
Partial Video Replication for Peer-to-peer Streaming

Sailaja Uppalapati and Ali Şaman Tosun

Department of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249�
suppalap,tosun � @cs.utsa.edu

Abstract. Video streaming over peer-to-peer networks has attracted a lot of in-
terest recently. However most of the research on streaming in peer-to-peer net-
works focused on schemes where all the clients have the whole movie. In this
paper we propose schemes where clients store only partial movie after viewing
the movie. We propose cooperative schemes where replication is done in a way
that maximizes a global function and uncooperative schemes where each node
makes replication decision independently. We evaluate both schemes using ex-
tensive simulation. Simulation results show that cooperative schemes perform
better but they are harder to implement and maintain. Uncooperative schemes are
simpler, based on a distributed algorithm but they suffer from lower performance.

1 Introduction

Peer-to-peer (P2P) is a new paradigm in which each peer stores the movie after stream-
ing and act as a supplying peer by streaming the movie to other requesting peers thus
serving both as a client and as a server. Combined storage of large number of peers
allows users to locate a wide variety of multimedia content on the P2P network. The
popularity of P2P networks and high number of peers on P2P networks with high-speed
Internet connections have fueled interest to stream video over P2P networks. There are
many challenges introduced when streaming is done using P2P paradigm as opposed to
client-server paradigm which suffers from single point of failure, performance bottle-
necks as media is centralized at the server.

Recently, streaming media from multiple sources has received a lot of attention.
When all the nodes store the whole video, packets can be retrieved from the node which
minimizes loss and delay [6]. The probability of packet loss in bursty environment is
reduced by using FEC [7] where the source sends multiple redundant packets to the re-
ceiver. The receiver can reconstruct the original packets upon receiving a fraction of the
total packets. PeerCast[3] streams live media using an overlay tree formed by clients
and CoopNet [8] proposes a mechanisms for cooperation of clients to distribute stream-
ing video when server is overloaded. A peer-to-peer media streaming model with an
optimal media data assignment algorithm and a differentiated admission control pro-
tocol is proposed [14] assuming that all the peers store the whole video. A hybrid
architecture that integrates Content Distribution Network(CDN) and P2P based me-
dia distribution given in [13]. CDN has a number of CDN servers deployed and the
client can request media from the closest CDN server. Layered peer-to-peer streaming

is proposed to handle asynchrony of user requests and heterogeneity of peer network
bandwidth [2]. Administrative organization of peers to reduce control overhead in me-
dia streaming is proposed in [12]. Many P2P networks like CAN [9], CHORD [11] and
Pastry [10] were proposed to perform peer lookups. Promise peer-to-peer system [4]
supports peer lookup, peer-based aggregated streaming and dynamic adaptations to net-
work and peer conditions. Gnustream [5] is a receiver-driven media streaming system
built on top of Gnutella. Splitstream [1] distributes the forwarding load among all the
nodes and accommodates peers with different bandwidth capacities by constructing a
forest of interior-node-disjoint multicast trees.

All of the above techniques assumes that the whole movie is stored at all the peers
and focussed on how to choose the peers based on their delay, loss and outgoing band-
width. They didnot consider the case where peers have limited storage and may not be
able to store the entire movie. If peers store partial video, a whole new set of challenges
are introduced including the following

– How can a client determine whether a given set of peers are enough to stream the
video?

– Given space for � segments, how can a peer determine the � segments that it stores?
– Should a peer cooperate with other peers to determine which segments it stores?
– How much control information needs to be exchanged to determine the supplying

peers when a client requests a movie?

In this paper, we investigate the above issues. We propose two classes of schemes:
cooperative and uncooperative. In cooperative schemes peers exchange information
with each other and segments that are to be replicated are the ones that maximize the
global utility function. In uncooperative schemes no information is exchanged between
peers and each peer independently makes a decision on which segments it stores. We
evaluate both schemes using extensive simulation. Cooperative schemes are complex
to implement. However, they perform much better. Uncooperative schemes requires no
coordination and are simpler to implement. This comes at the cost of lower streaming
sessions that can be supported simultaneously. We also propose region-based cooper-
ative scheme to reduce the overhead of cooperative schemes and to make them more
scalable.

