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Abstract. The growing heterogeneity and scalability of Internet ser-
vices has complicated, beyond human capabilities, the management of
network devices. Therefore, a new paradigm called autonomic network-
ing is being introduced to control, in an efficient and automatic manner,
this complex environment. This approach aims to enhance network el-
ements with capabilities that allow them to choose their own behavior
for achieving high-level directives. This so called autonomic network ele-
ment should be able to optimize its configuration, ensure its protection,
detect/repair unpredicted conflicts between services requirements and
coordinate its behavior with other network elements.

In this paper, we present a research activity that investigates this new
concept, and applies it to facilitate the configuration and the optimiza-
tion of a multi-services IP network. This approach is a first step toward
building a self-configured and self-optimized IP network that automati-
cally supports the QoS requirements of heterogeneous applications with-
out any external intervention. Different paradigms have been explored
in order to model this behavior and to render network equipment au-
tonomic. A laboratory prototype has been developed to highlight the
autonomic behavior of the network to achieve heterogeneous QoS re-
quirements of multimedia and data applications.

1 Introduction

The explosion of Internet technologies, services and applications and their corre-
sponding heterogeneity has exacerbated, beyond human capacity, the complexity
of managing the Internet. Traditional management and control techniques are
no longer capable of ensuring the efficiency and cost effectiveness of existing
and more probably future networks. This problem is already considered as cru-
cial by the research community in almost all computer systems and recently a
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new paradigm has emerged as a potential solution. This paradigm, called self-
ware, is a novel approach to perform network control, as well as management of
middle box communication, service creation and composition of network func-
tionalities. It is based on universal and fine-grained multiplexing of numerous
policies, rules and events that is done autonomously to facilitates desired behav-
ior of groups of network elements [1]. This approach focuses on the application
of analogies from biology and economics to massively distributed computing sys-
tems, particularly in the domains of autonomic computing. IBM is considered
as the first to introduce this term into the field of computing in 2001. This
initiative aims to unify research related to selfware computer systems that are
a capable of being self-managed [2]. Self-management encompasses a number
of selfware management capabilities such as: Self-configuration, Self-optimizing,
Self-healing, Self-protection, Self-awareness, etc.[3].

The concept of selfware is not only applicable to computers but to any system
with processing, memory and communication capabilities. It not only affects the
design of the system but also the applications, middleware, network equipment,
etc. In the networking realm, the objective is to design autonomic networks that
are able to manage themselves in an autonomic way and exhibit a global “intelli-
gence” through their interactions. Our objective in this research is to investigate
this concept and apply it in order to simplify the control and management of
operators’ IP networks. The aim is to aid the operator in the complex task of
managing their networks by allowing them to control the networks behavior
through only high-level goals. The network will automatically adjust its config-
uration to fulfill these goals without any intervention from the operator. This
approach can facilitate cooperation between different administrative domains
that share network devices.

This paper is organized as follows: Section 2 presents the limitations of cur-
rent management approaches that have motivated the investigation of a novel
approach. The following section presents the proposed management architecture.
Section 4 describes the language we have designed to capture the high-level man-
agement goal. The following section details the architecture of the Autonomic
Element (AE) as well as the internal functionalities. A prototype of the system
as well as a set of conducted tests are presented in section 6. The following sec-
tion 7 presents general discussions as well as concluding remarks about this work
and future directions.

2 A Complexity Beyond the Capacity of Existing
Management Systems

Policy Based Management (PBM) is defined as the usage of policy rules to
manage the configuration and behavior of one or more entities [4]. In the PBM
approach, decisions related to the allocation of network resources and/or secu-
rity are taken by a central control entity called PDP (Policy Decision Point),
which concentrates the entire decision-making activity of the system. However,
as the network becomes larger and more heterogeneous and the provided service
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varies with different QoS requirement, these approaches become very difficult to
specify, design and deploy. In the PBM approach, the number of policy rules,
the consistency between the rules and the knowledge expected from the oper-
ator to control the entire network render it very complex to achieve. The only
known solution to deal with this growing complexity in the realm is the complete
decentralization of the decision-making process among the distributed entities.

We consider that the operational parameters (Routing services, QoS ser-
vices, Connectivity Services, . . . ) offered by individual network devices must be
modeled in accordance with an agreed-upon data model. The definition of a
common data model enables the network administrator to map business rules to
the network by refining abstract entities into concrete objects/devices [5]; and
the network designer to engineer the network such that it can provide differ-
ent functions for different requirements which is equivalent to the refinement of
high-level goals into operations, supported by the concrete objects/devices, that
when performed will achieve the high-level goal [5].

