Event-based Programming Structures for
Multimedia Information Flows

K. Ravindran! and Ali Sabbir?

! City College of CUNY and Graduate Center,
Department of Computer Science,
Convent Avenue at 138th Street,

New York, NY 10031, USA
ravi@cs.ccny.cuny.edu

? CUNY Graduate Center, Computer Science,

365 Fifth Avenue,
New York, NY 10016, USA

asabbir@hotmail.com

Abstract. In this paper, we propose a programming model based on
’timed event dissemination’ for structuring a distributed real-time mul-
timedia presentation. In this model, event notifications capture program-
generated actions and/or user-level object accesses on a multimedia win-
dow. A coherent effect of these actions requires enforcing deadlines on
the event processing over prescribed time intervals. To meet this require-
ment, the paper advocates an integration of the ’flow of time’ as part of
the semantics of data presentation on a multimedia window. The paper
explores a programming paradigm for event processing: causal ordering
of timed messages, to realize multimedia data presentations. This yields
simplicity and uniformity in the programming structure of multimedia
applications. The presentation specifications in our model can be easily
and accurately mapped onto system-level QOS parameters (such as net-
work delays and play-out buffer delays) for scheduling purposes. This in
turn may lead to an optimal use of the system resources by a multimedia
presentation protocol. The generality of our event-oriented programming
interface also allows reducing the multimedia system development costs
through software reuse.

1 Introduction

A real-time presentation system (RPS) collects the data of various source enti-
ties, transports the data through the underlying network, and delivers the data at
destination entities for consumption [1]. During a processing of data, maintaining
the required temporal association between the data of various streams is neces-
sary in the presence of system induced delays and asynchrony (e.g., multimedia
synchronization). This is possible, from the RPS perspective, by segmenting the
data streams into application perceivable distinct units along the real-time axis
and exercising temporal presentation control on these data segments at users. In
a multimedia document access for example, a user activity may possibly consist

of graphic input from a menu using mouse click to highlight a certain portion
of the document and text input from a keyboard and audio input from a voice
phone to annotate an update on the document. Here, the text input may need
to be presented at a user station after the mouse click within, say, 2-3 seconds
(sec). Thus a temporal presentation involves extracting the timing relationship
between various data segments collected at sources and determining the delivery
times of these data segments at receivers for processing.

The above temporal presentation control depicts a user-level view of syn-
chronizing the occurrence of multiple types of data. To support this view, the
RPS should embody an application-level specification of temporal presentation
control requirements on data. Using this specification, an underlying protocol
may implement a set of network level and end-system level mechanisms to meet
the data presentation requirements.

The presentation control information is typically made available to the RPS
in the form of quality of service (QOS) parameters that indicate the various
temporal characteristics of data presentation. For instance, how long the pro-
cessing of a data z at a user can be deferred with respect to that of another
data y is specifiable as a QOS parameter. The end-system mechanisms deal with
generating real-time presentation schedules that control the processing times of
data units at various system elements in the path to receivers, so that the QOS
parameters specified can be met (by buffering and sequencing the data across
the transport-application layer interface). If, for instance, the data z is scheduled
for processing at time T' but arrives at a receiver at time (T — t), it is buffered
by the end-system protocol for a duration of ¢ before presentation to the user.
As can be seen, the QOS specification and the underlying presentation protocols
form essential parts of a RPS.

This paper provides a flexible and canonical specification model for presen-
tation QOS that can be transcribed onto a communication system. The model is
based on application specifiable segmentation of data streams, and playing out
data segments in a certain order and in a timely manner, based on the temporal
relationships between them.

A key feature of our model is the integration of real-time constraints into a
causal ordering of data segments (or messages) that flow between end-systems to
manipulate user-level objects. In this notion, the messages exchanged between
various objects flow in a prescribed order and within prescribed intervals induc-
ing ‘state changes’ in them (e.g., generation of visual cues in human mind by a
video clip that annotates a graphics image display). The application-specific en-
forcement of presentation control allows flexibility in generating play-out sched-
ules of data and optimizes the usage of system resources to application needs.
The paper provides methods to derive the system-level QOS requirements from
application-specified information (through APIs) and to parameterize the pro-
tocol procedures with this QOS.

