
Relevance-based Adaptive Event Communication for
Mobile Environments with Variable QoS Capabilities

Stephen Workman, Gerard Parr, Philip Morrow, Darryl Charles

Faculty of Engineering, University of Ulster, Coleraine, BT52 1SA, Northern Ireland
{workman-s, gp.parr, pj.morrow, dk.charles}@ulster.ac.uk

Abstract. Recent trends in computing have been driving the demand for mobile
multimedia applications, specifically distributed virtual environments (DVEs).
These applications must deal with the variable resource availability of both
connection and client device in order to achieve real-time event communication.
Relevance-based event filtering is used to explore event stream adaptation in
response to variable QoS. Results show that the performance gains from such
adaptation are inconsistent due to the irregular nature of event communication.
Increased reliability is proposed through dynamic consideration of the resource
requirements of the various adapted event stream solutions.

1 Introduction

Recent trends in computing show increasing demand for mobile multimedia,
specifically distributed virtual environments (DVEs) [1, 2]. Such multimedia
applications take advantage of the mobility afforded by wireless networking and the
pervasive nature of mobile devices. For example, in the Savannah Project [3] a DVE
was used over mobile devices as part of an augmented reality game, to help educate
children about lions and the savannah. For such virtual environments distributed over
wireless networks, the tension between the real-time resource requirements and the
inherent variable resource availability of both connection and client device must be
managed by the server. Application layer adaptation of data has been suggested to
overcome this resource variability with both general [4, 5] and event-based data
communication [6]. This paper demonstrates how relevance-based event filtering as a
method of data adaptation should take resource requirements of event type streams
into consideration when adapting to the currently available device and connection
resources.

2 Background and Existing Approaches

Real-time distributed applications in the wireless domain can be examined from two
main viewpoints: communication and application [7]. The communication aspect
deals with those issues pertaining to the transport of data across the network, while
the application aspect deals with the encoding, decoding and use of data before and
after transport.

2 Stephen Workman, Gerard Parr, Philip Morrow, Darryl Charles

The main resource requirement made of the communication aspect by DVEs is that
data be transported in real-time. This requires a high quality of service (QoS)
requested from the network (high data throughput, low latency etc.) and the client
(processing power, storage etc.). The 3rd Generation Partnership Project (3GPP)
provides traffic classes for resource reservation in the sub-IP layers, including the
“conversational” class meant for real-time transport [8]. Resource reservation is also
provided in the IP layer through IntServ and DiffServ – in [9] the authors suggest the
use of aggregated flows as the best way to provide the necessary QoS for event
communication.

There are three main issues with the use of such reservation schemes in the mobile
domain, however. Firstly, due to host mobility, QoS cannot be guaranteed for the life
of the session due to connection handovers [10, 11]. Although delays incurred by
handover can be reduced, e.g. [10], longer term disruptions can be caused if the new
base station does not have the same resources as the old one, e.g. in the case of
vertical handoffs [10-12]. Secondly, the resources set aside by a base station do not
guarantee that the mobile node will be able to use them, since the QoS actually
achieved is variable [12-15]. Trade-offs at the lower layers, in response to changing
interference and fading, can reduce link throughput, resulting in lower bandwidth
available to the application. Thirdly, there is no guarantee that traffic which crosses
autonomous systems will have the same resources set aside as those at the edge, i.e. in
the case of internetworking. Dynamic resource management is suggested in the
network layer as a response to this resource variability [12].

Feedback of all such resource variability must be provided to the application layer.
In session description protocol over session initiation protocol (SDP/SIP) [16, 17]
resources are negotiated between peers during session setup, and re-negotiated during
session run-time should conditions change. This capability to renegotiate without
restarting a session allows the application layer to adapt to the variable network
conditions inherent to mobile and wireless networking. Nonetheless, under SDP all
the resources of the session need to be renegotiated, and not just those which have
changed. The authors of [18] highlight the long delay in session renegotiation
following a vertical handover while using SDP/SIP, while in [19] the End-to-End
Negotiation Protocol (E2ENP) is provided as an alternative to SDP, where only
relevant resources are re-negotiated.