In our approach we aim to achieve two main objectives; (1) to avoid the
centralization of the decision making process and (2) facilitate the specification
and the enforcement of operators objectives. We argue that every element in the
network should be autonomic i.e. having the capability to take its own decision
and to supervise several management objectives. The enforcement of this au-
tonomy is achieved by (1) the specification of high-level goals (we have used an
approach based on Finite State Machine theory, where each state represents a
target behavior of the autonomic elements in a particular context), and (2) the
specification of an interaction schema between AEs to coordinate their behavior
and achieve their goals.

3 Autonomic Management Based on Goals

The management of today’s communication systems needs more autonomy and
decentralization. With this in mind, we propose a new management approach
called “Goal-based management”. The aim of this approach is to design a net-
work capable of to organizing itself in such way that the aggregate behavior of
each autonomic element satisfies the high-level operational goals defined by the
administrator.

We define a goal as a semantic association between system resources. By sub-
scribing a Goal, an autonomic element becomes a part of an entire autonomous
domain (i.e. regrouping of elements with a single objective). All the elements
associated with a single Goal are viewed as a single autonomic entity though an
element can be associated to multiple Goals. Consequently, the behavior of an
autonomic element can be driven by one or multiple Goals. The ability of the
autonomic element to deal with multiple Goal definitions (multiple business re-
quirements) is handled by the goal language. The setting of the managed element
allows him to detect unpredicted conflicts between different objectives.

Systems resources (autonomic elements) inherit their properties and relation-
ships from a general information model, which we have defined to model both



4 Lehtihet, Derbel, Agoulmine, Ghamri & van der Meer

AE behavior and communication mechanisms. The knowledge associated with
these relationships is essential for almost all autonomic management functions.
However, it is not sufficient to only establish the relationships between resources
but it is also important to capture the semantics of these relations. In fact,
without this explicit meaning the resolution of a problem is not possible [6]. As
depicted in fig.1, our framework is organized into two layers:

– “Goals” specification layer: its aim is to define the high-level objectives
(Goals). This layer introduces a number of “goal specifications” in the net-
work that allows the specification of Goals in terms of explicit behaviors
expected from the target autonomic elements in various contexts. . In this
first approach, the goals are specified as a state machine representing dif-
ferent possible network element behaviors as well as transition conditions
between these states. These Goals drive the network equipment’s behavior
to exhibit self-management capabilities. This entity is called “Goal Server”.

– “Goals” execution layer: the lower layer contains a set of autonomic network
elements (AE) that behave in an autonomic manner while trying to achieve
the high-level goals. The autonomic equipment is self-managed and capable
of adapting it’s behavior according to the context. The context of an AE
corresponds to all the information about its environment i.e. its local state,
remote AE states, active services, etc. AEs are able to interact in order
to exchange knowledge and update their context. In real networks, these
elements can be routers, switches, gateways, software,. . .

a. Goal-based network architecture b. Multiple overlapped autonomous
domains sharing common resources

Fig. 1. Goal-based Management

4 A Language to Capture Goals Description

In order to facilitate interoperability between management entities in the context
of autonomous management, it is necessary to define a shared understanding of
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both domain information and the problem statement. Unless each autonomic
entity in a system can share information with every other autonomic entity and
so contribute to an overall system awareness, the vision of autonomic commu-
nications will not really be reached. Thus, we need a common data model to
represent all resources in a uniform manner [6].

To achieve this objective, we need a language to express the specification of
the Goal. Instead of developing a specific language, we have chosen to extend
an existing one. This extension of the language is done at the metamodel level
i.e. where the language itself is defined. We have added the necessary primitives
to the language to model a Goal. Our reference information model is the Com-
mon Information Model (CIM) from the DMTF [7]. In the following, we will
describe how we have extended this model to fulfill our requirements. As shown

Fig. 2. Specification of the Goal Language

in the fig.2, the Goal concept is a specialization of a CIM Class. Like the CIM
Notification concept depicted in the CIM Meta Schema, the managed elements
have to subscribe, via an association, to a particular Goal. This subscription is
called the Goal-distribution process and is detailed in section 5. The instances
of the Goal conform to the CIM-XML mapping for the CIM Classes as provided
by the DMTF [8], see fig.3. The Goal structure aggregates new extensions to
the CIM Schema. Every extension is a specialization of a CIM Named Element
and conforms to the CIM-XML representation of the properties, methods and
parameters. We have added specific Qualifiers to every new structure of the
CIM Meta Schema in order to capture the additional semantics to represent a
Goal. The Goal concept is in fact a grouping of elements that permit to achieve
a set of management objectives in specific contexts. We have structured the
Goal as an aggregation of “Goal-Behaviors” and a “Goal-Setting”. The Goal-
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Setting determines the behavior of the Goal according to a particular context
and describes the AE’s Role, Location and Identifier. It is also a composition of
management data locating the other peer AEs sharing the same Goal (Element-
Setting) and describing the management context of the user’s application services
(Application-Setting). The Application-Setting aims to represent the user-level
and the business-level requirements. This Application-Setting is specific to our
case study; a more generic representation of the management context should be
proposed in future work.

