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Abstract. Mobile units, such as vehicles in a traffic flow or robots in a factory, 
may use sensors to interact with their environment and a radio to communicate 
with other autonomous units in the local area.  Collaborative decision making 
can be carried out through information sharing amongst these units and result in 
cooperative problem solving.  Examples of solutions include coordinated vehi-
cle control for collision avoidance and executing complementary path plans for 
robots on a factory floor.  We propose an application-level protocol that enables 
units to contribute their local knowledge and actions to a shared global view of 
the problem space.  The protocol uses a time-driven token ring architecture to 
permit any unit to reliably broadcast a message to the entire group.  The proto-
col ensures that all units commit the same set of received messages in the same 
order by a deadline, and it upholds these guarantees in the presence of channel 
failures, hidden units, and a changing set of collaborators.  Units in the network 
are made aware of when others fail to maintain the global view.  Failing units 
may be required to operate autonomously, pending information recovery. 

1 Introduction 

The growing ubiquity of both mobile computing and wireless networking will moti-
vate new applications for this technology, including cooperative problem solving.  
Mobile units, such as vehicles in a traffic flow, tanks on a battleground, or robots in a 
factory, may be equipped with sensors to interact with their local environment, a radio 
to share information with other autonomous units in the immediate area, and a com-
puter to execute a program.  These resources enable the units to collaborate in the col-
lection and dissemination of environmental information that can be used to make de-
cisions that ultimately result in a single coherent solution to a problem.  Examples of 
solutions include coordinated vehicle control for collision avoidance and computing 
non-intersecting trajectories for robots on a factory floor. 



Units are enabled to act coherently and achieve common goals if they use a com-
munication protocol that permits their local knowledge and actions to contribute to a 
shared global view of the problem space.  Units may either carry out local, decentral-
ized decisions or be directed by one or more units making centralized decisions.  In 
the former case, the global view supports local decision making so that globally-
optimal behavior results.  In the latter case, the global view permits any unit to take 
the role of decision maker if communication with a centralized resource is lost.  Both 
approaches must contend with an environment where communication channel limita-
tions and unit failures can result in a continuously changing set of collaborating units. 

We propose an application-level protocol, the Mobile Reliable Broadcast Protocol 
(M-RBP), that is particularly well-suited to collaborative decision making in this en-
vironment.  The protocol permits any unit to reliably send a message to every other 
unit in the group and is time-driven to ensure that all units commit the same set of re-
ceived messages in the same message order by a maximum delay following initial 
message acknowledgement; this enables the global view to be kept up-to-date in a 
timely fashion.  Units also learn when they have lost the global view and may be re-
quired to operate autonomously using a different, more conservative set of assump-
tions until sufficient information is recovered.  Other units in the group are made 
aware of these failures and can react appropriately. 

The remainder of this paper is organized as follows.  The scope of the network 
considered is described in Section 2.  Section 3 introduces the architecture of M-RBP 
and its operation.  Section 4 presents a comparison of M-RBP with other existing reli-
able broadcast and multicast protocols for this application.  Section 5 briefly discusses 
protocol scalability and performance tradeoffs, and Section 6 concludes the paper. 

2 Scope of the Networking Problem 

Figure 1 is an example of the scope of networking that we will address for collabora-
tive decision making.  A number of mobile units (e.g., a through f) are collaborating 
in a localized geophysical region, or LAN.  Some units may be within direct commu-
nication range of all other units, while others may separated (i.e., hidden) from each 
other by greater than one hop distance and need to rely on neighboring units to relay 
information (e.g., a to c, e, or f).  The relaying of information may also be required 
when an obstruction prevents direct communication between units (e.g., d and e). 

 

Fig. 1. Scope of the collaborative decision making network 



Our protocol provides delivery guarantees for broadcast transmissions from any of 
the units to the rest of the group.  Some of the guarantees, such as maximum delay, 
scale with the network hop diameter and number of units.  Although this protocol will 
function properly on larger multi-hop networks, it is best suited to implementations in 
which most units can directly communicate with one another.  Providing a global 
view for the group remains difficult, even for small-diameter networks, due to a 
changing set of collaborators and the unreliability of wireless network connectivity. 

