
Multicast Tree Construction with QoS
Guaranties

O. Moussaoui1, A. Ksentini1, M. Naïmi1, A. Gueroui2

1LICP EA 2175, Université de Cergy-Pontoise- 2 Av Adolphe Chauvin 95302
Cergy-Pontoise – France

{omar.moussaoui, adlen.ksentini, mohamed.naimi}@dept-info.u-cergy.fr
2PRiSM CNRS, Université de Versailles- 45, Av des Etats-Unis 78035

Versailles – France
E-mail : mogue@prism.uvsq.fr

Abstract. Multimedia applications, such as videoconferences, require an
efficient management of the Quality of Service (QoS) and consist of a great
number of participants which requires the use of multicast routing protocol.
Unlike unicast protocol, multicast protocol handles a great number of users
while minimizing both network overhead and bandwidth consumption.
However, combining multicast routing and QoS guarantee is a hard
challenging task, known as the delay and delay variation multicast problem.
This problem is considered as an NP-complete problem, and is resolved only
by heuristic solutions. In this paper, we propose a scalable multicast algorithm
that tackle the delay and delay variation by exploiting the Hierarchic Tree
construction concepts. In fact, the proposal algorithm guarantees QoS by: (i)
reducing the network charge; (ii) decreasing the multicast delay variation. We
compare the performance of our algorithm against the DDVCA (Delay and
Delay Variation Constraint Algorithm) scheme and demonstrate lower
multicast delay variation and efficient bandwidth utilization while
maintaining lower time complexity.

1 Introduction

The demand for multimedia that combines audio, video and data streams over a net-
work is quickly increasing. Among the most popular real-time interactive applications,
videoconferences and games require a considerable amount of bandwidth and a great
number of participants. In this context multicast is regarded as a promising solution for
group multimedia applications. In fact, multicast is a bandwidth-conserving technology
that reduces traffic by simultaneously delivering a single stream of information to thou-
sands of corporate recipients or groups. Multicast delivers source traffic to multiple
receivers without adding any additional burden on the source or the receivers while using
the least network bandwidth of any competing technology. Multicast packets are repli-
cated in the network through routers enabled with multicast protocol and other support-
ing multicast protocols resulting in the most efficient delivery of data to multiple receiv-
ers possible. All alternatives require the source to send more than one copy of the data.
Some even require the source to send an individual copy to each receiver. If there are
thousands of receivers, even low-bandwidth applications benefit from using multicast.
High-bandwidth applications, such as H.264 video, may require a large portion of the
available network bandwidth for a single stream [1]. In these applications, the only way

to send to more than one receiver simultaneously is by using multicast. Several protocols
were proposed in the literature [2], [3], [4], [5] aiming to propose a multicast protocol.
However, the majority of them are not scalable, which means not adaptable to the net-
works of great dimension like Internet. By limiting the deployment of these protocols,
the Internet is becoming the unavoidable network. Furthermore, these protocols work as
best effort protocols [6], so they cannot handle sensitive traffics such as video conference
and real time game. Indeed, these applications require that all the destination nodes must
receive the same data simultaneously; otherwise the communication may lose the feeling
of an interactive face-to-face discussion. Thus it is important to sustain good QoS sup-
port while proposing a scalable multicast protocol. This constraint is related to the multi-
cast Delay and delay-Bounded Multicast Tree (DVBMT) problem [7]. Although this
problem is considered as NP-complete hard problem, there are some heuristics that are
proposed as a possible solution [7], [8].

In this paper we tackle the DVBMT problem by proposing a novel scalable multicast
algorithm, which produces multicast tree while maintaining a good sustained QoS. The
main idea is to combine a hierarchic tree construction with efficient multicast grouping
concepts. Firstly, like [9], we decompose the multicast group into local groups based on
delay constraint and user’s station capacity. This allows us to have several groups with a
reduced intra group delays. Afterwards, we select a server that minimizes the delay varia-
tion with the others selected nodes from each group. From the server’s set obtained, we
choose a core nodes or rendezvous points. Finally, we use both the hierarchical trees and
the core nodes to connect these multicast group members. Thus, we solve the DVBMT
problem by decomposing the problem into two parts: (i) end to end delays which is
solved by constructing local group with minimum delays; (ii) multicast delay variation
solved by joining the hierarchic tree construction with the core nodes concepts.

