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Abstract. Large-scale steaming media applications usually consume a significant amount 
of server and network resources due to the high bandwidth requirements and the long-lived 
nature of the streaming media objects. In this paper, we address the problem of efficiently 
streaming media object to the clients over a distributed infrastructure consisting of video 
server and proxy caches. We build on the earlier work and propose an adaptive batched 
patch caching scheme, which tightly combine the transmission scheduling with proxy 
caching. This scheme adaptively caches the next segment data at proxy from the ongoing 
entire stream, which depends on the current batching interval that has non-zero requests. 
We demonstrate the benefits of our scheme compare to the classical streaming strategies. 
Our evaluations show that this scheme can reduce significantly the consumption of aggre-
gate bandwidth on backbone link within much wider range of request arrival rate. 
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1 Introduction 

The emergence of the Internet as a pervasive communication medium, and a mature digital 
video technology have led to a rise of various networked streaming media applications such as 
video-on-demand, distance learning, video game and video conferencing. As access providers 
are rolling out faster last-mile connections, the bottleneck is shifting upstream to the provider’s 
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backbone, peering links and best-effort Internet. Due to the large size, long-lived nature of the 
streaming objects, they need to consume much more network bandwidth and server system re-
source in distribution and delivery. At the same time, the I/O capacity of the video server and 
network bandwidth are impossible to be unrestrained enhancement because of hardware costs 
limitation. So, in the process of distributing streaming media over the Internet, how to reduce the 
backbone bandwidth consumption and efficiently utilize the video server system resource have 
become the research hotspot in the area of streaming media applications in recent years. 

Existing research has focused on developing transmission schemes that use multicast or 
broadcast connections in innovative ways to reduce server and network loads, for serving a 
popular video to multiple asynchronous clients. Batching [1], Patch [2], [4], HMSM[11] and 
Optimized Batch Patching [3] are reactive in that the server transmits video data only on de-
mand, in response to arriving client requests. These schemes have an underlying requirement 
that the multicast or broadcast connectivity between the server and the clients is available. How-
ever, IP multicast deployment in the Internet has been slow and even today remains severely 
limited in scope and reach. Therefore, transmission schemes that can support efficient delivery in 
such predominantly unicast settings need to be developed.. 

Another attractive solution for reducing server loads, backbone network traffic and access 
latencies is the use of proxy caches. This technique has proven to be quite effective for delivering 
traditional Web objects. However, streaming media object can be very large, and traditional 
techniques for caching entire objects are not appropriate for such media. Caching strategies that 
have been proposed in recent years [7],[12],[13],[14] cache a portion of streaming media object 
at the proxy. These prefix and segmentation-based caching methods have a number of advan-
tages including reducing startup latency and jitter on the server-proxy path, while saving band-
width usage along that path. However, they do not take the issue of the transmission scheduling 
into consideration. Recent work [10] combines prefix caching with proxy-assisted reactive 
transmission schemes for reducing the transmission cost of multiple heterogeneous videos. An-
other work [5],[6],[8],[9] combines multicast-based server scheduling with proxy caching to 
minimize the aggregate bandwidth usage. In particular, the Batched Patch Caching (BPC) pro-
posed in [5] which caches the patch data at caching proxy in order to make more clients to share 
it, and as thus achieve better performance. However, when the request arrival rate is very high, 
these schemes mentioned above are still consume quite a few system resources. 

In this paper, we build on early work and propose an adaptive batched patch caching scheme 
knows as ABPC which combines dynamic caching at the proxy with scalable transmission 
scheme at the origin server. In this scheme, the server-proxy network connections only provide 
unicast service, and on the proxy-client path offers multicast capability. By adaptive pre-caching 
the patch data for the upcoming request in the next batching interval, it achieves lower band-
width consumption than the BPC scheme over a wider range of request arrival rate.  

The rest of this paper is organized as follows. In section 2, some previous works in the mul-
ticast and streaming media caching areas are reviewed. In section 3, we present and formulate 



 

 

our scheme in detail. Section 4 shows results that compare the performance of new scheme and 
BPC. Finally we present our conclusions and ongoing work in section 5.  