The rest of the paper is organized as follows: In section 2 we describe the coop-
erative and uncooperative schemes. We provide experimental results in section 3 and
discuss pros and cons of each in section 4. Finally, we conclude with section 5.

2 Proposed Schemes

We assume the following to simplify the problem. Each movie consists of � segments
labeled ��� to ��� and each segment takes a weight between [0..1]. In the homogeneous
case the weights of all the segments are equal. To simplify the problem we consider
the homogeneous case. Each peer stores partial movie after streaming the whole movie.
Partial storage is based on segments and each peer stores a subset of the segments. Peers
are denoted by 	�
 and fraction of video stored at peer 	�
 is denoted by
�
 . Each peer
determines the value of
�
 based on available disk space and outgoing bandwidth. If the

consumption rate of the movie is � Mbps and outgoing bandwidth is � � Mbps then
�

should be � �� . On the other hand,
�
 should be set in such a way that storing
�
 fraction
of movie does not exceed the available disk space at the peer.

We assume the following in proposed schemes: peers can join and leave the peer-
to-peer network, peers have limited storage and may not be able to store the whole
video.

2.1 Uncooperative Schemes

Uncooperative schemes involves no communication between nodes to determine which
segments to replicate. Since nodes may join and leave the peer-to-peer network at any
time uncooperative schemes are interesting. In addition, uncooperative schemes are
simpler.

In uncooperative schemes the peer 	�
 first determines the value of
�
 and the picks
a random number seed ��
 . Let ������������
! !�#" denote the ��$&% random number generated
by seed ��
 . We assume that random numbers generated are in the range [0..1]. Peer
	�
 stores segment j if ������������
! �'("*),+-
�
 . As a result each segment is stored with
probability
�
 . So, expected number of segments stored is
�
.� where � is the number
of segments.

When a peer sends a streaming request, each peer 	/
 responds with the pair �0
�
1 2��
�" .
The peer needs to make a decision based on the pairs received. The peer chooses a
subset of peers to stream the video. Ideally, the subset of peers selected should satisfy
two constraints. Every segment should be stored by at least one peer and the set should
be as small as possible. However, since storage decision is made probabilistically, it is
not possible to guarantee that every segment be stored by at least one peer. Assume k
peers given by 3�	 � 5464747 !	�8�9 . First fragment is not stored in these peers with probability
	�:;+=<
7>#8
7> � �1?�@A
�
&" . So, no matter how many peers we have, there is a small probability
that a fragment may not be available in them. In such cases, we request the missing
fragment from the original source. Since source needs to handle too many requests, we
want to limit the probability of contacting the source. We have a threshold and select
peers in such a way that the expected number of segments that need to be retrieved from
the source is less than the threshold.

Peer selection problem can be stated formally as follows:

Peer Selection Problem: Consider a movie with M segments. Given a set of peers
3�	 � !	�BC D474647 !	�EF9 with each peer having �0��
! 2
�
�" . Find the smallest subset 3�	 � 5464746 2	�8(9
of peers such that �G<
7>#8
7> � �H?;@*

 "I�KJ1LM��N���LPO�Q0� .

Peer selection problem can be solved efficiently by sorting the
C
 ’s in decreasing
order and by choosing the largest values until � <
7>#8
7> � �H?;@*
�
0"I�KJ1LM��N���LPO�Q0� .

In uncooperative schemes, requesting client broadcasts a message to the peer-to-
peer network (limited broadcast with increasing ranges) and receives the pair (�0�
 2

 ")
from each corresponding peer. It solves the peer selection problem and determines a set
of peers. By using the information embedded in (����
1 R
�
0") it can determine which peers
store which segments. Peer S stores segment ' if �����������DSR .'�"T)U
�
 where ���������0�� RVW"
is the VR$&% random number generated with seed � . Control messages in uncooperative

scheme are quite short and it is possible to use aggregation techniques to reduce the
number of messages.