The paper is organized as follows: Section 2 describes our model of causal
ordering based real-time data presentation. Section 3 describes the specifica-
tion construct that incorporates the presentation model. Section 4 describes

the protocol procedures to derive network QOS parameters from presentation
specifications. Section 5 compares our notion of causal ordering with extensions
made to Lamport’s ‘logical clock’-based message ordering. Section 6 concludes
the paper.

2 Model of timed data presentation

A real-time data stream may be segmented into application-specific units for end-
to-end transport and synchronization (e.g., a voice clip in multimedia lecturing).
The presentation-level processing of a data segment (or message) involves the
generation and/or dissemination of device-specific information elements carried
in the message over a prescribed time interval. In this section, we describe a
temporal characterization of the data presentation problem, which will allow us
to determine the structure of presentation-level primitives.

2.1 Sensory perception of data

If ¢/, and t,, indicate the time of generation of a message m by the data source
(i.e., server) and the start time of play-out of m at a receiver respectively, then
tm >t + D, where D is the delay suffered by m in various system elements
implementing the message path (such as the network and play-out scheduling
buffers). Where multiple inter-stream messages are involved, the play-out of m
may be additionally delayed pending the play-out of one or more other messages.
Fast responsiveness and improved cohesiveness at user level requires that
the effects of m be seen: i) before the deadline imposed by the timeliness
requirements of m, and ii) after the persistence effects message(s) prior to m
have already ceased. The timeliness condition may be expressed in terms of the
maximum allowed latency [, between the generation and dissemination of m:

tm < (t, + Bm)- (1)

As example, the layout diagram of a construction building may need to be pre-
sented within, say, 1-2 sec after requesting the multimedia server, with video
and voice illustrations of the diagram timed in a way to enable a virtual tour of
the building. If we assume that the designer should see a layout display on the
local workstation in response to a point-and-click action within 0.5 sec and the
upstream delay in network paths is 50 msec, we can set 8, ~ 0.45 sec. When
D < B, the presentation of m can start sooner than the deadline set by SBp,.
The play-out time of message m should satisfy the following relation:

tm > tm, + 0m. + Cmas (2)

where m depicts the next action upon seeing message my, d,,, is the play-out
time of m, (i.e., the time over which the data units of m, are delivered to
the end-device for processing) and (,, indicates how long the effects of m,
persist in the application. The choice of t,, needs to account for any user-level

‘thinking time’ required after the sensing of m, that will allow generation of the
context for m. The ‘thinking time’ requirement imposes a minimum separation
between the occurrence of a set of successive messages. The relation (2) models
the passage of real-time with intervals of duration large enough to accommodate
the data persistence and user-level thinking effects. In an example of displaying
text sequences in a workstation window, d,, may be 2 sec and (,,, may vary, say,
from 1 sec to 3 sec. From equations (1) and (2), the ‘thinking time’ and the
allowed latency of messages may be related as:

(tma + Om, + Cma) < (t, + Bm)- (3)

Overall, a data stream is representable by a timed sequence of messages
[--+,mg,m, -], with the inter-message separation determined by the user-level
‘thinking time’ required on m and the persistence duration (6, + (n)-

2.2 ‘real-time persistence’ based causal ordering

The temporal relationships among activities on a user-level object prescribe the
order and the real-time intervals in which the messages depicting these activities
are presented to users. How these relationships are captured and processed by
the RPS is the focus of our paper.