The rest of the paper is organized as follows: In section 2, we give an overview of
QoS and multicast protocols. Section 3 presents details of the proposed algorithm. Then,
in section 4, we evaluate the proposed scheme by simulation model. Section 5 concludes
this paper.

2 Multicast and QoS Overview

Algorithms for the tree construction in multicast protocols can be categorized as fol-
lows: Source-Based Algorithms (SBA) and Core-Based Algorithms (CBA) [10].

SBA constructs a specific tree where the tree’s root is the source node and the leaves
are the multicast group’s components. SBA is currently used as the tree construction
algorithm for Distance Vector Multicast Routing Protocol (DVMRP) [2], Protocol Inde-
pendent Multicast Dense Mode (PIM-DM) [3], and Multicast Open Shortest Path First
(MOSPF) [4].

CBA is used in the context of many-to-many multicasts. Actually, the core-based al-
gorithm selects a core node as multicast tree’s root. Afterwards, a tree rooted at the core
node is constructed to span all members in the multicast group. Therefore it is very im-
portant to select the best core node as much as possible. Thus messages generated at the
source are sent to the core node, and they are distributed to destinations through this core
node. Multicast protocols using CBA as a tree construction algorithm include Protocol
Independent Multicast Sparse Mode (PIM-SM) [5] and the Core-Based Tree (CBT)
protocol [11]. The core-based algorithms are highly suitable for sparse groups and scal-
able for large networks. They provide excellent bandwidth conservation for receivers.

In addition to the need of scalability, group based multimedia applications also de-
mand stringent QoS requirements such as bounded end-to-end delay, multicast delay
variation and the efficient use of the bandwidth. The multicast end-to-end delay stands
for an upper bound of all end-to-end delays associated with the paths from the source
node to each of the destination nodes. The purpose of setting this parameter is to limit the
time for message transmissions in the network. If the end-to-end delay exceeds the upper
bound, the message will be counted useless. The multicast delay variation is the differ-
ence of the maximum end-to-end delay and the minimum end-to-end delay among the
paths from the source node to all the destination nodes has to be kept within. Enabling
this parameter allows all the destination nodes to receive the same data simultaneously as
much as possible. The issue first defined and discussed in [7] is to minimize multicast
delay variation under multicast end-to-end delay constraint. In fact, the authors tackle the
DVBMT problem by proposing a heuristic solution called Delay Variation Multicast
Algorithm (DVMA). DVMA constructs at first the tree by considering only the end-to-
end delay constraints. Afterwards, the tree is enhanced by considering the multicast delay
variation constraint. At the end, DVMA’s algorithm returns a feasible tree, which mini-
mizes the end-to-end delays and optimizes the multicast delay variation. Nevertheless,
the main weakness of DVMA is time complexity. Actually, DVMA exhibits a high time
complexity about O(plmn4), where in the worst case, the maximum value that p and l can
take is equal to the maximum number of paths of the tree, m is the size of the multicast
group M, and n is the number of nodes in the network. Accordingly, this time complexity
does not fit in modern high-speed computer network environment. Delay and Delay
Variation Constraint Algorithm (DDVCA) presented in [8] aims to solve the DVBMT
problem by proposing another heuristic solution with lower time complexity than
DVMA. DDVCA’s algorithm is based on the Core Based Tree (CBT). In fact the authors
propose to build the multicast tree around one core node, which is selected as the node
with the minimum delay variation with all the others nodes present in the multicast
group. Thus it has been shown that DDVCA outperforms DVMA in terms of the multi-
cast delay variation of the constructed tree. Furthermore, DDVCA shows lower time
complexity than DVMA, which is equal to O(mn2). Nonetheless, if we consider the net-
work utilization, we see that DDVCA exhibits high network charge around the core
node. In fact, all the multicast session’s packets transit through the core node, which
leads to network congestion in the neighboring of the core node. Furthermore, when
packets arrive to the core node from the sender, this last one resends these packets to the
leaves using a unicast routing protocol. Therefore, DDVCA looses the benefits of using a
multicast routing protocol.