2.2 Cooperative Schemes

In cooperative schemes, the segments that are stored after streaming the video are cho-
sen based on a global optimization criteria using the utility function. The segments that
maximize the utility functions are chosen for storage.

We next discuss the desirable properties of utility function and then propose some
functions that meet the properties. Users view the movie from the beginning till the end
and it is better to replicate segments that are stored at fewer nodes. As the number of
copies of a segment increases, the potential gain from one more copy decreases. Having
4 copies of a segment instead of 3 copies is great. However, there is no big difference in
having 200 copies of a segment versus 199 copies of a segment in the network. Utility
function is also independent for each movie since a client who streams and views a
video can only store that video.

Utility function for movie m is denoted by XZY and utility of a movie is the sum
of utilities of all the segments in the network. Utility of segment ��
 is denoted by [�
 .
Therefore, utility function of movie m is given by

X Y +
�\
8]> �

[8 (1)

As the number of copies of a segment increases, the utility value should increase
but at a much slower rate. We use the following function for [�8 .

[�8F+_^a`\

6> �

?
S (2)

The segment vector bIYc+d�0e � 2eWBC D474647 !e � " denotes the number of copies of each
segment available in the network for movie m. e5
 denotes the number of copies of S $&%
segment available in the network. So, utility value for movie m is

X/Yf+
�\
8]> �

^ag\

7> �

?
S (3)

In cooperative schemes, original source of the movie maintains the segment vector
and each peer determines the segments to replicate according to the utility function.
The segments that maximize the utility value are chosen for storage. Increasing the
number of copies of segment S from e
 to e
7h � increases the utility value by �

^.i
h � .

Therefore, to maximize the utility value the segment that needs to be replicated should
have the smallest value of e5
 and the segment to replicate is determined by the equationj +k����l�mnS.�#8 �

^a`
. If multiple segments are to be replicated then the equation is solved

again with updated segment vector bIY .
There are many challenges in implementation of cooperative schemes. The vector

boY needs to be computed and this computation requires input from all the peers who

has the movie. When a peer leaves the network the vector bpY needs to be updated.
When a node fails the vector bIY will not be accurate. To handle these problems pro-
posed scheme assigns a leader to each movie. This leader maintains bpY and handles
update and retrieval requests for b Y . When a node decides to leave the network, it sends
a message to the leader. When a node starts a streaming session, it sends a message to
the leader indicating its value of

 and requesting the vector b Y . The leader can com-
pute the segments that the peer will choose for replication by solving the replication
equation. The leader updates the vector b Y accordingly.

Each node stores an local vector qAY whose entries are 0-1s and indicate whether
segment S of movie m is stored by the peer or not. The leader stores the local vectors
of all the clients in the system who partially replicate the movie. When a client requests
the movie, the leader uses this information to find a subset of peers who can stream
the video to the client. The subset of peers has to satisfy two conditions. First, each
segment should be stored by at least one peer. Second, the set of peers should be as
small as possible to reduce control message overhead and to improve utilization of our
system. In proposed scheme, a peer can supply video to a single node at a given time
(since

 determined according to outgoing bandwidth). Therefore, minimizing set of
supplying peers is required. Peer selection problem can be stated formally as follows:

Peer Selection Problem: Given a set of peers 3�	 � !	�B� 5464747 !	�Er9 with each peer hav-
ing local vector qsY . Find the smallest subset of peers such that each segment is avail-
able by at least one peer.

Peer selection problem can be reduced to set cover problem and is NP-complete.
Think of the segments stored at a peer as a subset and the problem is to find the smallest
set of subsets that cover the whole set. We used the greedy heuristic given in figure 1
to solve the peer selection problem. In this algorithm t denotes the set of segments
3C?� Ruv 5464746 R�w9 and x denotes a family of sets where the segments stored by each peer
is an element of this family. Since this heuristic requires input from all the nodes, the
leader solves the peer selection problem. When a node requests a movie, it sends a
message to the leader. If the set of active nodes in the system can grant this request, the
client and the supplying peers are contacted to inform what they need to do. Supplying
peers are then placed on the inactive list for the duration of the streaming session.