Given two messages y and = describing actions on an object, the relation
‘y = 2’ denotes that x should occur after the persistence duration of y has elapsed
and within a certain time limit 77***. The meaning is that the state change in
the object caused by y persists over a real-time interval [t,, t, 4+ dy +(,] providing
the context for a state change by z, where T™ > [t, — (t, + 0y + (y) + 0z + (5]
In the earlier example, voice clip may (say) be presented 2 sec after the icon
highlighting, and persist for a 3 sec duration. We refer to the relationship y > z
as ‘z causally depends on y’, which depicts a schedule t, > t, + §, + (,. When
neither z > y nor y > x is specifiable, y and z are said to be concurrent, denoted
as ||[{z,y}. Here, it does not matter whether an object executes z followed by y
or vice versa, or simultaneously, as long as the actions are executed within the
time limit T%* i.e.,

Tmaa:
Tmaz‘

mam({(‘sy + Cy): (tz - ty + 6z + Cz)}) for ty S te

>
> maz({(0z + (z), (ty —to + 0y +(y)}) for t, <t,.

Causal ordering of messages allows solving the data presentation problem
in an application-specific manner. The underlying program structure is uniform
across applications: namely, the synchronization of user operations on an object
by a temporally ordered processing of the messages. For use with RPS however,
the current notions of message causality — defined over ‘logical time’ — need
to be extended for integrating the ‘flow of real-time’.

2.3 Temporal intervals

A presentation activity can generate multiple messages, such as a video clip, text
information and cursor marker, as part of a single update action on a document?®.
Accordingly, we need to treat the various component messages as bundled to-
gether by the temporal relationships between them. A temporal interval is the
real-time duration over which the effects of all messages generated by a presen-
tation activity can persist, given as T™**. An interval basically indicates the
granularity of real-time meaningful to the application, and hence constitutes the
unit of segmentation of real-time axis. See Figure 1.

Since a message is the basic unit supported by the RPS in terms of which
presentation activities are constructed, the ordering relationship among various
activities is transcribed directly onto the corresponding messages. In the earlier
example, the highlighting mark on the city map and the text and voice an-
notation by a user are deemed to occur over a single temporal interval. These
messages cannot be interleaved with messages of other activities, since user atten-
tion on the map pertains to one activity at a time. On the other hand, messages
pertaining to activities on unrelated objects can be interleaved in different ways.

Thus, temporal intervals provide an elegant framework for distributed programming

PRESENTATION SYSTEM IN A WORKSTATION

WINDOW Object copy in
presentation window

(contains state components
pertaining to sub-objects 1, 2, 3)

N R mc-p, me-v, me-w :
- : (messages in

1 Tee-al 3
1 HRN atemporal interval)
i mep
e

- ._I ' me-v 22 Messages representing

Various |
time points
—— real-time data

[E—
B prats oh objects
' = ® !

To/from network

Fig. 1. Flow of messages in data presentation (say, TI, < T'I, < T1,)

3 A ‘video clip’ is treated as a single message for presentation purposes. A lower level
system layer may however treat the ‘video clip’ as consisting of a timed sequence of
picture data frames to be delivered at presentation entities.

of functions to access and manipulate user-level objects.

2.4 Synchronization specifications

The temporal ordering relationship between presentation activities on an object
determines the extent of concurrency possible in their execution. To reap this
concurrency, we need to be able to specify and enforce the required order of
occurrence of the corresponding messages, so that they may interleave with one
another in many possible ways.

Many existing techniques to determine these requirements are based on time-
stamps, whereby a message with a time stamp 7' is declared to occur after all
messages with a time stamp lower than T [2]. These techniques are less suitable
for use by RPS, because the human-oriented nature of data presentations allows
synchronization constraints that can be weaker [3] than what the RPS is able to
infer bottom-up from the message flows incident on it. Precisely extracting the
constraints in turn allows exploiting the concurrency more effectively, and hence
offers an increased performance potential of the RPS.

Accordingly, we need a programming interface that allows extracting the
intended synchronization requirements at the user level. For example, a text
annotation to a document update may need to occur after a voice annotation.
As another example, a text annotation and a video clip describing a scene can
occur in parallel, even though they may be sent one after the other by the
source. Such requirements, extracted during execution of a data presentation,
can then be used by a protocol in the RPS to determine the scheduling required
on messages to move them through various system elements in the path leading
to clients (such as network links and play-out buffers).