To overcome these limitations, we propose an algorithm which allows efficient
communication between the multicast group’s members by supporting QoS constraints.
The proposed algorithm solves the DVBMT problem by constructing a hierarchical tree
based on delay and multicast delay variation. Firstly, we decompose the multicast mem-
bers into a disjoint local groups based on their localization and their response to applica-
tion QoS requirement. Thus we obtain local groups with minimum intra-group delay.
Afterwards, from each group a server is selected, where the server is the node that mini-
mizes the multicast delay variation with the others group’s node. At this point we have
the first level of the hierarchical tree. Secondly, we select a core node from the server
sets, and this core node is the server which minimizes the multicast delay variation with
the others selected server. Here we are able to construct the second level of the hierarchi-
cal tree. In fact, based on this core node we build the autonomous domain (AD). The first
AD contains a set of groups, where the delay from the core node to each group’s server is
less than a predefined threshold. From the server sets that not belong to the first AD, we

elect another core node. This second core node is the server that minimizes the delay
with the first core node. Through this second core node we create another AD. Thus we
redo the procedure of AD creation until we incorporate all the local groups into different
AD. At the end, we construct a hierarchical tree with core-based algorithms. However,
unlike DDVCA where the tree construction is based only on one core node, we extend
this construction of the tree on several core nodes. This allows us to share out the net-
work charge around different core node, leading to minimize the bandwidth consump-
tion. Further we limit the use of the unicast mechanism only at the intra local group
communications.

3 Description of the Proposed Algorithm

To illustrate the proposed algorithm, we will use directed graph ()EVG ,= to denote
a network, where V is a set of nodes or routers and E is a set of directed links, respec-
tively. Each link () Eji ∈, is associated with delay ijd . The delay of a link is the sum of
the perceived queuing delay, transmission delay, and propagation delay over that link.
Here we note a path as sequence of nodes vkjiu ,,...,,, , where
() () () Evkjiiu ∈,,...,,,, . Let () () () (){ }vkjiiuvuP ,,...,,,,, = denotes the path from node
u to node v, so a simple path is a path where all its elements are distinct. At this point a
multicast group GM ⊆ is constituted by m processes (participants) distributed geo-
graphically on the Internet network. Moreover, these processes participate at the same
multimedia application such as videoconferencing. Note that, communication between
two processes mi and mj can take different path.

3.1 Local Groups’ Construction

Considering the high number of participants in multicast group M, it appears essential
to divide them into local groups according to their concentration in the various areas of
the Internet. This decomposition allows to: (i) efficiently use the bandwidth; (ii) reduce
the consumption of resources; (iii) optimize the delay; (iiii) ensure communications
between processes.

At first we begin by constructing the neighboring sets NSi for each process mi accord-
ing to two conditions: the round-trip delay and packets Time to Live (TTL). Actually,
each mi sends a request packet along its multicast groups by using the Internet Protocol
(IP) multicast addresses. In the current IP multicast architecture, a globally unique class
D is allocated to each group to identify the set of destination hosts belonging to the
group. Through the responses obtained from the multicast group, mi selects the process
mj to include into the NSi by checking if the TTLij from mi to mj (decremented hop by
hop) is not null and the Round-Trip Delay RTDij between mi and mj is less than a given
threshold of delay SupD (1). In other word, the path from mi to mj is the shortest in terms
of delay. According to this selection, we divide the multicast group onto a set of NSi with
low intra-communication delays.

{ }0&&/ fp ijijji TTLSupDRTDMmNS ∈= (1)

 Fig. 1. Construction of local groups

At this point, each mi has its own NSi. However, this is insufficient if we consider the
different process’ capacities in terms of media unit processing time and the generated
rate of media units, noted mpti and σi, respectively. In this context we must refine the NSi
in order to take the process’s capacities into account. To this end, each mi carries out
evaluations on its capabilities of processing and buffering of media units, in order to
choose the mj which will constitute its new enhanced NSi. Here we note this enhanced
NSi, by the transit group TGi. Thus each mi elects the mj process that composes its transit
group according to both (2) and (3). In fact these two constraints allow that mi selects the
other process in respect to its capabilities to handle data flow coming from its neighbors.
Thus a process mi must be able to: (i) process all media units generated in the same time
by its neighbors in a time duration not exceeding the time allocated to the processing of
media units; (ii) store all media units coming on different paths between mi and its
neighboring processes.

 1* <
















∑
∈

i
NSm

j mpt
ij

σ (2)

 i
NSm

ijij BCB
ij

<∑
∈

)((3)

Where Bi represents the maximum buffer space available at the process mi, and Bij de-
notes the buffer size at mi and Cij is the path between mi and mj. Therefore, since mi
founds that neither (2) nor (3) are feasible when adding another mj to the TGi, the process
stops and the TGi is finalized.