Greedy-Set-Cover(X,F)
01 U y X
02 C y{z
03 while U |} z
04 select an S ~ F that maximizes � S � U �
05 U y U-S
06 C y C � � S �
07 return C

Fig. 1. Greedy Set Cover Algorithm

The leader stores the local vector received from each client. In addition the leader
maintains a status list. So, the amount of space required at the leader is ���&�,�k" where
� is the number of nodes currently connected to the peer-to-peer network and partially

store the movie, � is the number of segments in the movie. Storage requirement is
reasonable and a typical machine can handle hundreds of thousands of clients.

Greedy heuristic of choosing the peer that has the maximum number of unselected
segments has an approximation ratio of �A��+�� �
7> � �
 where 	 is the largest set
in x . This means that number of peers selected by greedy algorithm can be at most
��� times more than the number of peers in optimal solution. In our case the number
of segments determines the approximation ratio. With M segments the approximation
ratio is �����k" .

Since greedy algorithm will be executed whenever a client requests a movie, effi-
cient implementation is crucial. It is possible to implement greedy set cover to run in
�����=�P�����C��� " time. So, running time is proportional to the total number of segments
stored in the network.

If the leader is able to find the set cover for a request, it sends the list of peers in the
set cover and their local vectors to the requesting client. Requesting client contacts the
peers and streams the video from them. It is possible that a segment is stored at multiple
peers in the set cover, in this case the requesting client can pick a peer based on some
other criteria such as delay or number of hops.

2.3 Region Based Cooperative Scheme

When the network grows a single leader may not be able to handle all the clients re-
quests. To minimize the load on the leader we divide the network into regions with each
region having a regional leader.

Splitting of a region means moving some of the nodes of region R to region R � . This
is done only when both the regions R and R � can handle client requests independently
otherwise we ignore the idea of splitting. To make the splitting decision we consider
the distance between peers and the network conditions. The distance between peers
is determined by the number of common segments that exists between the two peers.
Since the number of common segments between peers may be large we normalize it
by taking value between ��+�� and 1. The network conditions can be the delay and
bandwidth of the network in consideration and let this value be between VF+w� and 1.
Thus the cost of edge between peers is ������VR� where ������+�? , � and � are user
defined parameters.

For splitting a region the following challenges are to be addressed.

– When the splitting of a region can be done?
– How to pick a leader for region R � ?
– How to create balanced self-sufficient regions?

The splitting algorithm shown in figure 2 takes a region R and the parameters � and
V . The Split-Region algorithm can be called if min count is greater than M � otherwise
the region is too small to split. Here M � , D � are user defined parameters and min count
is the minimum number of copies of fragment S in system. The line 8 selects the leader
of region R � by choosing one node at random from the candidate set and line 9 moves
the node to region R � from region R making it the leader of R � as it is closer to R � .
The algorithm continues to move nodes from region R to region R � until the set cover

for R � can be done or the number of nodes currently in R � is less than low-threshold.
If the number of nodes in region R � is greater than high-threshold, a balanced split is
not obtained so we abort the split test and merge the nodes of region R and R � . The
low-threshold and high-threshold are used to obtain balanced self sufficient regions.