3 Object-level message ordering

The specification of causal dependency relations between messages needs to be
embedded into programming primitives that allow the presentation of messages
at user entities. The synchronization related features we embed into the primi-
tives are described below.

3.1 Specification of causal relationships

The application provides a declarative specification of message ordering depen-
dencies. A user entity specifies the temporal ordering of a message z relative to
a message y (i.e., y > z) with the following primitive:

((2,pz), Occurs_After(y,l:,u.)),

where p, = (§, + (;), [, is the minimum time that should elapse since the
occurrence of y, and u, is the maximum time that can elapse. The parameter [, is
based on the user-level ‘thinking time’ required when the action y occurs so that

the context for processing a next action z can be generated. The parameter u,
captures the maximum allowed user-level ‘responsiveness time’ in disseminating
the action z once y is seen to have occurred. Given that u, > [, > 0, the time
interval over which z can be played-out is determined from ¢, € [t, + 3, +1.,t, +
0y + u;] and 6,. When Occurs_After(NULL) is specified, z can be processed
without any constraint, i.e., immediately upon arrival from the network.

In the earlier example, the concurrent delivery of text and voice annotations
to the highlighting mark on a city map, as captured by the causal relation
‘highlight > ||{text, voice}’, may be specified as (times are in seconds):

((text, 5), Occurs_After(highlight, 2,4))
((voice, 4.5)), Occurs_After(highlight, 3,5)),

with, say, Onighlight = 1.25 . The time intervals for these messages are given by:
[thigh]ight + 1.25 + mm({Z, 3}), thighlight + 1.25 + ma:c({4 +5,5+ 4.5})].

The Occurs_After is basically a programming notation to explicitly con-
struct the causal ordering relation (). The causal order constraints are carried
in messages for use by the underlying protocols to enforce play-out of the mes-
sages in an appropriate sequence and over specified real-time intervals. In this
aspect, the persistence parameter p, may correspond to the ‘explicit time du-
ration’ allowed in SMIL (the WWW Consortium’s Synchronized Multimedia
Integration Language [4]).

3.2 Dependency on multiple messages

An extended form of the Occurs_After construct allows a user to specify com-
plex ordering relationships with AND and OR ‘logical connectives’ on causally
precedent messages. For instance, the AND connective for 2 messages takes the
form:

((zapz)a OCC'LLTS_AfteT(yl A 212;1;“));

which indicates that z be processed after both y; and y2, with [and u being
relative to the latest of y; and y2 (note that ||{y1,y2}). In the previous example,
the user may display, say, an annotation on the graphics image to give visual
cues for the text and voice information. This may be specified as:

((graphics, 3.25), Occurs_After(text A voice, 2.5, 3.5)).
The time interval for occurrence of ‘graphics’ message is:
[maz({ttext + 5, tvoice + 4.5}) + 2.5, maz({ttext + D, tvoice + 4.5}) + 3.5 + 3.25].

See Figure 2 for an illustration. The ‘A’ operator linking z to y;,y2,--- has a
stronger semantics than the ‘par’ construct allowed by SMIL, in that the ‘A’
prescribes a concrete parallel composition of operations relative to z.

A causal dependency based on OR ‘logical connective’ is similar to the
‘switch’ element of SMIL. Again, in a 2-message case, it takes the form:

((2,8;), Occurs_After(y1 V y2,l,u)),

indicating that z be processed after either y; or y2 (or both), with [and u being
relative to whichever occurs the earliest during execution. In one scenario for
example, user annotation on a graphics image may be generated right after the
text or voice information, specified as:

((graphics, 3.25), Occurs_After(text V voice, 2.5, 3.5)).