Every Goal-Behavior aggregates a set of Configuration, Monitoring, and Con-
text specifications. The State is the unique identifier for the behavior of a Goal.
The Behavior-Configuration of an AE corresponds to the execution of platform
specific code correlated with the expected behavior. The Behavior-Monitoring
implements the listeners for the exact type of Context-Events that need to be
considered by the element in a particular state. Context-Event defines the oc-
currence of (1) low-level events collected by the sensors and provided by the
platform-specific listeners, and (2) high-level events (messages) coming from
goal servers and/or other AEs. The Behavior-Context part conforms to the
Goal-Setting and identifies the collected events (Context-Event), and the equiv-
alent actions (Event-Action), to achieve the Settings of the Goal in a particular
context (behavior’s state). A Context-Event is triggered from the monitoring
module when sets of conditions are realized. These conditions are implemented
in the system level of an AE by a set of activated sensors. When a Context-
Event is verified, it triggers the execution of a set of Event-Actions according
to the new context. An Event-Action specifies the execution of some platform-
specific code and/or the emission of messages to the Goal Servers and other
AEs. Here again, the internal implementation of the AE, which is specific to an
execution environment, must match the description of the Event-Action. These
actions can be reflexive i.e. change behavior state, or reactive i.e. change the
Behavior-Configuration of the element and/or trigger changes in the behavior of
other AEs. Changes in the AE’s state trigger a specific re-configuration of the
element, to apply the Context related to this new state.

The Behavior-Context module specification conforms to the Goal-Setting and
it identifies the collected events, and the equivalent actions for realizing the
settings of the Goal in a particular context (behavior’s state).

The Goal representation as a Finite State Machine seems to be implicit in
our case. The Goal aggregates multiple behaviors. Each behavior represents a
State and is modeled by a set of configurations and policies to enforce as well
as a set of sensors to activate. The transition between the states is defined
by the Context according to the Setting. In simple terms, autonomic elements
tailor their behavior to user- and business-requirements. The complete XML
representation of the goal is presented in the fig.3. The AE is aware of the network
context via the Goal-Setting. Conflicts are detected when the Context-Events,
from different Goal instances, reported by the Behavior-Monitoring module do
not conform to the Application-Setting of all the Goals. In this case the AE
collects the Behavior-Context identifiers and sends them to the Goal Servers. The
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Fig. 3. Goal Representation in CIM-XML format

problem can be temporarily solved by assigning priorities to the goals depending
on predefined policies between autonomic domains.

The Goal-language supports the communication mechanism between AEs
and the Goal Servers. Every element exchanges information (knowledge) in a
common specification. The Element reasons with this knowledge by applying
the Goal configurations, monitoring the system events, detecting/reporting con-
figuration conflicts and adapting its behavior (changing state).

5 Autonomic Element Architecture

The role of an AE is to satisfy the goals specified by the administrator through
the Goal Server during its initialization, to interact with its peers in order to
propagate knowledge, and provide a global “intelligence” for achieving the de-
sired goal in a cooperative manner. The AEs can assign priorities to the en-
forced goals and reason with them i.e. loading behavior modules, configuring
state and apply settings conforming to the contexts of the behavior. Therefore,
the business-level and the user-level objectives are managed in a completely de-
centralized manner and conflicts can be solved more easily. When an AE faces a
conflict, it takes it own decision depending on its knowledge and sends an event
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containing a Goal and Behavior-Context Identifiers, responsible of the conflict,
to the Goal Servers. This event will help the administrator to understand the
behavior of its network in order to enhance the specification of his goals and
solve the unpredicted configurations conflicts.