2 Previous work 

Streaming media objects over multicast consumes less network bandwidth and imposes less of a 
load on the server than does streaming media objects over multiple unicast channels. Batching is 
a simple scheduling strategy based on multicast. It delays the earlier arrival request to wait for 
much more clients, and serves them over a single channel. Patching is certainly one of the most 
efficient techniques. The server streams the entire video sequentially to the very first client. A 
later client receives its future playback data by listening to an existing ongoing multicast of the 
same video, and the server only transmits afresh only the missing portion (patch data). 
The concept of optimized batch patching (OBP) in literature [3] has recently been proposed, 
which aimed at minimizing the average backbone rate. Basically, client requests are batched to-
gether on an interval basis before requesting either a patch or a regular multicast from the server. 
There is an optimal patching window after which it is more bandwidth efficient to start a new 
entire stream rather than send patches. This scheme outperforms other multicast-based tech-
niques such as optimal patching [4] in terms of average backbone rate over a large range of re-
quest rates [3]. 

The Batched Patch Caching (BPC) was built on the Optimized Batch Patching idea. Upon 
reception of a patch, the proxy stores it in the buffer for a period of the patching window size, so 
that it is available for the last requests of the same patching window and consequently reduces 
the bandwidth usage of the extra channel. By caching the patch data in the proxy, this scheme 
demands the average backbone rate smaller than that of OBP scheme. But, it needs to retransmit 
all of the patch data.  

We differ from all the above works in that we develop a new mechanism to pre-fetch the 
patch data from the ongoing entire stream along the unicast connection of the server and the 
proxy. At the same time, the pre-fetching data is cached dynamically at the proxy. They can 
serve the requests of the same patching window. Moreover, by varying the size of the patching 
window according to popularity of the streaming media object, the minimum consumption of 
the backbone bandwidth can achieve, and limited storage space of proxy can utilize efficiently. 
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Fig. 1.  Illustration of proxy cache for streaming media 

3 Adaptive Batched Patch Caching Scheme 

In this section, we consider a delivering architecture of streaming media object, which composed 
of an origin server, a set of proxies, and a finite set of media objects. Each proxy is responsible 
for a group of clients as shown in Fig.1. We assume reliable transmissions over the server-proxy 
path, and the access network (proxy-client) is lossless and multicast enabled. We further assume 
that the clients are always request play back from the beginning of the media object. Moreover 
we impose the proxy to play the role of a client for server. That is, all the streaming media object 
data streamed out of the server are requested by the proxy and are thereby forwarded through it. 
A proxy streams the prefix directly to its clients if a prefix of the media object is present locally, 
and contacts the server for the remainder (suffix) of the stream. Otherwise, the proxy sends the 
server a request to start a full stream (unicast) and multicasts it to a set of clients. In order to 
shield the client-perceived startup latency, the proxy immediately sends client the first segment 
data by unicast channel once a request arrives in each batching interval. This unicast stream will 
terminate at the boundary of the batching interval. At this time, the client will join the full stream 
and the patch data stream that started by the proxy via multicast channel. 

We next introduce the notations used in this paper, as presented in Table 1. We consider a 
server with a repository of M Constant-Bit-Rate (CBR) media objects. Let media object m∈M is 
characterized by its playback rate rm, duration Lm, and average access rate λm.  

Table 1.  Parameters used in this paper 

Para. Definition 

M Number of the media objects 

Lm Length of media object m (sec.) 

rm Playback rate of media object m(bps) 

S The cache size of proxy 



 

 

Ω Normalized transmission rate 

λm Average request arrival rate for object m 

Wm Patching window size for object m 

µm Total patch data for object m 

bm The batching interval  

3.1 Scheme Description 

The basic idea of the adaptive batched patch caching is that whenever a full stream is started, the 
proxies that receive the data from this stream allocate a buffer size of bm units to cache the up-
coming data. And at the end of each batch in the same patching window, these proxies check to 
see whether or not there are requests. If there are requests, these proxies separately add bm units 
to the buffer and cache the ongoing stream continuously. Otherwise they stop caching. Since we 
do not cache the data segments at the end of each batch of zero requests, the proxy will need to 
start an extra channel to afresh them if there are requests in the subsequent batching intervals.  
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Fig. 2.  Timing Diagram for adaptive batched patch caching 

Our scenario is illustrated in Fig.2, The proxy divides uniformly the time axis into intervals 
[ti-1, ti] of duration bm, Assume a request arrives at the proxy at time t∈[ti-1, ti ], and the most recent 
full stream was started at time t0. If ti is such that ti < t0 + Wm, the proxy need to transmit patch 
data of duration ti − t0 =ibm to the client at time ti, also the proxy joins the full stream at time ti, and 
multicasts it to the clients. However, if ti > t0 + Wm, a new full stream will be started at time ti. 
Since the first segment data [0, bm] of the streaming media object has been stored at the proxy at 
time t1 after the full stream is started, whether the subsequent segment data need to be cached 
depends on the current batching intervals that have no-zero requests before time ti. This is better 
explained with the following example. 