3 M-RBP Architecture 

M-RBP is an application-layer protocol that accepts data from user applications and 
transmits it using the IP broadcast address.  We assume a networking stack consisting 
of UDP/IP services and an IEEE 802.11 MAC and PHY design [1] with the distrib-
uted coordination function.  This medium provides physical signaling, a broadcast ad-
dressing scheme, and carrier sensing with collision avoidance.  It does not provide a 
request-to-send, clear-to-send handshake or a data transfer acknowledgement. 

Mobile units that share the global view participate in a token ring protocol.  Previ-
ous work on token ring protocols for reliable broadcast and multicast focused on 
wired network implementations [2], [3], [4].  Figure 2 is an illustration adapted from 
the Reliable Broadcast Protocol [4] of a token ring comprised of receivers in a broad-
cast group.  In our application, n mobile units can serve as both message sources and 
receivers.  Sources transmit messages at will into the medium, with an identification 
of the source unit, s, and a source-specific sequence number, Ms.  Ms is incremented 
for each unique broadcast message so that duplicate transmissions may be identified. 

 

Fig. 2. Receivers in the broadcast group belong to a token ring 



A token is passed amongst the units in the receiver group on a timed schedule.  The 
receiver with the token is referred to as the token site, and it is responsible for ac-
knowledging any source messages received from the source unit, s, while in posses-
sion of the token, as well as some additional messages described in Section 3.5.  The 
token site acknowledges messages using a single bulk acknowledgement (ACK) that 
references the messages and assigns them a relative sequence order.  Sources retrans-
mit messages until they receive an acknowledgement from a token site.  Units that do 
not receive the token site�s ACK shortly after its scheduled transmission time are 
permitted to broadcast a retransmission request.  Units that receive the ACK broadcast 
a negative acknowledgement (NACK) for any messages that they are missing.  The 
NACK is repeated until a peer services the retransmission request or other criteria de-
scribed in Section 3.3 is met.  Broadcast retransmissions include the original message 
identifier (s, Ms) and the retransmitter�s source identifier; this prevents retransmis-
sions from being mistaken for transmissions from the message source. 

On a timed schedule, the group collectively determines what ACKs to use for 
global message ordering and what messages should be committed.  By a specific 
deadline, all surviving units learn what messages are committed by their peers. 

In the following sections, we describe aspects of the protocol in more detail. 

3.1 Implicit Time-Based Token Passing 

The token site is responsible for acknowledging messages and initiating global se-
quencing.  In several token ring protocols [2], [3], [4], an explicit handshake is used 
to: 1) acknowledge source messages, 2) confirm acceptance of the token from the 
previous token site, and 3) request transfer of the token to the next token site, as 
shown in Figure 3.  This approach prevents continuous circulation of the token in the 
presence of frequent unit and communication failures because, in these cases, the re-
quired handshake may not transpire.   

 

Fig. 3. Explicit ACK handshake used by many token ring protocols.  If the token site, r, fails 
then the token ceases to circulate until the ring completes a lengthy repair process [2] 

M-RBP, by contrast, uses a token that is passed based on time, without further 
qualification.  Each receiver holds the token for a duration of ∆T seconds in a time slot 
specified by a token passing list (TPL) and is expected to transmit a single ACK at the 
end of its assigned token passing interval.  In addition to its role in message acknowl-



edgement, the ACK is used to indicate continued participation of the acknowledging 
unit and enables each receiver, through an algorithm described in Section 3.2, to keep 
identical, and perform the same maintenance on, local copies of the TPL.  Because no 
explicit handshake is required to pass the token, the communication with the token 
site may fail without disrupting token circulation.  Relative synchronization of units is 
required, but is not addressed in this work. 