Split-Region(R,a,b)
01 p y leader(R)
02 for each i ~ R
03 ��� � ¡ } Compute-Distance(i,p)
04 C y{z
05 for each i ~ R
06 if ���¢� ¡p£ D ¤
07 C y C � � node i �
08 q y Select-Leader(C)
09 R ¤Cy �

q �
10 for each i ~ R
11 ��� � ¥ } Compute-Distance(i,q)
12 if � �¢� ¡ £�� � � ¥
13 R ¤Cy R ¤�� � node i �
14 R y R ¦ � node i �
15 if SET-COVER(R ¤) } False
16 for each i ~ R
17 ���¢� ¥ } Compute-Distance(i,q)
18 D } Sort ��� � ¥ in increasing order
19 for each i ~ D
20 if SET-COVER(R ¤) } False §5¨ num-of-nodes(R ¤) © low-threshold
21 R ¤Cy R ¤�� � node i �
22 R y R ¦ � node i �
23 if num-of-nodes(R ¤) £ high-threshold §D¨ SET-COVER(R) } False
24 Abort Split test
21 return

Fig. 2. Split Region Algorithm

3 Experimental Results

We simulated both cooperative and uncooperative schemes using extensive simulation.
Simulation is written using csim. Initially only the source node has the movie and movie
requests arrive according to poisson distribution. The simulation is done with three
values of ª«+��M4 ���M? , 0.0001 and 0.0003. Movie is divided into 100 segments and clients
store some of the segments after streaming. The results were based on homogeneous
case where all the segments are of equal weight, heterogeneous case is part of future
work. 50% of the clients store 10-20 segments and the remaining 50% store 20-50
segments. 20% of the clients who join the network remain in the network till the end
of simulation. Since the peers can set their fraction of video stored based on outgoing
bandwidth, peers can supply video to at most one client at a given time. Since storing
segments involve control overhead in addition to storage overhead, it is not feasible to

store a few segments. In simulation, minimum number of segments stored at a node is 10
corresponding to 10% of movie. Similarly, missing a few segments is not feasible since
the nodes need to be involved in peer-selection problem. We assume that nodes store
at most 50 segments corresponding to 50% of the movie. Movie length is 120 minutes.
We have two sets of results. In the first set, after streaming nodes stay in the network till
the end of simulation. In the second set, 80% of the nodes stay in the network for 5-24
hours and 20% of nodes stay in the network till the end of the simulation. Simulation
length is 1 month.

We use the following metrics to compare the performance of cooperative and unco-
operative schemes.

– min-max count: Let �#
 be the number of copies of segment S in the system. Min
is given by ¬�­7® �a¯2¯
6> � ��
 and max is given by ¬s°�± �a¯2¯
6> � ��
 . Ideally, we want the gap
between min and max to be low.

– utility value: Value of utility function. Smooth curves in utility graph are desirable
since they correspond to smooth transitions when peers leave the network.

– number of supplying peers: Average number of supplying peers involved in stream-
ing sessions. Smaller number of supplying peers are desirable since streaming client
needs to manage streaming session with all of them.

– success-failure count: Requesting peers resend their request every 5 minutes and
leave the network if streaming is not feasible in 20 minutes. success denotes the
number of streaming sessions successfully completed during the simulation and
failure denotes the number of nodes that leave the network without streaming.

4 Discussion

The graphs for cooperative and uncooperative schemes are similar when all the nodes
stay in the network till the end of simulation. They differ in case of 5-24hrs. So we
mainly focus on graphs for 5-24hrs .

Figures 3 and 4 shows the increase in utility as more and more nodes join and the
decrease in utility when the nodes leave. This decrease in utility is recovered by new
nodes joining the network. In figure 3 uncooperative case between 0 to 5 days there
is sudden raise and fall in utility. This is because threshold was initially set to 20 as
the number of missing segments will be high. Later when we know that the peers have
enough segments we set the threshold to a small value thereby limiting the probability of
contacting the source. Min Max values are shown in figure 8 and figure 9. As expected
the difference between min and max values are low in case of cooperative whereas in
uncooperative, it is large due to the lack of coordination between nodes. Success and
failure count shown in figures 5 and 6. Initially the number of streaming sessions is low
since only leader has the movie and many clients leave the network without getting the
movie. As content is replicated success count increases and failure count decreases. In
case of ª«+��P4 �C���P? and ª«+��P4 �C����² , the success and failure is not that significant since
the arrival rate i.e. the rate at which the nodes join is low. By the time the new node
join the network the existing nodes might leave and the new node is not able to do the
streaming with the available nodes thus increasing the failure rate. In case of ªT+��M4 ���M?
the success and the failure rate can be seen more significantly.