Once transit groups are built, each process knows the members of its own set and the
paths that connect it to them. However, some processes can belong to several transit
groups at the same time. To solve this problem, a mechanism must take place to remove
useless connections. Each process must broadcast its transit group to its neighbors. Once
these packets are received, each receiver mi selects the maximum of the processes exist-
ing simultaneously in these groups of transit (I

iTGj ji TGLG
∈

=). If a process belongs
to several local groups, then this process is placed into the smallest LGi in size. This
allows to equally balancing the process number in these groups.

Thus, the multicast group M is divided into local sub-groups (Figure 1). Each element
of M belongs to only one local group. After that a local server and a secondary server are
elected to represent each local group. In other terms, a process communicates with the

 Shortest path
 Processes
 Local server

S1
S3

S2

Local groups

other participants of the multicast group only through the server of its local group. The
local and secondary servers are the processes that minimize the multicast delays with the
others process, meanwhile these servers must have the maximum processing capacity.
Note that, the principal role of the secondary server is to replace the local server if this
last leaves the multicast group or it crashes (break down). For completeness, we draw in
Figure 2 the local group algorithm construction.

Let G=(V, E) a computer network and M={m1, m2, …, mm} a set of participants in group
multicast M.
Begin

1. for each process Mmi ∈ do //construct a neighboring set NSi of mi

2. { }0&&/ fp ijijji TTLSupDRTDMmNS ∈=

3. end of for each Mmi ∈ loop

4. for each process Mmi ∈ do //construct a transit group TGi of mi
5. 0,0 == Bσ //σ and B are temporaries variables
6. for each process ij NSm ∈ do

7. ijj BBB +=+= ,σσσ

8. if 1* pimptσ and iBB p then { }jii mTGTG U=

9. end of for each ij NSm ∈ loop

10. end of for each Mmi ∈ loop

11. for each process Mmi ∈ do // construction of local groups

12. I
iTGj ji TGLG ∈=

13. end of for each Mmi ∈ loop
14. for each local group LGi do // election of local servers
15. elect local server Si and secondary server SSi
16. { }iSUΓ=Γ and k=k+1
17. end of for each local group LGi loop
18. for each local server Γ∈iS do

19. for each ij LGm ∈ do

20. Si joins mj by the path which has a minimum round-trip delay.
21. end of for each ij LGm ∈ Loop

22. end of for each local server Γ∈iS
End of the algorithm

Fig. 2. Algorithm of local groups’ construction

3.2 Multicast Tree Construction between Servers

Let us consider k local groups are built and each group has its local server (Figure 1).
Here Г= {S1, S2, ..., Sk} is the set of these local servers distributed in different networks.
It is important to note that the number of these servers can be very high and several

sources can belong to the same multicast group. Accordingly, it is necessary to build a
multicast tree which links these servers while reducing the multicast group’s participants.
In this context, like DDVCA, we propose the use of core-based tree. However, we based
the tree construction on several core nodes instead of one, aiming to avoid congestion
problem. These core nodes are selected from Г, by considering the servers which mini-
mize the multicast delay variation with the others Г’s servers.

Table 1. Packets and data structures employed

Type Arguments function
INIT adrSi: address of the local server Si

TTL: Time to Live
adrM: address of the group multicast

initialization
packet

ACK adrSj: address of the sender Sj
adrSi: address of the receiver Si

acknowledgement
packet

SUCC adrSi: address of the new indicated core node Si
adrCNj: address of the core node predecessor of Si
$: set of local servers which do not yet belong to any autono-
mous domains of core nodes already created
MAT: matrix allowing to store the minimum delay between the
elements of $ and core nodes in the multicast tree

successor packet

Initially, each local server broadcasts hop by hop an initialization packet INIT (Ta-

ble1) at the multicast group M address. All members of M that are not servers delete the
received packet, while the other nodes (server Si) carry out the following operation:
- Response to the sender server Sj with an acknowledge packet ACK.
- Compute the minimum delay ()ji SSd ,min between it and Sj by using Dijkstra’s
algorithm [12].
- Memorize the address of Sj and the value of delay ()ji SSd ,min .
Finally, each server Si calculates its multicast delay variation through:

() (){ }kjSSSSdSSd kjkijiSi

≠Γ∈∀−= ,,/,,max minminδ (4)

From this point each server exchanges the multicast delays variations values with the
other local servers. Thus the server that minimizes the multicast delay variation will be
elected as the first core node and noted CN1 ({ }Γ∈= iSCN S

i
/min

1
δδ).