3.2 Maintaining the Token Ring using a Distributed Time-Driven Algorithm 

A unit can infer that a token site has failed if its scheduled ACK broadcast is not re-
covered by a deadline.  Individual units, however, may disagree on the failure, de-
pending on how successful their own recovery efforts are.  Units could use a gossip 
protocol [5], [6] to spread the ACK or the token site could require positive acknowl-
edgement of its ACK by every other unit in the group, but these approaches would 
only provide highly probable agreement by a deadline.  We have devised a distributed 
time-driven token ring repair process that ensures agreement by a deadline. 

A conceptual timeline for the ring repair process is shown in Figure 4.  Since all 
units have a copy of the TPL and can identify when a specific unit is scheduled to 
transmit its ACK as the token site, they all know when to expect the ACK and can 
begin attempting recovery (described below) shortly thereafter.  Each unit that does 
not recover the ACK by a deadline assumes the token site has failed.  After making a 
determination, each unit in the group broadcasts a �yes� or  �no� vote to drop the unit 
in question.  All units attempt to recover as many of these votes from peers as possi-
ble and, at a prescheduled deadline, they each attempt to determine a group consensus 
using an agreement function.  The consensus will either be to take no action or to re-
move the unit from the TPL.  If the unit is removed, its TPL entry is deleted and the 
entries below are shifted up to fill the void. 

 

Fig. 4. Timeline for the time-driven distributed token ring repair process 

In M-RBP, the votes are transmitted in ACK messages to minimize control over-
head.  The relationship between scheduled ACKs and the votes they carry is shown in 
Figure 5.  A token site is assigned a time slot of ∆T seconds based on its offset in the 
TPL.  The offset numbers are shown on the x-axis, with token round x having mx 
slots.  As shown on the y-axis, each token site transmits an ACK with a sequence 
number j at the end of its time slot.  The set of scheduled ACK transmissions is de-
lineated by the solid line on the chart.  The units attempt to recover each ACK using a 
time-driven process involving k iterations, each of length ∆k.  The parameters for the 
process are chosen so as to guarantee a high probability of ACK recovery by the final 



iteration.  The recovery period for each ACK is shown by the gray band in the chart, 
the end of which is delineated by a dashed line.  Each unit that did not receive an 
ACK by the end of its recovery phase indicates this by including a drop field in its 
next ACK transmission that references the source and sequence number of the miss-
ing ACK (a vote against unit removal is implied by the absence of this field).  In the 
example shown in Figure 5, the votes applying to the ACK transmitted by unit a, at 
the position labeled 1, are transmitted by peers in subsequent ACKs with sequence 
numbers j3 through j4. 

 

Fig. 5. Timeline for scheduled ACK transmission and recovery 

Because each peer transmits its ACK, including votes, only once per token ring cy-
cle, each ACK carries votes pertaining to all ACKs that reached the end of the recov-
ery phase in the last token ring cycle.  For example, the ACK transmitted by unit b at 
the position labeled 2 includes votes relevant to ACKs with sequence numbers j1 
through j2. 

When all of the ACKs associated with a particular vote (e.g., the range labeled 1 
and associated with the ACK transmitted by unit a) have themselves completed their 
recovery phase, the group decides on whether to take action and remove the respec-
tive unit from the TPL.  If all units take the same action at this point in time, their 



TPLs will be adjusted in the same manner and time slot reassignment can take place 
to fill in the vacant slot.  However, attaining unanimous agreement is complicated by 
the fact that each unit may recover a different subset of the ACKs associated with a 
particular vote. 

The units ensure unanimous agreement on TPL changes through the use of a ma-
jority agreement function that returns one of three possible values.  If a unit recovers a 
sufficient number of ACKs to determine that the group consensus is �yes� or �no� on 
an action, the function returns a value of Y or N, respectively.  If a unit fails to recover 
enough ACKs to determine the group consensus, the function returns a value of U for 
�unknown�.  In this case, the unit must forfeit its time slot in the token ring until it has 
rejoined the token ring with a new time slot assignment (see Section 3.4).   