As shown in fig.4, the reasoning capabilities of an AE are distributed be-
tween four functional modules that compose its internal architecture: monitor-
ing; analyzing; planning and execution. Hence, the AE exhibits communication
capabilities that allow it to interact with its environment. At initialization, the
AE subscribes to autonomous domains via the Goal-distribution process. This
process defines how an AE is associated to an autonomous domain and corre-
sponding goal. A Goal can be enforced in many AEs (1-N) and an AE can be
associated to several Goals (M-1). The administrator defines the set of elements
that are required to achieve a Goal. This is accomplished using our defined Goal-
language. Once a goal is specified, the Goal-distribution process is performed in
two phases. In the first phase, every AE subscribes to a Goal via the Goal Server
(GS). The role of the GS is to complete the Setting of the Goal by referencing
every entity participating in its realization (autonomic domain elements). The
identification process assigns a unique ID and a role to every AE (this can also
be configured directly in the AE during its local configuration). The interactions
between AEs are determined by their role, thus every AE is aware of its role in
the autonomic domain. Once the Goal-Setting is completed, the AEs download
the goal specification and use it to drive their behavior.

The internal architecture of our Autonomic Element is presented in fig.4.
This architecture is aligned with the one presented in [2] and is composed of
a number of functional modules that enable the expected autonomic behavior.
The Control Module allows an AE to interact with other AEs as well as with
its internal and external environment. It introduces two entities called sensors
and effectors. Sensors provide mechanisms to collect events from the environ-
ment while the effectors allow the configuration of its managed resources. In
our work, the Control module affects mainly the configuration of the underlying
traffic engineering mechanisms of the IP router; in our test-bed, we have used
the Linux Traffic Control TC tool [9]. The Monitoring Module provides differ-
ent mechanisms to collect, aggregate, filter and manage information collected by
sensors. Whereas, the Analyze Module performs the diagnosis of the monitor-
ing results and detects any disruptions in the network or system resources. This
information is then transformed into events. The Planning Module defines the
set of elementary actions to perform accordingly to these events. These actions
can be atomic Behavior-Configuration (e.g. QoS class modification, QoS class
creation/removing,. . . ) or Event-Action installation (e.g. configuration actions,
messages, change behavior). The Execution Module provides the mechanisms
that control the execution of the specified set of actions, as defined in the plan-
ning module. It mainly translates the Behavior-Context into calls in the Control
module.

Once the goals are specified, the workflow interaction between the different
modules of the AE allows the router to behave in an autonomic manner without
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Fig. 4. Autonomic Element Architecture

any human intervention. The behavior defines two levels of control over the
instrumented managed resources and the AE as a whole. The local control loop of
the AE (change Behavior-Configuration) allows reactive behavior, to situation
changes in the AE, to be enforced. Another general loop, called global control
loop permits to achieve a reflexive behavior in the AE (behavior changes)
according to more important changes in the context.

6 Experimentation

We have implemented a proof-of-concept prototype of an autonomous network
that exhibits self-configuring and self-optimizing behaviors in fulfilling high-level
goals. The aim of our prototype is mainly to demonstrate the ability of the net-
work to control its own behavior, without human intervention, while all the time
meeting the QoS requirements of heterogeneous user applications. The supported
applications are FTP, Voice over IP and MPEG Video streaming. Our deployed

Fig. 5. Test-bed Architecture

test-bed, as shown in the fig.5, is composed of three routers (Edge Router ER1,
Core Router and Edge Router ER2), a Goal Server, an Application Server and
two client terminals supporting different types of applications (FTP, VoIP, Video
Streaming). In this example, we have used a simple application identification
technique based on a combination of layer 3 and 4 information (Port numbers
and IP Address).
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The high-level goals are defined by an authorized authority using the Goal
Server (GS). The goals are specified to ask autonomic routers to adapt au-
tomatically their behavior and exhibit a self-configuration and self-optimizing
properties according to the applications that are running in the network and the
network capacity. In our scenario, the goal specification defines three behaviors
for the AEs: BE (Best Effort), PQ (Priority Queuing) and DiffServ (Differenti-
ated Service). The goal is enforced in the autonomic router using the GS. This
goal is interpreted by the autonomic router, which in turn enforces it locally i.e.
execute corresponding low-level configurations, monitoring actions and enforce
the corresponding context rules. These rules define the local configuration para-
meters of the router. More particularly, it defines the configuration of each router
interface in term of scheduler, queue management, and buffering according to
the context i.e. running applications streams, traffic load, etc.

