us to distinguish links toward a successor or toward a predecessor.
We use this knowledge among others to estimate the ring consistency.

5.2 Keys and Resources

In the Chord framework, a node is responsible for a set of keys that represent
resources. Nevertheless, the nature of the resources can be of several types. For
example in CFS [2] it can be a file or a pointer toward a remote file. On the other
hand in DDNS, a key will represent a DNS entry. This is why we have chosen to
represent keys with the ChordKey abstract class that inherits from the PeerRe-
source one. This way, we let an application build over Chord inheriting from it in
order to represent any concrete resources. Figure 3 presents this specialization.
The LastMigrationTime property is a local indicator of the key movement that
is used to determine the global dynamics of a ring.

CreationClassName: string {key}
Name: string {override}
PeerId: string {key}
IsBehindFirewall: boolean

Peer

CreationClassName: string {key}
Name: string {override, key}
ResourceId: string
InsertionTime: Date

PeerResource
*1

PeerSharesResource

LastMigrationTime: Date

ChordKey

Fig. 3. The Chord resources model

5.3 Chord Services

The Chord framework is composed of two services. The first one is the lookup
service. It represents the main functionality of Chord. The second one is the sta-
bilization service. As described in [1] this process is executed in the background
and checks the consistency of the ring.

Chord Global Services In the P2P model we have previously designed [5], we
have defined a P2P service as being the aggregation of local instances. In this
section, we address the Chord services in a global way.

The Chord service model is represented on Figure 4. The lookup and sta-
bilization services are captured through the ChordLookupService and ChordSta-
bilizationService classes. These classes inherits from the P2PService class of our
P2P model.

First, the ChordLookupService class aims at providing information about the
lookup service behavior. Thus, we have defined properties that match the met-
rics defined for the lookup service performance measurement. These are the
total number of requests, the number of successful requests (that is another ring
efficiency criterion) and the average path length involved in requests routing.
Finally, the ring balance level provides a global estimation of the distribution of
keys among nodes. These values are not directly accessible but are the result of
the aggregation of nodes’local information.

Now, concerning the ChordStabilizationService we have just two properties
to represent its global features. The IsConsistent boolean property stands for
the global stability of the ring and the ConsistencyLevel deals with the average
percentage of nodes that are in a consistent state.

Chord Local Services As explained above, P2P services are the result of
local instances. This is why we have designed the LocalChordLookupService and
LocalChordStabilizationService classes.

First, the LocalChordLookupService class contains several properties that are
involved in the calculation properties of the ChordLookupService class properties.
The NumberOfInitiatedRequest represents the number of lookup requests the lo-
cal node has started. Then, the NumberOfForwardedRequests informs about the
number of requests the local node has relayed. Finally, the NumberOfReceive-
dRequests informs the number of requests the local node has received as a desti-
nation. Finally, the NumberOfSuccessfulRequests represents the total number of
requests the node has honored.

CreationClassName: string {key}
Name: string {override}
PeerId: string {key}
IsBehindFirewall: boolean

Peer

P2PServiceParticipatingPeers

P2PServiceAccessBySAP

*P2PServiceAccessPoint

P2PService

1

*

PeerId: string

PeerAccessPoint

*LocalP2PService

HostedLocalP2PService

* 1

LocalServiceComponent

NumberOfInitiatedRequests: uint32
NumberOfForwardedRequests: uint32
NumberOfReceivedRequests: uint32
NumberOfSuccessFulRequests:uint32

ChordLocalLookupService

ChordServiceUsesRoutes

LatencyTime: uint16

ChordNextHopRoute

1

*

NumberOfRequests: uint64
NumberOfSuccessfulRequests: uint64
AverageNumberOfHopsPerRequest: uint8
RingBalanceLevel: float32

ChordLookupService

PredecessorRefreshPeriodicity:uint8
SuccessorRefreshPeriodicity: uint8
FingerRefreshPeriodicity: uint8
FindSuccessorTimeOut: uint16

IsConsistent: boolean
SuccessorIsConsistent: boolean
SuccessorListIsConsistent: boolean
FingerTableIsConsistent: boolean
NumberOfWrongReferences: uint16

ChordLocalStabilizationService

ChordLocalService

*

IsConsistent: boolean
ConsistencyLevel: float32

ChordStabilizationService

*

Fig. 4. The Chord service model

Then, the LocalChordStabilizationService class deals with the execution of the
stabilization process on a particular node. Its attributes are split into two sets.
The first set represents information collected by the considered node and pro-

vided to the manager. That is to say, the frequency of the predecessor, successor
and finger refreshment. As for the second set of properties, it is computed and
provisioned by the manager in the nodes. The NumberOfSuccessor property pro-
vides the size of the successor list. Then, the FindSuccessorTimeOut informs on
the maximum time a node waits for a response from a node that can be a suc-
cessor. This timeout is used in the stabilization process during the update of the
successor list. Finally, the NumberOfWrongReferences deals with the number of
times a node is badly referenced by other ones.

