
QoSJava: An End-to-End QoS Solution*

Xiaohui Huang, Yu Lin, Wendong Wang, Shiduan Cheng

State Key Lab of Networking and Switching
Beijing University of Posts and Telecommunications

Beijing, P.R.China, 100876
{hxiaohui, linyu, wdwang, chsd}@bupt.edu.cn

Abstract. Incompatibility of different QoS (Quality of Service) mechanisms
and heterogeneity of different vendors’ network devices are the major obstacles
for providing end-to-end QoS in IP network. Inspired by Java, we propose an
end-to-end QoS solution in this paper, i.e. QoSJava, which decouples QoS
requirements from network details. By QoS Mechanisms Adapter and Device
Driver, which act as “Java Virtual Machine”, QoSJava enables interoperation
between different QoS mechanisms and cooperation of dissimilar network
devices. A prototype of QoSJava has been implemented, and the experimental
results prove that network devices can be configured automatically to provide
an end-to-end QoS. Moreover, QoSJava is not only compatible with current
QoS mechanisms and devices, but open to new QoS solutions and advanced
devices in the future.

1 Introduction & Motivation

Today network becomes a necessity in most people’s daily life. People use network to
do shopping, watch movies, make phone calls, read news, play games and so on. And
naturally, they require current network infrastructures to transform from providing
mere connectivity to a wider range of tangible and flexible network services with
QoS. However, current traffic of various services is carried by IP network, which
only provides best effort transmission. Therefore, QoS provisioning in IP network has
been a hot topic in recent years.

Many researchers concentrate on this problem and have proposed a great deal of
solutions. Among them, IntServ [1], DiffServ [2] and MPLS [3] are well-known.
Moreover, many projects brought forward innovative solutions. CADENUS [4],
TEQUILA [5] and AQUILA [6], which are part of Euro Commission’s IST
(Information Society Technologies) projects, have implemented architectures to
provide QoS in IP network. They are independent between each other and provide
solutions for IP QoS.

* This work was supported by the National Basic Research Program of China (Grant No.

2003CB314806 and 2006CB701306), the National Natural Science Foundation of China (No.
90204003 and 60472067) and the National 863 Program of China (No.2003AA121220)

However, none of the QoS solutions proposed is in use. The current network is
still a best effort IP network. Though some network regions are equipped with routers
with MPLS capabilities, to establish LSP for each micro-flow is impractical. End-to-
end QoS is still far away from the ultimate goal.

QoS will bring profits for Service Providers (SP) without any question. But why
does the situation remain the same? When investigating the large scale network, the
essential reason can be found out. Current network infrastructure is divided into
several domains and belongs to different Network Providers (NP), who purchase
network devices with diverse capabilities in light of their budget, and adopt different
QoS mechanisms based on the devices. Noticeably, dissimilar QoS mechanisms are
not compatible with each other. Thus all the aforementioned projects [4, 5, 6] assume
that a unique QoS mechanism is deployed in the whole network, which makes them
impractical in the real environment. Though mapping mechanisms enable the
interoperation of two different QoS mechanisms [7, 8], we argue that developing
mapping mechanisms between all QoS mechanism pairs is impractical, especially as
more and more new QoS mechanisms appear in the future. In addition, devices of
different vendors have disparate command sets. When QoS mechanisms need to be
changed, instead of issuing an order to do batch modification, network administrator
has to log in each router and modify the configuration one by one, which increases
the operational cost. In a word, a major obstacle for providing end-to-end QoS in IP
network is the heterogeneity of network devices and QoS mechanisms.

QoSJava is proposed in this paper to solve the problem. Our solution is named
QoSJava only because the idea comes from Java. Providing e2e QoS in current
network has some similarities with programming in distributed environment.
Programming in distributed environment should consider the portability of the
program and the heterogeneity of the runtime environment. Analogously, providing
e2e QoS in heterogeneous IP network should adapts to various QoS mechanisms and
devices. As we known, Java is a powerful language for distributed network
environment. After compiled, Java programs run on Java Virtual Machine (JVM)
implemented on a particular platform. JVM plays a central role in making Java
portable. It provides a layer of abstraction between the compiled Java program and
the underlying hardware platform and operating system. Thus Java can conceal the
heterogeneity of runtime environment and gain great success.