To make a decision based on a majority, each unit must determine that either  
greater than 50% of the expected vote transmissions, V, are �yes� votes or at least 
50% of the transmissions are �no� votes.  The total number of votes received by each 
unit is less than or equal to the number transmitted because some of the units may not 
transmit a vote (e.g., due to failure) and some votes may not reach a particular unit by 
the time the consensus deadline is reached.  Given that unit i recovers Yi �yes� votes 
and Ni �no� votes, the tri-valued function F is expressed as: 
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We have chosen to use threshold values that require either a majority of �yes� 
votes or a majority of �no votes to be recovered to determine group consensus with 
certainty.  Our choice minimizes the maximum number of �yes� or �no� votes that a 
unit must recover in order to avoid an �unknown� determination.  Other threshold 
choices may better maximize a unit�s probability of survival, especially if the selec-
tion is based on estimated probabilities of receiving a �yes� vote or a �no� vote.  In 
any case, the thresholds chosen must guarantee a mutually-exclusive �yes� or �no� 
determination by F, no matter how many votes an individual unit successfully recov-
ers.  This can be accomplished by ensuring that the following holds for the choice 
�yes� and �no� thresholds, TY and TN: 

1+ ≥ +y NT VT  , (2) 

In summary, by using F to determine the voting consensus and by acting in accor-
dance with the consensus at the prescribed deadline, all units remaining in the token 
ring maintain identical copies of the TPL. 

3.3 Reliable and Consistent Messaging with a Delay Guarantee 

The distributed protocol used to maintain each unit�s TPL can also be used to provide 
reliable and consistent message delivery between all sources and receivers.  For real-
time collaborative decision making, we desire to provide: 1) global sequencing of 



messages; 2) consistent commitment of messages across the group of receivers; and 
3) notification of message commitment between each unit and its peers.  Because the 
protocol provides units with a concept of time and units take action on a schedule, we 
can offer reliable and consistent message delivery with a delay guarantee. 

A typical approach to defining the probability of reliable message delivery, Pr(t), is 
to state that it monotonically increases to a value sufficient to meet application re-
quirements at some time τ following a number of retransmission attempts, as shown 
in Figure 6.  We desire a definition of reliability that is more suited to a continuously 
changing receiver set and that offers a specific reliability guarantee at a deadline.  To 
this end, we pursue a guarantee that a receiver remaining in contact with its peers and 
participating in the token ring protocol for > τ1 seconds after a message is initially ac-
knowledged will commit that message if the group reaches a consensus to do so.  Fur-
thermore, if the receiver remains in the group for > τ2 seconds, where τ2 > τ1, its peers 
can verify that it has committed the message. 

 

 

Fig. 6. Typical reliability guarantee 

The timeline for providing the new reliability guarantee is shown in Figure 7.  The 
timeline starts at time t with acknowledgement of message (s, Ms) by scheduled ACK 
j.  The process proceeds in three phases, with each phase involving information re-
covery followed by a group consensus vote on the success of the recovery.  Since the 
token ring length may increase or decrease by one unit each ∆T, the number of ex-
pected votes associated with each phase is labeled uniquely as ma, mb, and mc.  A unit 
that cannot determine the voting consensus for any vote must relinquish its place on 
the TPL. 

The first phase of the process involves recovery of the scheduled ACK j that ac-
knowledges the source message of interest, in this case message (s, Ms).  Since the 
ACK is also used to infer the token site�s continued operation, the first vote both de-
termines whether the associated token site is considered operational and whether the 
ACK will be used for message sequencing.   

Some messages referenced by dropped ACKs may never be referenced again by 
future ACKs.  These may be discarded > τ1 seconds after their reception without con-
cern that they need be committed. 



 

Fig. 7. Time-driven process for global message ordering, commitment, and delivery confirma-
tion 

The second phase involves message recovery.  Units that successfully recover the 
ACK attempt to recover the associated message(s) until one of the following events 
occur: 1) the message is recovered; 2) the group reaches a consensus to not use the 
ACK; or 3) the deadline for message recovery is reached.  The deadline for message 
recovery follows the deadline for ACK recovery by k·∆k seconds.  At the deadline for 
message recovery, each unit that recovered ACK j, but not message (s, Ms), conveys 
this in its next scheduled ACK transmission by voting to drop (s, Ms).  In general, the 
ACK may indicate that one or more messages be dropped in a variable-length field.  
If the voting unit did not recover ACK j, it votes generically to drop all messages ref-
erenced by the ACK.  Message reception is implied for all messages referenced in 
ACK j that are not listed in the drop field of the ACK used in the vote.  If a majority 
verifies message reception, the message is committed.  If the majority votes to drop 
the message, it is discarded. 