At the starting of the experimentation, every router interacts with the GS to
download their associated goal. The goal specification contains (1) the behavior
specification of the autonomic router according to its role, (2) the applications
identification and QoS requirement specification. In our experimentation, we
have only two roles: Edge Router role and Core Router role. During time, an
autonomic router interacts with a peer autonomic router to exchange context
information, which allows him to have a global view of the network behavior and
reacts immediately when any change occurs (new application launch, per class
QoS degradation, etc.). The objective of this experimentation is to highlight the
capability of an autonomic router to evaluate a situation and react accordingly to
try to fulfill its assigned Goal. Figure 6 shows the evolution of the configuration
of Classes of Service (CS) as well as the distribution of bandwidth between
these classes. This evolution of the CS configuration corresponds also to a self-
adaptation of the autonomic router behavior. Once the initialization phase is

Fig. 6. Experimental Results

complete, all the routers initialize their behaviors to BE. This default behavior is
motivated by the existence of only one type of application stream in the network
(same priority); therefore only one class of service CS is needed (BE) to support
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this application. All the available bandwidth is allocated to the BE class. During
time, ER1 detects the launch of a new application (VoIP application) through
its sensors and using its knowledge base identifies its Settings i.e. the targeted
QoS. Based on these properties, it determines the most accurate actions to adopt
in order to maintain the QoS objectives (reflexive behavior). This situation is
depicted in fig.6 at t=60 sec. At this instant, ER1 informs the peer Core router
about this new situation (cooperative behavior) so that they cooperatively find a
solution and take the most accurate actions. In this case, the cooperative decision
is to adopt the “PQ” behavior, which allows to support the QoS for two classes
of application, one with low delay requirement and the other with best effort
requirement. The bandwidth distribution between the two classes is controlled
by a shaper, which ensures that the low priority class is not starved by the high
priority class. Thus, the routers synchronously change their behaviors from BE
to PQ.

ER1 continues to monitor any new application traffic using its sensors while
the Core router controls the aggregated QoS for each class of service. In the
case where it detects a high loss rate for the higher priority service class, it
sends a notification (PQ) to the ER1 and a reconfiguration automatically occurs
to redistribute the bandwidth between the two classes more efficiently. In the
same figure, we can see that at t=126 sec ER1 has detected the launch of a sec-
ond VoD application and immediately triggers a notification to inform the core
router. The later then reconfigures itself automatically by changing the band-
width distribution between the higher and the lower classes. At t=180 sec, a
new application with the highest priority is detected. Three types of application
are now running at the same time in the network. In order to maintain the QoS
objective of each application, three different classes of service are necessary. The
autonomic router’s behavior then changes automatically from “PQ” to “Diff-
Serv” and three classes of services are defined: Expedited Forwarding for VoIP;
Assured Forwarding for VoD and Default Class for Best Effort traffic.

For our prototype to have a global view of the network, a number of monitor-
ing sensors have been installed in the autonomic routers that collect information
about their behavior and their context. This information is collected by a mon-
itoring application and presents it in a useful manner to the administrator. The
monitoring application presents also a topology map of the autonomic network
as well as tables, statistics and graphs related to the autonomic routers’ behav-
ior, existing service classes, bandwidth occupation per class, and loss rate per
service class.

The objective of this experimentation was to highlight the adaptive behav-
ior of the routers based on the context. The tests have shown that the network
effectively has achieved the enforced goal through the local behavior adaptation
of AEs and their exchange of context information. Nevertheless, it is important
to note here that the objective was not to highlight the benefit of having three
types of scheduler in the network but rather the benefit of autonomous and co-
ordinated behavior-adaptation, causing automatic router re-configuration based
on the network context.
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7 Conclusions and Perspectives

In this paper we have introduced an initial approach for introducing autonomous
capabilities into IP routers. The idea behind this work is to show that it is pos-
sible to model a goal in terms of a state machine that specifies the expected
behaviors from target autonomic elements in various situations. Conforming to
the goal, network elements take stand-alone decisions based on their local in-
formation collected from cooperative autonomic peers. We have extended the
CIM in order to introduce the new concepts necessary to model a goal and we
have specified a global architecture based on a Goal Server (GS) and Autonomic
Elements (AE). We have implemented this concept in a small-scale test bed
that allowed us to validate some aspects of the model and highlight the AEs
autonomous behavior. The obtained results are very promising and have shown
that some aspects of autonomic networks are realizable and simplify the tedious
work of IP network configuration and optimization. However, this work should
be seen as a first step towards the achievement of a truly autonomic network.

In the future we aim to use our model for a large scale IP network where the
interactions and the behavior coordination between autonomic routers will be
more complex. We will consider the case of a unique domain or multiple over-
lapped autonomic domains fulfilling different goals. The modeling of autonomic
behavior and the introduction of cognitive and cooperative capabilities based
on a generic representation of the management context are certainly the most
important issues that we will address in future work.
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