Afterwards, the first core node CN1 builds its Autonomous Domain AD1 by selecting
all local servers of Г that are accessible through a delay time lower than a given threshold
of delay D (the threshold D is selected by taking account of the network extent).
These allow us to build an Autonomous Domain with a minimum intra-delay communi-
cations.

Fig. 3. Hierarchical structure of multicast group

Table 2. Delays between core nodes and servers of $

 Si Sj …
CN1),(1min iSCNd),(1min jSCNd

CN2),(2min iSCNd),(min ik SCNd

…

Here, all the other servers that are not in CN1’s domain will be stored in $ such as

AD1: $ = Г \ AD1. Then, CN1 stores the minimum delay between it and all servers of $ in
the matrix MAT (Table 2). After that CN1’s AD is built, and CN1 gives the relay to an-
other server in order to build the next AD. This is made by sending a SUCC packet to the
nearest server Si belonging to $. In other words, Si is the server which minimizes the
delay with CN1 (),(1min iSCNd). Finally, CN1 joins the members of its autonomous
domain AD1 via the shortest path tree while the root is CN1.

Meanwhile, when a local server Si receives a SUCC packet from CN1, this means that
Si is promoted as new core node noted CN2. Accordingly Si carries out the following
operations:
- Select all servers of $ (the set of servers which are not in the domain of CN1) having a
delay smaller or equal to the threshold D and put them into its autonomous domain AD2:

(){ }DSCNdSAD ii p,/$ 2min2 ∈= .
- Remove from $ the selected servers: $= $\AD2.
- Remove the columns of the matrix MAT corresponding to the elements of its domain.
- Add a line into MAT to store the minimum delay between it and all servers of $: which
do not belong to any domain.
- Search the smallest value of delays in MAT and take the pair (CNp, Sq) corresponding to
this value. In other terms, CN2 selects the server Sq which minimizes the delay with
already created core nodes (CN1 or CN2).

Autonomous
domains

CN1

CN2

CN3

CN4

CN5

Core nodes

Processes
Local group
Source
Local servers

- Send a SUCC packet to the new core node Sq noted CN3.
Finally, CN2 joins its domain members and the predecessor core node CN1 via the short-
est path tree where the root is CN2. Once the new core node CN3 receives the packet
SUCC, it makes the same thing as CN2. Note that the AD building process is ended when
$ is empty or in other words, until all servers are connected to the multicast tree (Figure
3). For completeness we draw in Figure 4 the multicast tree construction algorithm.

Let Г= {S1, S2, ..., Sk} be a set of elected local servers.
Begin

1. for each local server Γ∈iS do
2.),(min ji SSd = the minimum delay between iS and jS , where Γ∈jS (the
 minimum delay is computed by Dijikstra’ Algorithm)
3. end of for each local server Γ∈iS loop
4. for each local server Γ∈iS do //calculate the multicast delay variation of iS
5. () (){ }kjSSSSdSSd kjkijiSi

≠Γ∈∀−= ,,/,,max minminδ
6. end of for each local server Γ∈iS loop
7. NewCN iS , where { }Γ∈= jSS S

ji
/min δδ // the server which has a mini-

mal multicast delay variation represents the first core node
8. $ Г, Predecessor NewCN and SetCN Ø
9. while $ ≠ Ø do
10. CNi NewCN, SetCN SetCN U {CNi}, Pred(CNi) Predecessor
11. (){ }DSCNdSAD jiji p,/ minΓ∈= //CNi builds its autonomous domain
12. CNi joins member of its domain ADi and its predecessor Pred(CNi) by
 the shortest path tree which root is CNi
13. $ $ \ ADi, removes ADi from columns of MAT and adds line corresponding to
 { }$/),(min ∈iii SSCNd in MAT
14. NewCN Sq and Predecessor CNp, where
 () { }SetCNCNSSCNMATSCNd jkkjqp ∈∈= $,/),(min,min
15. end of while loop

End of the algorithm

Fig. 4. Algorithm for multicast tree construction between local servers

3.3 The Time Complexity of the Algorithm

In order to determine the complexity of the proposed algorithm, we consider the
following lemma:
Lemma. The worst case complexity of the algorithm is O[(k+1)n2