In the third phase, ACK recovery is used to determine the set of receivers that sur-
vived to commit the message.  A unit determines that a peer has survived to receive 
the message if the peer transmits its scheduled ACK in the token round starting at 
t+τ1.  If the unit either directly receives the peer�s ACK or if any other peer indicates 



that it received the peer�s ACK via a vote, then the peer in question survived to com-
mit the message.  A unit can verify the set of peers that received the message by ap-
plying this test to each peer in the TPL after time t + τ1.  This verification is complete 
no later than time t + τ2.  τ1 and τ2 are a deterministic function of the number of units 
in the group during several token ring cycles as well as a few protocol time constants. 

This three-step process ensures that every unit that continues to collaborate in deci-
sion making has committed a message within, at most, three recovery periods and one 
token ring cycle of when it was initially acknowledged and that every unit knows 
what peers have committed the message within, at most, four recovery periods and 
two token ring cycles. 

3.4 Join Requests 

Units that intend to join the ring for the first time, or that were dropped and want to 
rejoin, must transmit a source message with a Join Request field.  The token site that 
acknowledges this message will respond with an ACK that includes a copy of the 
TPL and protocol parameters.  The unit is neither admitted to the token ring, nor does 
it begin sharing the global view, until its source message is committed by the group.  
The new unit is assigned the TPL entry corresponding to the first token passing inter-
val that begins after the time of message commitment. 

The unit must be ready to participate in the ring repair process as soon as it is 
added to the TPL.  Therefore, it must begin to recover ACKs and monitor vote out-
comes as soon as its message is acknowledged.  Since all transmissions, scheduled or 
not, include source identifiers, the unit can maintain an updated list of one-hop 
neighbors.  It may transmit unicast ACK Retry messages to these neighbors in a 
round-robin fashion each ∆k seconds.  The addressed neighbor may service the request 
by retransmitting it or, if the requested ACK was dropped by the group, respond with 
a unicast ACK that includes a drop field for the requested ACK.  Changes to the TPL 
are inferred through the ACK history. 

Units that are rejoining the group after being recently dropped and that desire to 
maintain a continuous global view must, in addition, request missing source messages 
via unicast NACK messages.  The addressed neighbor may service the request with a 
message retransmission or respond with a unicast ACK that includes a drop field for 
the requested message(s). 

3.5 Dealing with Hidden Units 

The presence of hidden units challenges the delivery of messages to receivers hidden 
from a source and the acknowledgement of messages when the token site is hidden 
from a source.  To solve these problems, ACK and source message retransmission re-
quests are serviced by nearest-neighbor peers using a time-based recruitment process.   

During the recovery window for a particular ACK, the units on the TPL are pro-
gressively recruited to service retransmission requests for the ACK and to request its 
retransmission themselves.  The recruitment starts with the unit on the TPL that was 
originally scheduled to transmit the ACK and continues until the entire TPL is re-



cruited.  The number of units recruited per iteration may adhere to any number of pro-
files.  For example, one strategy may be to exponentially recruit units until the entire 
TPL is recruited, so that a total of 2j units are recruited j·∆k seconds following the 
scheduled time of the ACK transmission.  Another strategy would be to recruit one 
unit in the first iteration and all remaining units in the second iteration.  In any case, 
the process halts when some k, where k > j, number of recovery iterations of length ∆k 
have occurred.  This mechanism grants all units an opportunity to service and request 
ACK retransmissions while lowering initial contention for the broadcast medium.  
Carrier sensing and collision avoidance is the MAC layer�s responsibility and is out-
side the scope of this research. 