Inspired by Java, we propose QoSJava and believe it is a desirable solution for
QoS provisioning in IP network. Different from other QoS solutions [1-3, 4-6],
QoSJava can provide QoS for heterogeneous IP network, without assuming that the
network is deployed with the same QoS mechanism. QoSJava achieve this goal by
QoS Mechanism Adapter plus Device Driver, which accomplish the similar functions
as JVM. They provide an abstraction layer between the application and the
heterogeneous environment. Analogous to Java, QoSJava firstly translates user’s QoS
requirement to a stream of “bytecodes”, i.e. deployment task specification. After that,
QoS Mechanisms Adapter translates the deployment task specification into a script of
instructions. Then the script is fed into Device Drive, which interprets each
instruction in the script into a series of commands corresponding to the network
devices. Finally, the commands are executed on the devices and configuration is
actually completed. Thus QoSJava can migrate to arbitrary networks with different

QoS mechanisms and devices of different vendors, as a result provides an end-to-end
QoS.

The rest of the paper is organized as follows: Section 2 describes the detail of
QoSJava framework, especially the QoS Mechanism Adapter and Device Driver,
which is the major contribution of this paper. The deployment of QoSJava is given in
section 3. Then our implementation of QoSJava and the experimental results are
presented in section 4. The paper is concluded in Section 5 with the future work.

2 QoSJava

The framework of QoSJava consists of two parts, the user part and the administrator
part, as illustrated in Fig.1. The user part resides on the left of the dash, dealing with
the whole process from user submitting QoS requirement to network devices being
configured. The administrator part situates on the right side, which is for network
administrator to initialize the network, monitor network performance and execute
high level configuration task. QoS Mechanism Adapter and Device Driver traverse
two parts, acting as the “Virtual Machine”. In this paper, we focus on the user part,
since it lays the foundation of end-to-end QoS provisioning.

Fig. 1. QoSJava Architecture

2.1 User Interface

User Interface (UI) is the entrance for end users. As the front-end, UI is responsible
for receiving user’s requirement, delivering it to User Requirement Translator and
returning the admission result to the user. In Java, the software function is coded in
Java language. Similarly, in QoSJava, user’s QoS requirement is expressed by QoS
requirement description language, which can be SLA (Service Level Agreement), xml
specification or any other standard format. The implementation of UI subjects to no
constraints, so developer can choose any suitable technologies to realize it. SLA is
adopted in our prototype to express user’s requirement, and the UI is presented to end
users as a web service.

2.2 User Requirement Translator

Not all end users are network experts, thus they always express their QoS
requirements in a simple way. In addition, due to the different implementations of
User Interface, various expression patterns exist. Therefore, a layer is needed to be
inserted between User Interface and the execution logic to extract the technical
parameters reflecting user’s actual requirements, and denote them in a consolidated
way. User Requirement Translator (URT) is such a layer in QoSJava. Based on the
policies provided by Policy Server, URT analyzes user’s expectation and educes the
following tuple to describe a specific QoS requirement:

2

(, , , , , , , ,)

e e

QoSReq SrcIP DesIP BW Class Delay LossRate Jitter StartTime EndTime
q QoSReq∈

The parameters contained in the tuple can be extended as needed. At present, the
following items are defined: Source IP Address (SrcIP), Destination IP Address
(DesIP), Bandwidth required (BW), Traffic class of the service (Class), end-to-end
delay (Delay), end-to-end packet loss rate (LossRate), end-to-end jitter (Jitter), the
time when the contract begins to take effect (StartTime), and the time when the
contract begins to expire (EndTime).

2.3 Resource Manager

Resource Manager (RM) has a logical view of its corresponding domain’s physical
network, including network topology, the state and the available resource of each
network device. Compared to the whole network, a domain has fewer network
devices, which makes the domain oriented resource management practical. RM
obtains network information from a network management system developed by
ourselves. After the information of network devices (mainly routers) is collected, RM
does calculations for resource planning and management. RM maintains a resource
database to record the resource information of the domain where it resides. According
to the 2e eq tuple specifying user’s QoS requirement, RM enforces admission control
and generates corresponding monitoring tasks.