The supplying peers graphs shown in figure 7 indicates the average number of peers
involved in streaming session. Graph shows sudden raises and falls. This is because
when a new node joins the network to satisfy its streaming request the peers in the
smallest set cover might be busy in streaming session with other nodes so its request
is satisfied by the available peers forming a set cover. The peer size graphs shown in
figure 10 specifies the average number of peers holding copies of a segment. Based on
the network delay, bandwidth client can select the peer with high bandwidth and less
delay. Multiple peers having a copy of a segment is 40% in cooperative case whereas
in uncooperative it is 80%. This shows uncooperative scheme is better even though its
supplying peer size is large. When ª«+��M4 �����P? , this is not true as the arrival rate is low.
Most of the incoming clients will be streamed by the leader, since the existing clients
may leave the network as their time expires.

In figure 11 the graph on left shows the region size when ªf+��M4 ���P? and graph
on right is for ªK+³�M4 �����C² . Each line in the graph corresponds to a region. From the
graph we see whenever a region size decreases it indicates a split of that region causing
a new region to start. In case of ªK+´�M4 ���P? , at the end of the simulation we obtained
14 regions with minimum region size of 144 nodes and maximum region size of 282
nodes. Similarly for ªµ+w�M4 �����C² , we obtained 6 regions with minimum region size of
44 nodes and maximum region size of 171 nodes.

Cooperative schemes perform better than uncooperative schemes in terms of num-
ber of streaming sessions that can be supported by the system. However, large scale
implementation of cooperative schemes is not feasible since nodes selected for set-
cover can be far away from each other. Centralized nature of cooperative schemes is
also problematic since failure of leader will render the streaming impossible.

Uncooperative schemes perform reasonably and can be implemented in a distributed
way using limited range broadcast on the peer-to-peer network. Having a larger set of
supplying peers increases the possibility of more than one peer having a copy of a
segment. The decision of which peer to choose can be made based on other decisions
such as network delay and the number of hops.

5 Conclusion

In this paper, we investigate partial replication strategies for streaming video over peer-
to-peer networks. Each client stores partial video after streaming depending on its avail-
able disk space and outgoing bandwidth. We propose cooperative schemes where the
replication is done in a way to maximize the utility function and uncooperative shemes
where the replication is done independent of what is stored at other nodes. Coopera-
tive schemes perform much better than uncooperative schemes. However, cooperative
schemes are more complex and requires execution of greedy set cover algorithm for
each arriving request. Uncooperative schemes on the other can be implemented in a
simple and distributed way. Future work includes investigation of hybrid schemes that
combines the benefits of these two by using regional leaders or a hierarchy.

References
1. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Rowston,

and Atul Singh. Splitstream: High-bandwidth multicast in cooperative environments. In

SOSP’03, October 2003.
2. Yi Cui and Klara Nahrstedt. Layered peer-to-peer streaming. In NOSSDAV 2003.
3. H. Deshpande, M Bavea, and H. Garcia-Mollina. Streaming live media over peers. Technical

report, Stanford Database Group Technical Report (2002-21).
4. Mohamed Hefeeda, Ahsan Habib, Boyan Botev, Dongyan Xu, and Bharat Bhargava.

Promise: Peer-to-peer media streaming using collectcast. In ACM Multimedia 2003.
5. Xuxian Jiang, Yu Dong, Dongyan Xu, and Bharat Bhargava. Gnustream: A p2p media

streaming system prototype. In IEEE International Conference on Multimedia and Expo
(ICME 2003), 2003.

6. T. P. Nguyen and A Zakhor. Distributed video streaming over internet. In SPIE/ACM MMCN
2002.

7. Thinh Nguyen and Avideh Zakhor. Distributed video streaming with forward error correc-
tion. In Packetvideo Workshop 2002.