Source message retransmissions, driven by NACKs, use the same mechanism, with 
the only difference being when the recovery window starts, and completes (see Figure 
7).  The recruitment process for message retransmissions begins when the ACK re-
covery process completes, and continues for a period of k·∆k seconds.  The process is 
executed independently for each source message, and starts with the unit that origi-
nally acknowledged the message. 

An example of message recovery between units hidden from one another is shown 
in Figure 8.  All four of the units shown participate in the token ring, and unit 3 is the 
token site when unit 4 transmits message (4, M1).  The message is received by units 2 
and 3.  Unit 3 acknowledges message (4, M1) with ACK Y.  A specified delay after 
the scheduled transmission of ACK Y, unit 1 realizes that it missed the transmission 
and repeatedly transmits a retry for ACK Y.  This retry is eventually received by unit 
2, which services the retry by transmitting the ACK.  Unit 1 then repeatedly transmits 
a NACK for (4, M1).  This NACK is eventually received by unit 2, which services the 
NACK by retransmitting the source message. 

 

Fig. 8. ACK and source message recovery for hidden units 

Another problem that arises with hidden units is that a source transmitting a mes-
sage may be hidden from the token site.  To deal with this, the source retransmits the 
message at regular intervals of ∆T seconds until it receives an ACK that references the 
message.  The ACK may be either a scheduled ACK transmitted by a token site or an 
unscheduled ACK transmitted by any unit within one hop.  Units other than the token 
site may be recruited to respond to the transmission if it is repeated one or more times.  
The neighbors are recruited in growing numbers (e.g., exponentially) according to 
their relative offset in the TPL from the unit that was token site during the original 
message transmission.  Unscheduled ACKs (i.e., those not transmitted by the token 
site) do not have an ACK sequence number and are not used for message ordering; 



they simply inform the source that the message will be acknowledged later when the 
responding unit becomes the token site. 

3.6 Global Message Ordering 

As described previously, each ACK includes a sequence number j, indicating that it 
was transmitted at scheduled time tj = j·∆T.  ACK j assigns each message received, 
identified by the label (s, Ms), the relative sequence number k.  Messages that were ei-
ther acknowledged by a unit during the previous token round using an unscheduled 
acknowledgement, or received during its token passing interval, are assigned relative 
sequence numbers k = 1, 2, ... in the order received.  The 2-tuple (j, k) is used to as-
sign message (s, Ms) a global order. 

The received messages associated with ACK j are not assigned a global sequence 
number until all messages associated with ACK i, for ∀i < j, are sequenced.  Dupli-
cate references to message (s, Ms) may arise because sources can retransmit messages 
and because messages may reach units after a variable amount of propagation delay.  
To resolve this, all units commit messages according to the ACK with the lowest se-
quence number that references the message, and discard duplicate references.  Then, 
the remaining messages associated with ACK j are ordered by increasing, not neces-
sarily contiguous, relative sequence number k.  This procedure results in the same 
message sequencing in all units that received the same acknowledgements. 

4 Attributes of M-RBP 

Token ring protocols have been studied for application to mobile ad hoc networks 
(MANETs) [7], [8].  The work described in [7] is limited to the study of several algo-
rithms that permit a token to circulate amongst all members of a graph.  WTRP [8] 
was developed for communication between unmanned vehicles.  To provide band-
width guarantees, each source is only permitted to transmit source messages in a time 
slot assigned by its position in the token ring.  WTRP does not support mechanisms 
for reliable message delivery. 

Numerous reliable broadcast and multicast protocols have been proposed for 
MANETs that do not use token rings [5], [6], [9], [10], [11], [12], and cannot provide 
global message ordering for many-to-many communication in multi-hop networks.  
These protocols are compared with M-RBP in Table 1, where attributes important for 
the support of collaborative decision making in a MANET are listed.  None of these 
protocols were specifically developed for this application, and they all lack support 
for either message delivery confirmation with the source, or peer retransmission ser-
vice.  Furthermore, the gossip-based protocols, which do provide peer retransmission 
service, provide relatively weak reliability guarantees due to their probabilistic nature. 

Because M-RBP was specifically developed to support collaborative decision mak-
ing, it possesses all of the desirable characteristics. 