], where k is the num-
ber of selected local servers and n is the number of nodes in the network.
Proof. The proposed algorithm time complexity is the sum of the time complexity of
building the local groups (Figure 2) and the time complexity of building the multicast
tree between the servers (Figure 4). On the one hand, the time complexity of building the
local groups is in the worst case O(m2), where m is the participants’ number in the group
multicast M. In fact, the time complexity of constructing a neighbouring set NSi of proc-
ess mi (Figure 2, line 2) is O(m). Given that our algorithm executes the loop from line 1
to line 3 once for each process mi belonging to M. (Mmi ∈), the time complexity of
lines 1-3, therefore, is O(m2). Here, the transit groups are constructed from line 4 to line

10, so during one iteration of the outer loop (4-10), the lines 7 and 8 are executed at most
m times (mNSMm ii p,∈∀). Accordingly, the time complexity of lines 4-10 is
O(m2). Further the loop from line 11 to line 13 constructs local groups. Since the time
O(m) is required at most in line 12 (|TGi| << m), then the time complexity of lines 11-13
is O(m2). From this point the number of iterations required to elect local and secondary
servers for each local group LGi is |LGi|. If one consider that m= |LG1| + |LG2| + … +
|LGk|, then the time complexity of lines 14-17 is O(m). Finally, the time complexity of
loop from line 18 to line 22 is O(km). Since m is much higher than k (m>>k), then the
time complexity of constructing local groups is 3*O(m2) + O(km) + O(m)= O(m2).

On the other hand, it is easily observed that the execution time of the multicast tree
construction algorithm (Figure 4) is mainly spent on the loop between lines 1 and 3,
namely on calculating the minimum delay between local servers. The time complexity of
computing these minimum delays by Dijkstra’s Algorithm is O(n2) [12]. Given that the
proposed algorithm executes the loop from line 1 to line 3 once for each local server, the
time complexity of lines 1-3, therefore, is O(kn2), where k is the number of elected local
servers. Line 4 through line 6 compute the multicast delay variation for each local
server Γ∈iS , so if we consider that the time O(k) is required in line 5, then the time
complexity of lines 4-6 is O(k2). The design of the local server which has a minimal
multicast delay variation as a first core node is in line 7. Thus, the time complexity re-
quired for execute line 7 is O(k). Here, the loop from line 9 to line 15 connects all the
local servers to the multicast tree. Line 11 requires k iteration to construct an autonomous
domain ADi for each selected core node CNi. In line 12 the selected core node CNi joins
members of its domain ADi and its core node predecessor Pred(CNi), within a number of
iterations less than k (|ADi| + 1 <k). Further line 14 selects the new core node from the set
of servers which are not belonging to any created autonomous domain through k2 times.
Thereby, since the loop between lines 9 and 15 is executed at most k times, then overall
time complexity of lines 9-15 is O(k3). Finally, the time complexity of constructing mul-
ticast tree between servers is O(kn2) + O(k2) + O(k) + O(k3) = O(kn2), because n is much
higher than k (n>>k).

At this point by considering that O(m2) + O(k n2) = O[(k+1)n2], because the number
of destinations nodes m is lower than the number of nodes in the network n, the overall
time complexity of the proposed algorithm is O[(k+1)n2]. Since k<<m, then our algo-
rithm shows lower time complexity than DDVCA, which is equal to O(mn2).

4 Simulations and Analysis

In order to evaluate the advantages of the proposed scheme, we have constructed a
set of simulation using ns-2 (Network Simulator) [13]. We compare the proposed algo-
rithm with DDVCA. The simulations focus on the protocols’ abilities to maintain low
multicast delay variation while minimizing the bandwidth consumption. During the
simulation, we deliberately change the network topology by changing the network’s size
(500 and 1000 stations) in order to evaluate the ability of the proposed scheme to suit
different network configuration. Further, the destination nodes in the multicast group
represent 50% of the network size, while 10 source nodes are chosen randomly. Each run
consists of 100 second, where each source generates 20 (media units/s). Note that the
media unit size is 500 bytes. For completeness the scheduling of multimedia flows’ dif-
fusion is shown in Table 3.