The ‘V’ operator can induce non-determinism in a program execution, with non-
reproducible event sequences. The non-determinism may however be restricted

. . . isf
((zp,), Occurs After (y,l, ,u))

— ot
— i 1 — "
= = . = - graphics
. -2 = : = -
thighlight = 4 = 'voice
= =

Fig. 2. Illustration of Occurs_After specifications

to within the current temporal interval.
For brevity, we consider only AND dependencies.

3.3 System delay specifications

The message-level asynchrony captured by causality behavior is incorporated in
a ‘quality of service’ specification QOS,,.,. The parameters specified in QOS,,.,
may be used to: i) generate a specification of the system delay behavior, and ii)
generate a play-out schedule for data segments arriving through system elements.

These functions are incorporated as distinct elements in a synchronization pro-
tocol. See Figure 3.

A main feature of delay specification is the allowed end-to-end latency D, on
media messages. For interactive multimedia applications (e.g., multi-player video

game), D, is set low — say, less than 100 msec. For applications with less user-

level interactivity (such as ‘multimedia lecture presentation’ to an audience), D,
can be high. Given a set of messages to be presented in a temporal interval, the

presentation protocol in the RPS sifts through the Occurs_After specifications

REAL-TIME
APPLICATION

‘ ity Par ameter s specifyin
obtained from ! Parameters specifying user-level ya?/ptoleryan?:e
Occurs_After -/ "flow of real-time" o U

QOSpres

relations) 8¢
:\ Parametersindicating
user responsiveness
Presentation protocol agent
QOSpg
’ | P itvi
obtained by | upper et o SR r'lg%lelay
mappingof _ _
presentation-level ™~ Dg = PD<=d ma>3}
parameters |

‘delay-controllable’

network

= | nter-layer flow of control information

Fig. 3. Mapping of application parameters to network delay behaviors

on various messages for determining D,,. Since the user-specified parameter (u,—
l.) indicates the variability allowed in the presentation times of a message z
relative to its causally precedent message (i.e., the extent of asynchrony), D,
has a direct relationship to this user-level parameter.

A higher value of D, allows sending a message over a transport path with
longer message queues and/or containing lower bit-rate communication links.
Consider, for example, the sending of a 15 sec MPEG-1 video clip followed
by a 10 sec ‘thinking time’. The message carrying the video clip consists of
4.05 mbytes of data, generating a bit rate of 2.16 mbps over the 15 sec duration
(obtained from trace analysis experiments). When sent over a 1.8 mbps link, the
presentation at a receiver has to start about 3 sec later, in comparison to sending
over a 2.16 mbps link. So choosing a 1.8 mbps link (against a 2.16 mbps link) is
possible only when Eq > 3 sec. In general, message-level asynchrony captures
the user tolerance to latency in data presentations.

D, may often be specified in terms of a bound on the message delays incurred
by the network. Another aspect is whether a delay bound is enforced by the
network deterministically or probabilistically, with the former requiring a higher
allocation of resources in data paths through the network than the latter. In
general, the delay specification on the network may be expressed in terms of a
delay bound d™%* in the form:

D, = {(X,P(D < X))}yxe(amin gmas]

for d™®* > d™" > (, where d™" is the minimum delay suffered by mes-
sages flowing through system elements and P(D < X) depicts the probabil-
ity distribution of the actual message delay incurred. P(D < d™*) = 1.0 and
P(D < d™*) < 1.0 refer to a deterministically delay-bounded path and a prob-
abilistically delay-bounded path respectively. Note that it is the ‘data path’ from
a multimedia server to clients that is subject to delay specification D, (we as-
sume, without loss of generality, that the ‘control path’ from a client to the
server incurs negligible delay).

The media level concurrency prescribed through Occurs_A fter relations trans-
lates into message-level asynchrony. The latter in turn can be mapped to the
allowed variability in network delays incurred on messages (i.e., a specification
of D,). Refer to Figure 3.