Routers are the most important components of IP network, hence router resource
gives a reflection of network resource. Router resource correlating to QoS can be
abstracted into the following tuple:

1 2(, , , , , ,...,)IfNumRes RouterID DomainID RT IfNum If If If

In which
1

IfNum
i

i
If If

=
∀ ∈

(, , , ,)If BW Buffer Priority Bucket NextHop
Current tuple has the following items: Identity of Router (RouterID), which is one

IP of the router. Identity of the domain where the router is situated (DomainID),
Routing Table (RT), Number of the Interfaces in the router (IfNum), the detail of
each router interface (1 2, ,..., IfNumIf If If), Bandwidth of the interface (BW), Buffer size
of the interface (Buffer), Scheduling priority (Priority), Bucket Size (Bucket), and
the router to which the interface connects (NextHop).

Router information can be obtained from network management system. The items
contained in tuple Res can be extended as needed, and corresponding interfaces should
be added to network management system to retrieve the required information.

Based on the resource information collected, network planning is done at first.
Planning is coarse-grained, which can improve resource utilization instead of
reaching the optimal resource assignment. In fact, there is no solution for optimal
resource utilization in Internet due to its complex traffic pattern. Planning calculates
the resource matrixes for Gold, Silver and Bronze services, which are analogous to
EF, AF and BE aggregates in DiffServ [2]. Resource matrixes set the stage for
admission control process. The fundamental idea of planning is to locate the
bottleneck of the network, and distribute its bandwidth to the aggregate flows which
share the link. Please refer to [11] for the detail algorithm. The resource matrixes
produced by planning are GoldR , SilverR , and BronzeR . They are n n× matrixes, in
which n is the number of edge routers in the domain. The semantic of the element in
the matrix is explained below. Take .

Gold
i jr in matrix GoldR as an example, it represents

the available resource for Gold Service between iER and jER . It is defined by the
following tuple, among which SrcER and DesER are the IP addresses of Ingress edge
router and Egress edge router separately. Other parameters have the same meaning as
in tuple QoSReq and If .

. (, , , , , ,)Gold
i j SrcER DesER BW Class Buffer Priority Bucketr

Since User’s QoS requirement 2e eq may involve multiple domains adopting
different QoS mechanisms, Admission Control component (AC) firstly decomposes

2e eq into several QoS requirements iq QoSReq∈ (1,2,...,i m=) based on domains’
capabilities, and sends them to the AC of domain i (1,2,...,i m=) for admission. m is
the total number of domains along the end-to-end path, and iq corresponds to
domain i . The decomposition algorithm is presented in our previous work [10].

After decomposition, AC translates each QoS requirement iq into resource
requirement for domain i . Function f maps QoS requirement to resource requirement.

: out
i if q r→

In which (, , , , , ,)out
ir SrcER DesER BW Class Buffer Priority Bucket

According to resource requirement out
ir and the admission policies provided by the

Policy Server, AC consults the resource database for corresponding resource matrix,
and determines whether the user’s requirement can be admitted. If resource of all
domains along the end-to-end path is sufficient, admission is successful, or a failure
notification will be returned with the failed reason to guide the user’s renegotiation
process.

If admission turns out to be successful, AC subtracts the resource assigned from
the available resource database. A monitoring task iT is also generated by Monitor
Task Generator to perform QoS surveillance during the service operation time. The
parameters of iT are not given here for the space constraint, Please refer to [9].

After user’s requirement is admitted and monitoring task is generated, Deployment
component creates deployment task for lower layers. The deployment task
specification is the “bytecode” of QoSJava, designating how much resource should be
assigned for QoS provisioning and how to execute monitoring task for QoS guarantee.
The specification can be written as an xml document. It can also be written as a
configuration file with APIs (Application Program Interface) provided by lower
layers. In our implementation, QoS Mechanisms Adapter provides a series of APIs
for Deployment component. Deployment component can use these APIs to issue
orders, such as resource assignment and monitoring task enforcement.