Table 3. Scheduling of diffusion multimedia stream

Sources 1 2 3 4 5 6 7 8 9 10
Begin (s) 0 10 20 30 40 50 60 70 80 90
End (s) 100 100 100 100 100 100 100 100 100 100

Fig. 5. Multicast delay variation’s average
500 stations

Fig. 6. Multicast delay variation’s average
1000 stations

Figures 5 and 6 represent the multicast delay variation average when using 500 and

1000 stations, respectively. It’s clearly seen that our mechanism outperforms the
DDVCA mechanism in both situations. This is expected as our algorithm constructs both
the local group and the autonomous domain according to the multicast delay variation
constraint. In contrast DDVCA takes this constraint into account only through the choice
of the core node. Furthermore, it is important to note that our scheme’s gain in multicast
delay variation over DDVCA is roughly 1 sec, which is very high if we consider the case
where the flows represent a video-based session. In fact, this translates into a high jitter
entailing devastating consequences on the perceived video quality at the receiver.

Fig. 7. Bandwidth consumption 500 stations Fig. 8. Bandwidth consumption 1000 stations

Figures 7 and 8 show the bandwidth consumption of both the proposed scheme and

DDVCA. Note that these graphs are obtained by computing periodically (10 s) the pack-
ets’ number generated by both the proposed scheme and DDVCA. Actually, DDVCA
uses more bandwidth than the proposed scheme. This is caused by the fact that DDVCA
avoids using the unicast packets only between the senders and the core node. In contrary,
the proposed scheme uses the unicast packets only in the intra-local group communica-
tion. Indeed, the unicast packets increase the bandwidth consumption.

Additionally, to see the influence of the multicast group’s size, we have increased the
number of nodes in the network (1000 stations). As indicated, it is easy to notice that the
proposed algorithm is always better than the DDVCA.

5 Conclusion

In this paper we have proposed a novel multicast tree construction in order to solve
the so called delay and multicast delay variation problem. The proposed scheme offers an
improved ability to minimize the multicast delay variation as well as the bandwidth con-
sumption while having a lower time complexity.

Simulations have shown that the proposed mechanism achieves numerous perform-
ance gains over the DDVCA. In addition to minimize the multicast delay variation, the
proposed scheme improves efficiently the bandwidth utilization by minimizing the pack-
ets’ number in the network. Furthermore, the proposed algorithm exhibits a time com-
plexity lower than DDVCA, O(mn2) and O[(k+1)n2] respectively (k<< m). Our future
works will focus on the implementation of our algorithm in real network configuration.
Furthermore, we will also extend our proposal with a QoS management-based such as
Diffserv.

References

1. A. Ksentini et al. “Novel Architecture for reliable H.26L video transmission over

IEEE 802.11e”, Proc. IEEE PIMRC’05, Barcelona, Spain.
2. D. Weitzman, C. Partridge, “Distance Vector Multicast Routing Protocol”, RFC

1075, November 1998.
3. S. Deering et al., “Protocol Independent Multicast-Dense Mode (PIM-DM): Proto-

col Specification”, RFC 2365, July 1998.
4. J. Moy, “Multicast Extension to OSPF”, RFC 1584, Mars 1994.
5. D. Estrin et al., “Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol

Specification”, IETF RFC 2362, June 1998.
6. A. Striegel and G. Manimaran, “Survey of QoS Multicasting Issues”, IEEE

Communications Magazine, June 2002, pp. 82-87.
7. G. N. Rouskas, I. Baldine, “Multicast routing with end-to-end delay and delay

variation constraints”, IEEE JSAC, April 1997, pp. 346-356.
8. P.-R Sheu, S.-T. Chen, “A fast and efficient heuristic algorithm for the delay and

delay variation bound multicast tree problem”, Information Networking, Proc.
ICOIN-15, January 2001, pp. 611-618.

9. A. Benslimane, O. Moussaoui, “A scalable Multicast Protocol with QoS guaran-
tees”, Proc. of IEEE/IFIP Net-Con’2003. Muscat, Oman. October 2003.

10. B. Wang and J. C. Hou, “Multicast Routing and its QoS Extension: Problems, Al-
gorithms, and Protocols”, IEEE Networks, January/ February 2000.

11. A. Ballardie, “Core Based Trees (CBT Version 2) Multicast Routing: protocol
specification,” IETF RFC 2189, September 1997.

12. E. W. Dijkstra, A note on two problems in connection with graphs, Numeric Math-
ematic, vol. 1, 1959, pp. 269-271.

13. Network Simulator 2, ns-2, http://www.isi.edu/nsnam.