The application layer must respond to variable network resource availability by
changing the resource requirements of the pending traffic (i.e. events). All types of
DVE contain client and server components [6], where the role of the server(s) is to
maintain a consistent state of the virtual environment across all participating clients.
In the mobile environment this role expands to take resource variability and
connection heterogeneity into consideration. In [20] the authors suggest that the
server deal with varying latencies through buffering real-time updates. This, however,
doesn’t deal with other variations in resources e.g. bandwidth. Event filtering methods
can be used to cut down on the amount of data transmitted to certain clients in
distributed virtual environments. Criteria for what is dropped can be based on spatial
location in the gaming world, i.e. only transmitting data to players whose immediate
environment is affected [21]. Interest in events can also be specified by clients,
allowing them to choose event types which are relevant to them [21-23]. Another
method suggests dropping obsolete events [6] i.e. events are dropped because their

Relevance-based Adaptive Event Communication for Mobile Environments with Variable
QoS Capabilities 3

effect on the environment is contained in the effects of subsequent events. Methods
can also be combined: the use of a two-tiered server network involving a separation of
relevance-filtering and bandwidth adaptation is suggested in [24]. In general, these
filtering techniques try to reduce the resource requirements (specifically bandwidth)
of the data that is to be sent across the network to the connected nodes, while
maintaining a state consistency which is adequate for user interaction.

This paper demonstrates through simulation that event filtering based purely on
location relevance does not take into consideration the effect that changing levels of
activity in the virtual world can have on resource requirements. Adaptation which
considers the resource requirements of the potential adapted event streams is
proposed; the resources of the event stream are conditioned to match those resources
which are available on the network and client.

3 Simulation Architecture

The aim of these simulations was to explore location-relevance filtering as a way to
adapt event communication based on variable QoS. A two-player version of the
classic arcade game Bomberman was chosen as an initial study of adaptive multipoint
communication, as multiplayer games are typical of expected real-time mobile
multimedia applications [1, 2]. Scalability testing and related issues are to be explored
in future work. The rest of this section describes the current simulation test-bed, with
particular emphasis given to the event communication model and the adaptation
algorithm, in the context of the client/server architecture used.

3.1 Test-bed Architecture

To understand the adaptation, it is important to understand the context of the game
architecture. Virtual environments consist of a collection of virtual objects, as
discussed in depth in [7]; Bomberman’s virtual environment, or game world, is a 2D
maze which is filled with piles of dirt and rocks. The aim of the game is to manoeuvre

Figure 1 Event flow between arrival on and departure from the server

 Session Management

 Virtual World Management

Network
(TCP/IP Connection)

Event Adapted Event Adaptor

Simulated Client QoS {0…1}

Event Messages adapted
for Clients (XML)

A
pp

lic
at

io
n

A
sp

ec
t

C
om

m
un

ic
at

io
n

A
sp

ec
t

New Event Messages from
Clients (XML)

Simulation updated

4 Stephen Workman, Gerard Parr, Philip Morrow, Darryl Charles

one’s avatar around the dirt and rocks, laying bombs to clear paths through the dirt,
with the ultimate goal of blowing up the other player’s avatar and being the last alive.
These objects are based on SharedObjects, from [7], since replicas of each exist at
participating nodes. To maintain consistency between replicas, attribute changes are
distributed between peers. This event processing is described in more detail later.

A client/server architecture was chosen for this implementation, as it the basis for
all DVEs [6]. The internal components of this architecture, based on the OSI 7 layer
model, are shown in Figure 1. The game world is located on the application level, and
identical copies are created on both the server and the clients when a session begins,
i.e. during session setup the server establishes the initial state of the game world, and
communicates this to the clients via an XML-based protocol. This part of the
communication does not have real-time constraints. For the purposes of these
simulations, adaptation is only performed on event messages leaving the server.

The state of the virtual world is maintained consistent across participating nodes,
via event communication. When a client-side user interacts with the game world, the
event is sent to the session layer where it is converted into XML and passed to the
network layer for transmission to the server. On the server, the XML is parsed in the
session layer, and passed up to the application layer, where it is assimilated into the
server-side copy of the virtual world. After the simulation is updated, the event is
passed to the adaptor (discussed in Section 3.2). Based on the client’s simulated QoS
obtained from the session layer, it is updated with events as is deemed necessary by
the adaptor. Note that in the standard version of the game there is no adaptor.

The software was created using a combination of “off-the-shelf” and new
components. Both the server and client were written in Java (J2SE and J2ME,
respectively) using the NetBeans IDE due to Java’s widespread use among mobile
devices [25]. XML was used as the basis for the event communication protocol
because of its suitability for use with an object-oriented model. The protocol also
included basic session setup capabilities because of the lack of readily available
support for SDP/SIP in J2ME. Existing Java TCP socket classes were used because of
TCP’s standard use in industry and as a basis for future studies involving variants
which are more suitable to wireless communications.