Suppose there are eight batching intervals in the patching window, that is Wm=8bm. The full 
stream was started at time t0. Also at time t0 the proxy began to buffer the first segment data from 
this steam. Suppose [t0, t1] had requests, then at time t1 the proxy adds bm units to the buffer and 
caches the ongoing stream continuously. This makes the proxy can serve the requests arrive at 
time intervals [t0, t1] and [t1, t2], and does not request server for any patch bytes. Suppose the next 



 

 

two intervals do not have any requests, and the proxy does not cache the corresponding data 
segment [2bm,3bm],[ 3bm,4bm]continuously. If the fourth interval [t3, t4] has requests, at time t4, the 
buffer of the proxy has only contained two segment data [0, bm] and [bm, 2bm]. The requests ar-
rive in the fourth interval requires the patches to be 4bm-long, and so the proxy expands the 
buffer from having 2bm units to having 5bm units, and then fetches the missing patch data 
[2bm,3bm] and [3bm,4bm] from the server by the extra channel while storing the segment data 
[4bm,5bm] from the ongoing full stream. The processing method for subsequence intervals is 
similar to that for the preview intervals. At last, whether the eighth interval [t7, t8], has requests or 
not, the proxy will not store the next segment data from the full stream at time t8. 

Our scheme has a remarkable characteristic. That is, the more probability of the request arri-
val each batching interval has (That means the request arrival rate is very high), the little patch 
data need to be transmitted afresh become. When each batched interval of patching window has 
no-zero requests, the pre-fetching mechanism can assure that the demanded patching data just 
obtaining from full stream can satisfy all the request arrived in the same patching window. On 
the other hand, if only the last batching interval has requests, the proxy will need to fetch the 
patch data up to (N−1)bm via the extra channel. 

3.2 Scheme Analyses and Problem Formulation 

For simplicity of exposition, we ignore network propagation latency. In order to derive analytic 
expressions in evaluating the performance of our scheme, we first make an abstract of our 
scheme as follows: 

● Assume the access rate of media object m are modeled by Poisson process with parame-

ter λm such that mmb-ep λ=  is the probability to have an empty batch (zero request) of 

duration bm. 
● The proxy stores the patch data in the buffer at least for a period of Wm=Nbm, so that it is 

available for the all requests arrived in the same patching window. 
● Suppose xi denotes the requests that arrive in the ith batching interval [ti-1, ti ]. Let x1 , 

x2 ,…, xN be a sequence of independent random variables with common probability 
distribution. 

● Whether the proxy need to fetch the patch data by extra channel at time ti depends on the 
values of x1 , x2 , …,xi-1 and xi. In particular if x1 = x2 = …=xi=0 or x1 =x2 = …=xi≠0, the 
proxy does not request server for any patch bytes. 

● Assume the proxy request server for the patches size is ψ in the patching window. It is 
obviously ψ will likely take one among the values 0,1bm,2bm ,…,(N−1)bm, we might as 
well let pi denotes the probability of ψ=ibm, that is p(ψ=ibm)= pi , i=0,1,2,…,N−1.  

With the above assumption, we can achieve the mean value of η, namely 
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Now we need to determine pi. Obviously,  
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Thus the expression of pi can be written as: 
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Substituting equation (2).into equation (1), by computing all the different possibilities of batching 
interval along the patching window, we get the average number of patched data segments, µm at 
proxy. It is given by 
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The aggregate transmission rate on the backbone link, Rm, includes the transmission of patches 
(µm) and the full stream of duration Lm from the server. Its normalized transmission rate Ω is thus 
obtained from: 
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Where Im represents the interval duration between two adjacent full streams: 

  1/)1( mλ++= mm bNI  (5)

The average buffer capacity S needed for caching at proxy is then given by 

   )rµ(µS mmm ′+=  (6)

Where µ' denotes the segment data received from the full stream. According to the buffer allo-
cating mechanism in our scheme, µ' is given by 

  )1)(1( mmm bpNbµ −−+=′  (7)

We now compute the proxy network bandwidth. Recall that the proxy deliver the first segment 
data to clients via unicast channel, and forwards the full stream and the other patching data via 
multicast channel. Thus its normalized bandwidth Bproxy is given by: 
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4 Numerical Results and Comparisons 

In this section, we evaluate the performance of our proposed scheme ABPC and contrast it 
against BPC in three aspects using numerical result. Suppose the duration of the streaming me-
dia object is 120 minutes, and its average play back rate is 1.5 Mbps (MPEG-1). 