4 Specifying delay controllability

The underlying presentation protocol should take into account the message dead-
lines prescribed by applications and the resource demands imposed on networks,
when specifying a value for d™**. The tradeoffs to be considered are as follows
(see Figure 4):

— Specifying a large value of d"™%* will reduce the amount of resource demands
imposed on the network but may result in some of the messages missing
their presentation deadlines;

— Specifying a smaller value of d™?® will increase the amount of resource de-
mands on the network, but can eliminate the likelihood of messages missing
their deadlines.

Also, a higher probability of enforcing a given delay bound places larger re-
source demands on the network, with a deterministic enforcement of the bound
imposing the maximum resource demands*.

4.1 Presentation skew due to delays

Given a set of messages {m}, the condition d™"+p,, < B,, will ensure a non-zero
probability of presenting a message m. Assuming that messages are not generated

* See [5] for a quantitative study of the underlying message scheduling mechanisms to
realize ‘parameterizable delay’ networks.

ahead of time (as in many live presentation settings), the condition d™** + p,, <
Bm 18 necessary to avoid a non-presentation of m due to an insufficient life-
span of m. As can be seen, the delay specification is relative to the life-span of

0< KL< K2< K3<= 10 Dl > D2 > D3
capaity cpasly
‘ ! PD < ey = K2 A
v dmex = D2 o
AMOUNT OF e
RESOURCES
ALLOCATED
INNETWORK
PATHS
oL >
dmin
DELAY BOUND
(max

Fig. 4. Network delay behaviors from resource allocation perspective

messages prescribed through parameters.

Messages can miss their deadlines under two circumstances: when prob-
abilistic delay bounds are specified for network paths (i.e., P(D < d™®®) <
1.0 V d™%* € R*) or when lax bounds are specified (i.e., d™%* is set to a value
higher than that prescribed by the 8 parameters). A higher degree of laxity in
message delivery, specified through a lower probability of enforcing a given de-
lay bound, may result in more messages missing their presentation deadlines.
This in turn may increase the frequency of glitches seen by users when accessing
the object. So the level of user tolerance to presentation glitches has a bearing
on the extent to which delay bounds need to be enforced. Since a probabilis-
tic delay bound imposes less demand on network resources in comparison to a
deterministic bound, a lax user tolerance can be mapped to a reduced resource
allocation.

4.2 Handling of missed deadlines

A presentation skew may sometimes exceed the application-level tolerance lim-
its (as set by the u parameter), manifesting as a glitch in the presentation of
messages to the application. As an illustrative analysis of the problem of presen-
tation misses, we map the probability distribution governing the network delay
behavior on individual messages (in terms of d™®®) into a probability that one

or more messages from a set of concurrently generated y;’s will meet their dead-
lines. Figure 5 shows an analysis of the likelihood of successful presentations for
a network that enforces probabilistic delay bounds.

Recovery from a glitch may often depend on how long the glitch effects persist

i Normally distributed delay behavior
F""b;b;'e%g{ii‘;gm”' Withmean 2t *d-mex ieassumed

10

B = 250 msec
thinking time = 0.1 sec
0.75 (amultiplayer ‘shooting’ game
isused as case study)
d-min = 10 msec
0.5
0.25

|
I I
40 80 120 160 200 240 280 320 d-max (msec)

i i i I >

Fig. 5. Presentation probability versus network delay behaviors

and how tolerant the application is to these effects. In a multimedia lecture for
example, a glitch is observable as the absence of, say, a video clip to annotate the
lecture. The effect of missed visual cues may persist in the minds of the human
viewer for a few seconds. When the tolerance limits are exceeded, a recovery
from the glitch may manifest in activating an application specified ‘exception
handler’. The absence of a video clip may however be handled by delivering only
the voice clip corresponding to the missed video clip, which may be acceptable
due to the slow varying nature of the visual and aural cues at the human viewer
[6]. In general, various levels of tolerance to skew among messages are specifiable
in QOS with hooks into application-supplied exception handlers.

pres’