3.2 Adaptation

The adaptation used changes how a client’s copy of the game state is synchronised.
This is based on the relevance of the events to be sent to the client, and the current
QoS available to it, as in the algorithm outlined in figure 3. QoS availability was
simulated and followed a sawtooth pattern, continuously cycling between poor and
good service, in order to see how the adaptation functioned in response to varying
QoS. QoS values ranged from 0 (i.e. minimum resources needed for gameplay) to 1
(i.e. optimal resources requiring no adaptation), with increments of 0.1 between.

This adaptation was based on the notion that events closer to an avatar are more
relevant and should be given more priority in distribution (Figure 2) [21]. “Player
movement” events were deemed to have absolute relevance, regardless of location,
since knowledge of other players’ locations is needed in order to play the game
properly; thus these are added to the clients’ queues without being adapted. Similarly,

Relevance-based Adaptive Event Communication for Mobile Environments with Variable
QoS Capabilities 5

if a client has QoS of 1 all events are sent as it has enough resources to process this
data. If the client’s simulated QoS is between 1 and 0, however, the events are
checked for relevance, based on their location relative to the client’s avatar (figure 2
explains the notion of relevance based on location). The zone of influence varies in
size with the client’s simulated QoS; in other words, with more resources available,
the zone is bigger and more events are sent; whereas with fewer resources, the zone is
reduced in size and more events are adapted. The basic size was varied in the
simulations, as is explained further in the results section. It is important to note that
since these are foundational simulations, the client event queues work purely on a
first-come-first-served basis, and are not priority based. Further work is also to be
conducted into the upper and lower thresholds of available QoS.

An adapted event is one whose message is incorporated into a simulation wide
update message. Rather than sending multiple smaller event messages, those deemed
less relevant by the algorithm discussed previously, are dropped. The server then
sends an update message, i.e. the current game state as viewed by the server, after a
certain time interval, which varies with the client’s QoS. Thus, during a period of low
QoS, instead of receiving many smaller event messages, the client receives one or a
few larger update messages.

4 Results and Interpretation

Both the minimum size for the zone of influence, and the update interval were varied
in the simulations to test the adaptation in a two-player environment. Baseline results
were obtained from a standard version of the game, for comparison with the adaptive
versions. Results were also verified using similar methods to those described in [26,
27].

Figure 2 Location based relevance filtering

Zone of Influence
Events that occur here are very
influential, so are always sent

Events that occur here are sent based
on their distance from the Zone of
Influence, and the current level of
QoS available

Zone of Zero Influence
Events that occur here are never sent
since they are considered to have zero
influence on the player

Game World

Player

Events which are considered to have
full influence despite their location
are always sent e.g. player
movements

6 Stephen Workman, Gerard Parr, Philip Morrow, Darryl Charles

4.1 Methodology

The simulations were carried out on a host platform; the J2ME Wireless Toolkit v2.2,
using MIDP v.2.0 [25], emulated the mobile device environment for the client
software on two Dell Optiplex GX270 (Pentium 4 CPU running at 3GHz, with 1GB
of RAM) desktop computers connected via a 100 MBps switched Ethernet LAN. A
third such machine ran the server software (using J2SE 1.4.2_04 [25]).

Events were logged as and when they arrived and departed on all three nodes,
along with their size, which client they pertained to, the time of arrival or departure,
and the simulated QoS of the client at that time (NB: QoS values were recorded
server-side only, since this is where their simulation occurred). The results used for
analysis were based on the events sent and received from the perspective of the
server, since this is where the adaptation took place. These results were verified by
comparison of the recorded and captured logs, as well as comparison of logs from
each node.

The two variables under scrutiny in these experiments were the basic size of the
zone of influence, and the time interval between sending game state updates. Event
streams, which are dependent on user activity, were controlled by being recorded and
re-used under test conditions seen in table 1, including a standard game with no
adaptation. These values were chosen to allow exploration of basic trends for future
follow-up. Event logging, which was incorporated in the software, was validated by
capturing the network traffic using Ethereal [28].

Server-side simulation state updated

Figure 3 Algorithm used to adapt events

Event received from Client

IF Event has preset relevance {
 Event posted on all Client queues
}
ELSE {
 FOR EACH Client {
 IF Client has QoS of 1 {
 Event posted on this Client’s queue
 }
 ELSE IF Client has QoS between 0 and 1{
 Calculate size of zone of influence
 IF Event occurs within zone of influence {
 Event posted on this Client’s queue
 }
 ELSE IF Event occurs in the zone of zero influence {
 Event not sent
 Client put on timer for state update
 }
 }
 ELSE IF Client has QoS of 0 {
 Event not sent
 Client put on timer for state update
 }
 }

Relevance-based Adaptive Event Communication for Mobile Environments with Variable
QoS Capabilities 7

Table 1. Values used in the experiments
Test Update Timer

(ms; 0…System Max.)
Zone of Influence (basic size and max. extension)
(movement units; 0…�200(max. distance))

1 n/a (Standard version of game)
2 1000
3 2000
4 3000
5 4000
6 5000

4

7 2
8 3
4 (not repeated) 4
9 5
10

3000

6

4.2 Results Analysis

Performance was measured based on the comparison of results from the adaptive
version of the game with those from the standard version and with the simulated
client-connection QoS values. Following this, logs of events sent by clients and
received by the server were used to compare the performance of the adaptation using
identical data.