Table 1. A comparison of M-RBP with other reliable broadcast and multicast protocols.  
Support of attributes that enable collaborative decision making in a MANET is indicated 

Protocol Support 
Class Scheme Many-to-

Many1 
Peer  
Service2 

ACK-
Based 
Delivery3 

Confirm 
Delivery 
w/ Source 

Global 
Ordering4 

MAC BMW w/ 
ODMRP [9] 

! ! !   

RALM [10] !  ! On retry  Source 
Service RMA [11] !  ! !  
Hierarchical 
Service 

FAT [12] In omni 
mode 

! !   

AG [5] ! !    Gossip 
Service RDG [6] ! !    
Time-Driven 
Token 

M-RBP ! ! ! ! ! 

5 Comments on M-RBP Performance 

Units that fail to recover ACKs and messages used in the global view are temporarily 
removed from the token ring.  Therefore, the more effectively units recover informa-
tion, the more likely they are to remain participating members of the group.  As pre-
viously discussed, hidden units recover information using time-based retransmission 
protocols.  Using a larger iteration interval, ∆k, in these protocols provides units with 
more time to retransmit information and deal with congestion.  However, the delay 
guarantees, τ1 and τ2, relax as ∆k increases.  This trade-off between delay guarantees 
and probability of unit failure will be analyzed in future work using the QualNet 
simulator [13]. 

The number of iterations, k, required of the time-based recovery processes has not 
yet been discussed.  Independent of the profile used to qualify units to retry, or service 
retransmissions (e.g., one unit in the first iteration and all remaining units in the sec-
ond iteration, exponential unit recruitment, etc.), the worst-case number of iterations 
occurs when: 1) all units, other than the token site, did not receive the original trans-
mission, 2) the last unit permitted to retry is the only 1-hop neighbor of the token site, 
and 3) the network diameter is maximal, given the number of units (i.e., m - 1).   

A worst-case network topology is illustrated in Figure 9.  In this example, unit 1 is 
required to recover information from unit m by the end of the recovery period. 

                                                           
1 Assuming a single instance of the protocol on each unit 
2 Information may be recovered from any peer, even if source fails 
3 Retry until positive acknowledgement 
4 For many-to-many broadcast or multicast 



 

Fig. 9. Worst-case network topology (token ring shown) for a recovery process 

The worst-case recovery process delay for the network depicted in Figure 9 using 
an exponential unit recruitment example is depicted in Figure 10.  For this example 
and m units, the maximum number of iterations, k, required is: 

2log 2= + −⎡ ⎤⎢ ⎥k m m . (3) 

In contrast, for a recruitment policy of a single unit in the first iteration and all 
units in the second, the relationship between iterations required and unit count is sim-
ply k = m.  However, with this policy, medium contention may increase. 

 

Fig. 10. Worst-case recovery delay for the scenario in Figure 9, using exponential recruitment 

As an example of ACK recovery using the described network and exponential unit 
recruitment process, if m = 9 and unit 9 is the token site, it takes 11 iterations of the 
recovery process for unit 1 to recover unit 9�s ACK.  Thus, recovery is complete 
11·∆k after the scheduled transmission of the ACK, if the network remains connected. 



6 Concluding Remarks 

In this paper, we have discussed the problem of collaborative decision making in a 
mobile ad hoc networking environment.  We have introduced an application-level 
protocol, the Mobile Reliable Broadcast Protocol, that provides the services necessary 
for collaborating mobile units to construct and share a real-time global view of the 
problem space, despite the potential for communication failures, a continuously-
changing set of collaborators, and units that are hidden from one another.  To the best 
of our knowledge, this support is not offered by any other existing protocol. 

M-RBP uses a time-based token ring protocol to provide specific reliability and de-
lay guarantees for source message commitment, something that is difficult, if not im-
possible, to accomplish with an event-driven protocol.  It was shown that the delay 
guarantees provided can be tuned to alter the scalability of the protocol.  It was also 
shown how novel time-based decision processes incorporated into M-RBP enable col-
laborating units to globally commit and order messages. 
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