In addition to these services, we have modeled the routing tables of nodes.
Nevertheless, this modeling aspect doesn’t address the performance issue of the
Chord framework and it is described in [5].

6 Conclusions and Future Works

Chord is a framework dedicated to the resources discovery in a P2P environment;
given a key, Chord associates a node that is responsible for hosting or locating
it. Its core principles lie on the use of a consistent and well balanced hash func-
tion for nodes and keys, a distribution of nodes on a ring topology, the use of
finger tables and the regular execution of a stabilization process. Chord offers
several performance guarantees in terms of average path length, load balance and
information consistency. Nonetheless, in case of a real Chord deployment, addi-
tional behaviors influence the performance of the framework and a management
infrastructure is necessary.

To effectively monitor the performance of a Chord community, we presented
an abstract model that is performance-oriented. This work is based on a previous
one directed towards the design of a generic information model for P2P networks
and services. Globally, our model enables a manager to have an abstract view
of a Chord community and to feature its operation performance. We have de-
fined several metrics that evaluate the ring dynamics, consistency and balance
as well as the lookup performance. Our goal is to provide a manager with tools
that will help him to be aware of a Chord ring state and to react consequently.
Our opinion is that these feedback data are essential for the deployment of the
Chord framework in manageable P2P applications that can respect QoS agree-
ments and deal with phenomena that cannot be captured by analytic models.
Concerning the metrics we have defined, we consider them as basic indicators
of a Chord community. Moreover, we assume that, in order to provide more ad-
vanced estimators, they can be combined and even enter the definition of policy
rules. This way, given a Chord community, a manager could be able to act on
participating elements in order to ensure service levels.

Our future works will first consist in deploying our model in a Chord imple-
mentation to (1) establish the validity of our theoretical model and (2) estimate
the cost of our management infrastructure. To do that, we will first have to de-
fine a management architecture and a dedicated protocol for P2P networks, that
is one of our current work. Indeed, we are thinking about the notion of man-
ager in a P2P context, and the way peers collaborate to perform management

tasks. Then, in conjunction to this first direction, we are extending this work
toward the design of a generic performance information model for DHTs. This
model would aim at featuring the performance of existing DHT like D2B, CAN
or Pastry among others.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 149–160

2. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative
storage with CFS. In: Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada (2001)

3. Ajmani, S., Clarke, D.E., Moh, C., Richman, S.: ConChord: Cooperative SDSI cer-
tificate storage and name resolution (2002) Presented at the International Work-
shop on Peer-to-Peer Systems.

4. Cox, R., Muthitacharoen, A., Morris, R.: Serving dns using chord. In: Proceedings
of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge,
MA (2002)

5. Doyen, G., Festor, O., Nataf, E.: A cim extension for peer-to-peer network and
service management. (In: to appear in Proceedings of the 11th International Con-
ference on Telecommunication (ICT’2004))

6. Oram, A., ed.: Peer-to-peer: Harnessing the Power of Disruptive Technologies.
O’Reilly & Associates, Inc. (2001)

7. Anderson, D.: SETI@Home. Number 5. In: (in [6]) 67–76
8. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The

International Journal of Supercomputer Applications and High Performance Com-
puting 11 (1997) 115–128

9. Doyen, G., Festor, O., Nataf, E.: Management of peer-to-peer services applied to
instant messaging. In Marshall, A., Agoulmine, N., eds.: Management of Multi-
media Networks and Services. Number 2839 in LNCS (2003) 449–461 End-to-End
Monitoring Workshop 2003 (E2EMON ’03).

10. Babaoglu, O., Meling, H., Montresor, A.: Anthill: A framework for the development
of agent-based peer-to-peer systems. In: The 22th International Conference on
Distributed Computing Systems (ICDCS ’02), IEEE Computer Society (2002)

11. Mischke, J., Stiller, B.: Peer-to-peer overlay network management through agile.
In Goldszmidt, G., Schönwälder, J., eds.: Integrated Network Management VIII,
Kluwer Academic Publisher (2003) 337–350

12. Bumpus, W., Sweitzer, J.W., Thompson, P., R., W.A., Williams, R.C.: Common
Information Model. Wiley (2000)

13. Distributed Management Task Force, Inc.: Common information model v2.7.
(www.dmtf.org/standards/standard cim.php)