8. V.N. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Distributed streaming media
content using cooperative networking. In NOSSDAV 2002.

9. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content address-
able network. In ACM SIGCOMM, August 2001.

10. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), pages 329–350, 2001.

11. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and Balakrishnan H. Chord: A scalable peer-
to-peer lookup service for internet applications. In ACM SIGCOMM, August 2001.

12. Duc Tran, Kien Hua, and Tai Do. A peer-to-peer architecture for media streaming. Journal in
Selected Areas in Communications, Special Issue on Advances in Service Overlay Networks,
22(1):121–133, January 2004.

13. Dongya Xu, Heung-Keung Chai, Rosenberg Catherine, and Sunil Kulkarni. Analysis of a
hybrid architecture for cost-effective streaming media. In SPIE/ACM Conference on Multi-
media Computing and Networking (MMCN 2003).

14. Dongyan Xu, Mohamed Hefeeda, Susanne Hambrusch, and Bharat Bhargava. On peer-to-
peer media streaming. In IEEE International Conference on Distributed Computing Systems
(ICDCS 2002), July 2002.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30

U
til

ity
 V

al
ue

Number of Days

Cooperative

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30

U
til

ity
 V

al
ue

Number of Days

Uncooperative

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

Fig. 3. Utility values (5-24hrs)

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

U
til

ity
 V

al
ue

Number of Days

Cooperative

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

U
til

ity
 V

al
ue

Number of Days

Uncooperative

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

Fig. 4. Utility values (1 month)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

S
tre

am
ed

 C
lie

nt
s

Number of Days

Cooperative Success Count

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

S
tre

am
ed

 C
lie

nt
s

Number of Days

Uncooperative Success Count

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

Fig. 5. Success count (5-24hrs)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

N
ot

S
tre

am
ed

 C
lie

nt
s

Number of Days

Cooperative Failure Count

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

N
ot

S
tre

am
ed

 C
lie

nt
s

Number of Days

Uncooperative Failure Count

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

Fig. 6. Failure count (5-24hrs)

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

A
vg

 S
iz

e
of

 S
up

pl
yi

ng
 P

ee
rs

Number of Days

Cooperative Supplying Peers

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

A
vg

 S
iz

e
of

 S
up

pl
yi

ng
 P

ee
rs

Number of Days

Uncooperative Supplying Peers

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

Fig. 7. Supplying peers (5-24hrs)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
in

M
ax

 R
at

e

Number of Days

Cooperative

Min Lamda=0.001
Max Lamda=0.001
Min Lamda=0.0001

Max Lamda=0.0001
Min Lamda=0.0003

Max Lamda=0.0003

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
in

M
ax

 R
at

e

Number of Days

Uncooperative

Min Lamda=0.001
Max Lamda=0.001
Min Lamda=0.0001

Max Lamda=0.0001
Min Lamda=0.0003

Max Lamda=0.0003

Fig. 8. MinMax values (5-24hrs)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
in

M
ax

 R
at

e

Number of Days

Cooperative

Min Lamda=0.001
Max Lamda=0.001
Min Lamda=0.0001

Max Lamda=0.0001
Min Lamda=0.0003

Max Lamda=0.0003

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
in

M
ax

 R
at

e

Number of Days

Uncooperative

Min Lamda=0.001
Max Lamda=0.001
Min Lamda=0.0001

Max Lamda=0.0001
Min Lamda=0.0003

Max Lamda=0.0003

Fig. 9. MinMax values (1 month)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f F
ra

gm
en

ts

Number of Peers

Cooperative Peer Size

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f F
ra

gm
en

ts

Number of Peers

Uncooperative Peer Size

Lamda=0.001
Lamda=0.0001
Lamda=0.0003

Fig. 10. Peer Size Graphs (5-24hrs)

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

R
eg

io
n

si
ze

Number of Days

Region Based Cooperative

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

R
eg

io
n

si
ze

Number of Days

Region Based Cooperative

Fig. 11. Region Graphs