2.4 QoS Mechanisms Adapter

Different QoS mechanisms have dissimilar resource management patterns and QoS
provisioning approaches. In IntServ, resource should be reserved in all routers along
the end-to-end path. DiffServ classifies traffic at the edge and specifies packets’ PHB,
i.e. EF, AF and BE. As for MPLS, it establishes LSP and sticks labels to packets at
the network entrance. In addition, dissimilar QoS mechanisms behave differently in
traffic monitoring. The purpose of QoS Mechanisms Adapter (QMA) is to conceal
their heterogeneity and provides a unified interface for Resource Manager.

QoS Mechanisms Adapter should perform at least two operations. One is to
interpret resource assignment task out

ir , and the other is to interpret monitoring task iT .

Both out
ir and iT are designated in the Deployment Task Specification. Based on the

QoS mechanism adopted in the domain, QMA translates the deployment task
specification to a script containing a series of instructions provided by Device Driver.
The adapting scheme is as follows:

()out
i

Configuration of all Routers along the path IntServ
Configuration of Edge Rounters DiffServ

QoSAdapter r
Establish LSP between Routers MPLS
To be

=

 extended other QoS mechanisms

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (1)

()i

Monitor all Routers along the Path IntServ
Monitor Ingress Router and Egress Router DiffServ

QoSAdapter T
Monitor entrance and exit of LSP MPLS
To be extend

=

ed Other QoS Mechanisms

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (2)

In IntServ, QMA needs to translate the Deployment Task Specification into the
configuration of all routers located in the domain along the end-to-end path. In
DiffServ, QMA translates the specification to the configuration of Ingress router and
Egress Router, designating traffic class (EF/AF/BE), queue priority, packet dropping
scheme, and etc. In MPLS, the specification is translated into label distribution, LSP
establishment and monitoring.

Formula (1) and (2) only give the semantics of QMA’s result. In the
implementation, the result produced by QMA is an execution script with instruction
sequence. An instruction encapsulates a series of commands of network devices and
can perform more advanced task than a single command. An execution script
example is given below. It describes a scenario in which domain 1D adopts IntServ.
Thus in 1D , resource reservation and monitoring task deployment should be done in
all routers along the end-to-end path.

[INTSERV_QOSCONFIG]

#ResvRes<Domain 1D , IP of Router 1, out
ir tuple>

#DeployMonTask<Domain 1D , IP of Router1, iT tuple>

…

#ResvRes<Domain 1D , IP of Router N, out
ir tuple>

#DeployMonTask<Domain 1D , IP of Router N, iT tuple>

When a new QoS mechanism appears, new adapting module can be added to
QoSJava by extending current execution scripts or adding new execution scripts.
Therefore new QoS mechanisms can merge into QoSJava without violating the
existing QoS mechanisms. Thanks to QMA, variety of QoS mechanisms could be
coexistent in the network to provide an end-to-end QoS.

2.5 Device Driver

While QoS Mechanisms Adapter conceals the heterogeneity of QoS mechanisms,
Device Driver (DD) makes the difference of network devices transparent. Due to
router vendors’ different strategies, their products have disparate command sets. DD
in our prototype can adapt to command sets of major router vendors including Cisco,
Juniper and HuaWei.

DD provides instructions for QMA, and is responsible for interpreting each
instruction into commands according to the devices’ types in the domain. Instructions
describe advanced tasks to be performed, such as resource reservation and monitoring
task deployment. Completion of such tasks involves a sequence of commands to be
executed in the router. Upper layer can issue high level orders using the instructions,
and DD translates the order into a series of commands correspondently. Thus DD can

realize automatic configuration of network devices, and administrators don’t have to
manually modify routers’ configuration one by one.

Our prototype provides more than 20 instructions, categorized into QoS provision,
monitor task deployment, data collection, router configuration/control, and network
management. The instructions for network management encapsulate SNMP
commands. An instruction example which is interpreted to commands of Cisco
Router (2600, 3600 and 7200 series) is given below.