Results for the standard version of the game (“Test 1” in figure 4) show almost
identical traffic patterns for the two clients; there is no differentiation between clients.
This is as expected, since without adaptation, all events are processed by the server
and sent on to all clients, without distinction. The only significant difference between
the two is seen at session start, which can be attributed to the simulation setup phase.
This phase is not synchronised by event, so a difference is not unexpected, and does
not affect the rest of the stream, which the server distributes on a per event basis,
producing the similar streams as in the charts.

Results from the adaptive versions of the game (Figure 5) show that the event
streams sent to each client are distinct. Over time, the amount of data that is sent to
each client changes, as is seen in the charts with the variations in gradient. Thus,
differentiation between clients is possible with this technique. Comparison with the
simulated QoS, however, shows no correlation. Re-using the event streams sent from
the client to the server shows how the different test conditions affect the adapted

Figure 4 Event traffic without adaptation

Event Traffic Sent from Server - Standard Game

0

5000

10000

0 10000 20000 30000 40000 50000

Session Time (ms)

C
u

m
ul

at
iv

e
E

ve
n

t S
iz

e
(b

yt
es

)

Client 100
Client 101

8 Stephen Workman, Gerard Parr, Philip Morrow, Darryl Charles

event streams sent from the server. Figure 6 shows a sample chart of the event
streams produced using the same data set, under the four test conditions representing
the extremes of the two variables – Tests 2 and 6 for update interval, and Tests 7 and
10 for zone of influence. Typical of the results, this chart shows that the zone of
influence has a greater effect on the event streams than the update interval. Figure 7
shows a summary of the results, based on the overall data rate. Again, these charts
suggest that the zone of influence has a greater affect on the data rates than the update
interval does. Successful adaptation, however, would show a correlation between low
simulated QoS and low data rates, but this is not the case.

Because of the nature of the gameplay, the user follows the centre of activity
around the game world. All events are initiated, directly or indirectly, by the users’

Event Traffic - 2 Player, Test 2

10000

20000

30000

60000 70000 80000 90000 100000 110000 120000

Session Time (ms)

C
u

m
u

la
tiv

e
E

ve
n

t S
iz

e
(b

yt
es

)
Client 100
Client 101

2-Player, File-based Input - Data Set 2, Client 100

10000

15000

20000

25000

30000

35000

60000 70000 80000 90000 100000 110000 120000

Relative Session Time (ms)

C
um

u
la

tiv
e

E
ve

nt
 S

iz
e

(b
yt

es
)

Test 2
Test 6
Test 7
Test 10

QoS - 2 Player, Test 2

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000 120000

Session Time (ms)

Q
o

S
 In

d
ex

Client 100
Client 101

Figure 6 Data set 2 under different test conditions

Figure 5 Sample event traffic for adaptive game with simulated QoS

Relevance-based Adaptive Event Communication for Mobile Environments with Variable
QoS Capabilities 9

intervention in the environment; furthermore, the users’ avatars are likely to locate
near each other, as the goal is to blow up the other’s avatar. As such, the amount of
activity outside the zone of influence is somewhat limited. This explains why larger
zones of influence do not produce average data rates which are much different to
those of a standard game, as the vast majority of events fall inside the zone and are
thus sent to the client. An eleventh test condition was added to the simulations
whereby the minimum size of the zone of influence and its maximum extension are
no longer the same. In this test the variation in the size of the zone of influence is
more closely tied to the QoS; where maximum QoS is available, the zone of influence
covers the entire game world; when QoS is at a minimum, the zone of influence is
reduced to the immediate vicinity of the player’s avatar.

Overall, these results show better correlation with the simulated QoS than the
previous test cases, but imperfections still remain. Figure 8 shows a sample chart of
these results, showing a short session created by data set 6. This chart shows very
similar traffic for the two clients for the first 13 seconds even though their QoS values
are at opposite ranges of the scale, following the same pattern as seen in figure 5.