5 Existing notions of message causality

We argue that the notion of ‘message causality’ is the right basis for structuring
of data presentations in distributed real-time systems for two reasons. First, a
synchronization construct based on ‘message causality’ is readily incorporatable
into a distributed programming system since this notion has been well-studied
by the distributed systems research community. Second, user-level actions in an
interactive setting can be more flexibly expressed through ‘cause-and-effect’ re-
lationships. In this light, we compare our extended notion of ‘message causality’
with both the classical approaches that do not support the notion of ‘real-time’

and the ‘add-on’ approaches that are tailor-made to fit ‘real-time’ into the clas-
sical approaches.

5.1 Logical time-stamp based approaches

Currently available causal order primitives [7],[8] infer message causality based
on the ‘logical time stamps’ internally generated by the communication sys-
tem (‘implicit’ approach to extracting concurrency in the application). If, for
instance, messages m; and ms are sent in that sequence by a user U, these
primitives treat ms as causally dependent on m,. This may not however be the
intention of U, such as m; and my being concurrent because they are update
requests on different (unrelated) documents. Thus existing primitives are at a
lower level and do not precisely extract the concurrency in an application, re-
sulting in less message-level asynchrony (i.e., more synchronization latency), in
comparison to our ‘explicit’ approach® [9].

Also, the above primitives do not directly incorporate ‘real-time’ into message-
level causality. Even though a ‘real-time support’ layer can be introduced on top
of such causal order based communication systems, this additional layer cannot
compensate for the lost concurrency and hence the lost ability to prescribe lax
delays when moving the messages through lower level system elements. The only
advantage of such a ‘real-time’ layer will be in lax scheduling of messages at the
time of presentation.

5.2 Causality augmented with time deadlines

The® notion of ‘A-causality’ proposed in [10] prescribes an upper bound ‘A’
on the delivery time of a message m' relative to its causally precedent message
m. This corresponds to our parameter u,, underlying the relation: m = m/'.
Though useful for designing real-time transfer protocols in the network with a
message delivery bound ‘A’; the ‘A-causality’ notion does not capture the ‘flow
of real-time’ in a distributed computation, because there is no lower bound on
the time of delivery of m'. In contrast, our notion allows prescribing a persistence
duration p,, of m and a lower bound I,,,» on the delivery time of m’ relative to m,
Viz., tpyr > (tm + Pm + L)- So our notion is at a higher level, easily employable
in distributed programming environments.

The work of J. P. Courtiat and et al [11] uses the notion of ‘causality’ to
realize synchronization. But the specification model treats the ‘causality’ and
‘real-time flow’ notions separately, which necessitates more complex program-
ming constructs. However, our work integrates these notions in the specification

% An underlying protocol that enforces causal delivery with only implicit information
will incur more synchronization latency. In the earlier scenario, buffering of mo
pending a subsequent arrival of m; may increase the time of completion of processing
my and ma, Viz., ‘> dmy + Om,’ instead of ‘> mazx({dm,,0m,})’. The performance
problem arises due to lack of knowledge in the system that mi and m» are concurrent.

5 Our concurrency enhancements are manifestations of multimedia object partitioning
in the form of ‘spatial subparts’ and ‘temporal subparts’ as allowed in SMIL [4].

model, whereby a concise set of programming constructs suffices to generate
presentation schedules. Likewise, the work of P. Amer [12] deals with specifying
a partial order based transport service for multimedia data. The service speci-
fication method is oriented towards developing validation models for temporal
specifications of distributed multimedia applications. Such a transport service
first needs to be incorporated into distributed programming primitives before
use in developing applications.

As can be seen, our Occurs_After construct allows explicit specification of
message causality, using an ‘object-oriented programming’ framework that trans-
forms the processing of causally ordered messages into object-level ‘state changes’
occurring over specific real-time intervals.

6 Conclusions

The paper presented a model for synchronizing real-time data during presen-
tation to the application. The basic premise in our approach is that the user
level component of the communication system takes the burden of synchroniza-
tion, instead of the network. This introduces flexibility in the message transport
protocols and allows optimizing the usage of network resources to application
needs.