#MODIFY_SERVICECLASS <19>
@TELNETCONN <1>

Enable

Config terminal
policy-map p-in-<19>
class <17>
police cir <10> bc <11> pir <12> be <13> conform-action set-
dscp-transmit <14> exceed-action drop
violate-action drop
@TELNETDISC

 Note: <N> means the Nth formal parameter of the instruction.

When the script with this instruction (#MODIFY_SERVICECLASS) is executed
by Device Driver, the instruction will be interpreted into a sequence of commands,
completing the task of service class modification. First the API of telnet package
provided by operating system is used to telnet to the router and establishes a
connection (@TELNETCONN). Then password (******) is transmitted to the router.
After authentication, administrator’s priority would be upgraded using command
“enable” and password needs to be input again. Service class is modified in
succession. The command “police” sets the parameters including committed
information rate (cir), confirm burst (bc), peak information rate (pir), exceed burst (be)
and the dscp value attached to packets whose rates are less than cir (set-dscp-
transmit). It also indicates that all packets whose rates are greater than cir will be
dropped. When the task is completed, it disconnects from the router
(@TELNETDISC). These commands will be executed in batch, avoiding
administrator’s interference.

3 Deployment of QoSJava

QoSJava is deployed in each domain of the network and communicates in a
distributed manner. It can be hosted by server farm or just a computer with powerful
computation capability. A deployment example is given in Fig. 2, in which QoSJava
is hosted by server farm. Components of QoSJava are hosted in separate servers.

Fig. 2. QoSJava Deployment

4 Implementation & Experimental Results

A prototype of QoSJava is implemented in the National 863 project of China, whose
purpose is to establish a carrier-class IP network and provide the QoS as in
telecommunication network. QoSJava is the essential part of the project. Fig. 3
presents our testbed, which consists of five domains with different QoS mechanisms
including DiffServ and MPLS, and consists of different network devices from Cisco,
Juniper and HuaWei. We deploy more than 20 routers in the testbed. Some of them
are omitted in Fig. 3 to improve visibility. A management system is also implemented
as an affiliated system to monitor the performance perceived by end users [13].

In our experiment, user subscribes his SLA by a web page. Fig. 4 gives a
demonstration when the user subscribes a VoIP Service. The technical parameters
specified in SLA are translated into resource requirement and admitted by Admission
Control component. Once the SLA is admitted, QoS mechanisms Adapter plus
Device Driver configures the network devices according to the QoS mechanisms and
devices series in the domain.

RouterTest instrument of Agilent and Iperf [12] are used as traffic generators.
Routertest generates 256kb UDP packets at the rate of 171.24Mb/s, flooding link
172.16.4.0 to produce a congestion situation. Iperf [12] is an open source tool for
network performance measurement. It injects packets in router 11.11.11.11 and
congests link/interface 172.16.12.0. The link utilization of a router interface in
congestion situation is illustrated in Fig. 5 in terms of CPU utilization, bandwidth
utilization and packet loss rate.

Fig. 6 compares the performance of Audio service when the user subscribes to
Gold Service and Bronze Service separately. Mobile nodes and correspondent nodes
of VoIP service situate in WLANs (Wireless LAN) and connect to the testbed
through APs (Access Point). In Fig. 6, from top to bottom, the five diagrams illustrate
delay, jitter, packet loss rate, goodput, and network element load. The following
statistics are obtained from the curves: packet loss rate is much less in Gold Service,
approximate 2.6%, compared to 40% average loss rate in Bronze Service. The delay

and jitter are very small in Gold Service, but they increase significantly in Bronze
Service when congestion occurs. Some spikes appear in the curves of Gold Service
because of the noise in the wireless link. The quality of voice is excellent in Gold
Service. But when carried on Bronze Service aggregate, there is obvious incontinuity
in the speech.

Fig. 3. Testbed

Fig. 7 depicts the performance of Video service in Silver and Bronze aggregate.
Before the background traffic is generated, their performances are almost the same.
But after the traffic is injected into the network, the curves show that the Video
performance of Silver Service is much better than that of Bronze Service. Fig. 8 and 9
present the image of a movie, one with QoS (Silver Service) and the other without
(Bronze Service). When congestion happens, the distinction of their performance is
obvious. Experiments are also conducted for other services including video
conference (Netmeeting), on-line games and ftp service. The results are omitted due
to the space constraint.