First, we examine the transmission quantities of patching data that needed to get by the extra 
channel with respect to the request arrival rate and the patching window size. As shown in Fig.3, 
adopting the ABPC scheme, the average number of transmitted patches decreases rapidly as the 
request arrival rate increases, and that close to zero. This indicates that ABPC scheme only needs 
to fetch few patch data through the extra channel while the request arrival rate reaches relative 
high. But the BPC scheme needs to fetch all the patch data through the extra channel, and that 



 

 

close to the patching window size. In other words, whatever the request arrival rate and the 
patching window change, under the same conditions, the ABPC scheme can save much more 
bandwidth of extra channel than the BPC scheme. 
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Fig. 3. Average number of transmitted patches through extra channel versus the request arrival rate, 
bm=1[min]  

Secondly, we compare the normalized backbone rate demanded in the case of transmitting 
one media object for both schemes ABPC and BPC by showing in Fig. 4(a) ~ (d). From these 
diagrams we see that the normalized backbone rate required in the ABPC scheme is always 
smaller than that in the BPC scheme at different values of the patching window as well as re-
quest arrival rate. Also, as the patching window size increases, the normalized backbone rate de-
creases. 
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Fig. 4. Normalized backbone rate versus request arrival rate at different values of patching win-
dow, bm=1[min] 

Thirdly, we show in Fig.5 (a) ~ (d) the buffer requirement at proxy to deal with one media 
object for both schemes ABPC and BPC with respect to the patching window size and the re-
quest arrival rate. As the patching window size increases, the buffer requirement also increases. 
Moreover, under the same conditions, both of these schemes consume almost the same buffers 
at proxy, especially in the high request arrival rate. This evidence indicates that ABPC scheme 
archives the lower bandwidth saving than the BPC scheme, while it does not consume much 
more buffer size. 
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Fig. 5. Average buffer occupancy at proxy versus request arrival rate at different values of patching 
window, bm=1[min] 
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Fig. 6. Normalized backbone rate versus patching windows size 

Finally, Fig.6 shows the evolution of the normalized backbone rate Ω versus the duration of 
the patching windows under different request arrival rate and the batching interval by adopting 
ABPC scheme. We clearly find that the normalized backbone rate may no longer exhibit a 
minimum value for the patching window duration within Tm. Moreover, the longer the duration 
of patching window, the higher buffer size required at the proxy. Accordingly, in practice the ini-
tial value of the patching window can be determined using the expression   in literature [3], af-
terwards, we let the patching window size to adaptively expand or shorten in terms of request ar-
rival rate. Intuitively, if all batches during the duration of the stream have no-zero requests, this 
media object is really very popular and we ought to expand the patching window in order to 
much cache this entire object at proxy and not have to request from the server. With such a dy-
namical control of patching window, it instructs the proxy to implement an optimal cache for 
each media object, thereby achieving the better trade-off between backbone bandwidth and 
storage requirements. 

5 Conclusions and ongoing work 

In this paper, we proposed an adaptive batched patch caching scheme that joints server schedul-
ing and proxy caching aimed at reducing the bandwidth streamed from the server. We formulate 
the on-demanded numbers of normalized backbone transmission rate for considering a particular 
streaming media object. Compared with the traditional batched patch-caching scheme, the pro-
posed scheme achieves much more savings of backbone bandwidth by adaptive pre-caching the 
patch data from full stream. In addition, the adaptability of the proposed scheme keeps on very 
well within wide range of request arrival rate. The numerical results show that the adaptive 
batched patch caching is a highly efficient method that alleviates bottlenecks for the delivery of 
streaming media objects. 

For simplicity of exposition, we ignore network propagation latency throughout the paper. 
Note that our scheme can be easily adapted to the scenario when the network propagation la-
tency along server-proxy path is not ignorable. In order to hide the transmission delay for a 
streaming media object from the server, the proxy cache has to be allocated to accommodate a 
prefix for each media object.  

We are currently investigating the trade-offs between bandwidth reduction and buffer occu-
pancy at proxy. We are also exploring the scenarios based on ABPC where the proxies can co-
operate.  
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