The temporal properties of real-time presentation are specifiable in the form
of a causal ordering on the data segments, i.e., messages, flowing across applica-
tion entities. In this notion, application entities are modeled as objects, with the
messages exchanged between various objects in a prescribed order and within
prescribed intervals inducing ‘state changes’ in them. Since causal ordering of
messages is amenable for easier implementation in a distributed system, our
model may be viewed as generating a transport-oriented QOS description that
is mappable into a specification on the required delay behavior of the underlying
system. Such a mapping is more directly usable in an implementation of pre-
sentation protocols than the higher level petrinet based specifications typically
employed.

Our model of causal ordering allows application characteristics to be mapped
into a set of data delivery procedures composed in the form of data presentation
protocol. A possible relaxation of the data delivery constraints and the network
delay requirements, as allowed by the model, offers a potential for optimal us-
age of system resources. The specification method is itself independent of how
the client and server modules are separated in applications, which allows easier
construction of programming models of real-time applications for analysis and
verification, and a uniform implementation of communication systems. Further-
more, our specification model can be recursively employed in a hierarchically
decomposed real-time presentation system.

References

1. G. Blair, G. Coulson, M. Papathomas, P. Robin, J. S. F. Horn, and L. Hazard. A
Programming Model and System Infrastructure for Real-time Synchronization in

Distributed Multimedia Systems. IEEE Journal on Selected Areas in Communica-
tions, vol.14, no.1, (1996), 249-263.

. L. Lamport. Time, Clocks and Ordering of Events in Distributed Systems. Com-
munications of the ACM, (1978).

. R. D. Hill. Supporting Concurrency, Communication, and Synchronization in
Human-Computer Interaction — The Sassafras UIMS. ACM Transactions on
Graphics, vol.5, no.3, (1986), 179-210.

. Worldwide Web Consortium. Synchronized Multimedia Integration Language
(SMIL) 1.0 Specification. P. Hoschka (ed.), W3C Recommendation, (1998).

. B. Field, T. F. Znati, and D. Mosse. V-NET: A versatile Network Architecture
for Flexible Delay Guarantees in Real-time Networks. IEEE Transactions on Com-
puters, vol.49, no.8, (2000), 841-858.

. R. Steinmetz. Synchronization Properties in Multimedia Systems. IEEE Journal
on Selected Areas in Communications, vol.SAC-8, no.3, (1990), 401-412.

. K. Birman and T. A. Joseph. Exploiting Virtual Synchrony in Distributed Systems.
11-th Symp. on Operating System Principles, ACM SIGOPS, (1987).

. L. L. Peterson, N. C. Buchholz and R. D. Schlichting. Preserving and Using Con-
text Information in Interprocess Communication. ACM Transactions on Computer
Systems, vol.7, no.3, (1989), 217-246.

. K. Ravindran and A. Thenmozhi. Extraction of Logical Concurrency in Distributed
Applications. Proc. Intl. Conf. on Distributed Computing Systems, IEEE-CS, Pitts-
burgh (PA), (1993).

10. R. Yavatkar. MCP: A Protocol for Coordination and Temporal Synchronization in

Multimedia Collaborative Applications. Proc. Intl. Conf. on Distributed Computing
Systems, IEEE-CS, Yokohama (Japan), (1992), 606-613.

11. J. P. Courtiat, L. Carmo, and R. Oliviera. A General-Purpose Multimedia Syn-

chronization Mechanism Based on Causal Relations. IEEE Journal on Selected
Areas in Communications, vol.14, no.1, (1996), 185-195.

12. P. Amer, C. Chassot, T. J. Connally, M. Diaz and P. Conrad. Partial-order TRans-

port Service for Multimedia and Other Applications. IEEE/ACM Transactions on
Networking, vol. 2, no. 5, (1994), 440-455.