The experiments prove that, even in the network with heterogeneous QoS
mechanisms and network devices, QoSJava does deliver differentiated quality of
service.

5 Conclusion & Future Work

QoSJava can conceal the heterogeneity of different QoS mechanisms and devices.
Network devices from different vendors such as Cisco, Juniper and HuaWei can be
managed automatically. Moreover, QoSJava is compatible with new QoS solutions
and advanced devices. QoS is provided by software implementation and current
network needs little modification. Therefore the network can evolve smoothly and

legacy investments are preserved. QoSJava is an open and stable QoS management
architecture. It is independent of the evolvement of network technology, QoS
mechanism and application implementation. Consequently, it can adapt to new
service requirements in the future.

When it is put into large scale use, performance and security issues should be
considered carefully. Security mechanisms such as digital signature and encryption
will be added to our prototype. We also think of adding an Access Server to deal with
huge number of concurrent requests to improve the performance. These issues will be
studied in the future work.

Acknowledgement

We would like to thank Xirong Que, Li Jiao, Yidong Cui, Huirong Tian, JunFeng
Xiao for their intelligent idea. And we also want to thank all members of QoSA
project for their hard work on QoSJava implementation.

References

1. Braden, R., Clark, D. and Shenker, S.: Integrated Services in the Internet Architecture: an
Overview, Internet RFC 1633, June 1994

2. D. Grossman: New Terminology and Clarifications for Diffserv, RFC 3260, April 2002
3. E. Rosen, A. Viswanathan and R. Callon: Multiprotocol Label Switching Architecture,

RFC3031, January 2001
4. CADENUS Project Consortium, Deliverable D1.2, End-user services in the Premium IP:

Models, Architectures and Provisioning Scenarios, http://www.cadenus.org, November
2001

5. TEQUILA Project Consortium, Deliverable D1.1, Functional Architecture Definition and
Top Level Design, http://www.ist-tequila.org, September 2000

6. AQUILA Project Consortium, Deliverable D1201, System Architecture and Specification
for the first trial, http://www.ist-aquila.org, June 2000

7. Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie, J.
Wroclawski, E. Felstaine: A Framework for Integrated Services Operation over Diffserv
Networks, Internet RFC 2998, November 2000

8. F. Le Faucheur, L. Wu, B. Davie, S. Davari, P.Vaananen, R. Krishnan, P. Cheval, J.
Heinanen: Multi-Protocol Label Switching Support of Differentiated Services, Internet
RFC 3270, May 2002

9. Xiaohui Huang, Yu Lin, Wendong Wang, Xirong Que, Shiduan Cheng, Li Jiao, Yidong
Cui: QoSjava: An Open and Scalable Architecture Decoupling QoS Requirements from
QoS Techniques, draft-bupt-qosjava-arch-02.txt, http://www.ietf.org/internet-drafts/draft-
bupt-qosjava-arch-02.txt

10. Xiaohui Huang, Yu Lin, Wendong Wang, Shiduan Cheng: PDB-Based SLS
Decomposition in Heterogeneous IP Network, Proceedings of 2004 IEEE International
Workshop on IP Operations & Management

11. Xiaohui Huang, Wendong Wang, Yu Lin, Shiduan Cheng: Resource Manager in
Heterogeneous IP Network, Proceeding of International Conference on Communication
and Information, 2005, to appear

12. Iperf, University of Illinois, http://dast.nlanr.net/Projects/Iperf/
13. Junfeng Xiao, Yidong Cui, Wendong Wang, Shiduan Cheng, A Service Level

Specification (SLS) Monitoring System in Multiple Services IP Network, High technology
Letters, ISSN 1002-0470, published by Executive Office of the Journal, Institute of
Scientific and Technical Information of China, to appear.

Fig. 4. User Interface for signing contract Fig. 5. Congestion Link Utilization

Fig. 6. Audio Performance Comparison Fig. 7. Video Performance Comparison

Fig. 8. Video with QoS in congestion Fig. 9. Video without QoS in congestion