Average Data Rates, Data Set 2

-
50.00

100.00
150.00
200.00
250.00
300.00
350.00

2 6 7 10

Test Conditions

A
ve

ra
ge

 D
at

a
R

at
e

(b
yt

es
/s

)

Client 100

Client 101

Average Data Rates, Data Set 6

-

50.00

100.00

150.00

200.00

250.00

2 6 7 10

Test Conditions

A
ve

ra
ge

 D
at

a
R

at
e

(b
yt

es
/s

)

Client 100

Client 101

Average Data Rates, Data Set 7

-
50.00

100.00

150.00

200.00

250.00

300.00

350.00

2 6 7 10

Test Conditions

A
ve

ra
ge

 D
at

a
R

at
e

(b
yt

es
/s

)

Client 100

Client 101

Average Data Rates, Data Set 10

-

50.00

100.00

150.00

200.00

250.00

300.00

2 6 7 10

Test Conditions

A
ve

ra
ge

 D
at

a
R

at
es

 (
by

te
s/

s)

Client 100

Client 101

Data Set 6, Test 11

0

1000

2000

3000

4000

5000

0 5000 10000 15000 20000

Relative Session Time (ms)

C
um

u
la

tiv
e

E
ve

n
t S

iz
e

(b
yt

es
)

Client 100
Client 101

Figure 7 Summary results for adaptive game

Figure 8 Event streams for data set 6, test 11

10 Stephen Workman, Gerard Parr, Philip Morrow, Darryl Charles

Differences are clear between 13 and 16 seconds, but the event streams seem to return
to similarity following this.

Examining the data streams for the adapted games shows the amount of activity
within the zone of influence. Since events are sent directly if they fall within the zone,
a large number of standard events would indicate a lot of activity within the zone,
especially if the QoS were low. Figure 9 shows the individual traffic streams created
by each event type on each client. These individual event type streams go together to
form the overall event streams as seen in Figure 8, determining the shape of these
overall streams. Analyzing the period between 13 and 16 seconds which was
highlighted in the discussion on figure 8, shows that client 100, which has almost full
QoS (see figure 6), receives no update (“MINE_UPD”) events; this is as expected,
since the size of its zone of influence covers most of the game world. Client 101,
however, receives two update events and standard events in this period, indicating
activity both within and without its zone of influence; client 101’s zone of influence is
quite small as its QoS is also quite small. In this situation, client 101 would have
benefited from a quick update sent immediately, and not put on a timer, which would
have demanded less bandwidth, rather than the series of smaller “EXPLODE” events
and update events which demanded quite a lot. If this had been the case, client 101’s
overall event stream would have had a smoother gradient at this time, rather than the
larger jump. Figure 10 shows how this would look.

This example suggests a lack of consideration for the QoS requirements of the
various streams. In the present algorithm, the zone of influence shrinks and grows
depending on the QoS available; the user receives high detail over time nearby in the
virtual world, and varying accuracy in the middle and long distances. Rather than
reducing the number of events sent to the client to lower the overall QoS requirement,

Figure 10 Amended chart of data set 6

Figure 9 Event type streams for data set 6, test 11

Event Type Streams - Data 6, Test 11, Client 100

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000 40000

Relative Session Time (ms)

C
um

ul
at

iv
e

E
ve

nt
 S

iz
e

(b
yt

es
)

Event Type Streams - Data 6, Test 11, Client 101

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000 40000

Relative Session Time (ms)

C
um

ul
at

iv
e

E
ve

nt
 S

iz
e

(b
yt

es
)

MOVE_PLAYER

DROP_BOMB

EXPLODE

FIRE_OVER

MINE_UPD

Data Set 6, Test 11 - Amended

0

1000

2000

3000

4000

5000

0 5000 10000 15000 20000

Relative Session Time (ms)

C
u

m
u

la
tiv

e
E

ve
n

t S
iz

e
(b

yt
es

)

Client 100
Client 101

Relevance-based Adaptive Event Communication for Mobile Environments with Variable
QoS Capabilities 11

it may be possible to use a different event message which has smaller QoS
requirements, as just discussed. Potential results could mean lower QoS requirements
for the overall stream, while maintaining a higher number of events. To achieve this
demands knowledge of the QoS requirements of the different event types; this will
require further experimentation in the future.

5 Conclusion and Future Work

This paper has presented an exploratory study of the use of data adaptation for the
variable resource environment of wireless networking. Simulation suggests that in
order for relevance-based adaptation to work optimally it must take the QoS
requirements of the different event type streams into consideration. For DVEs, this
means that there must be a method of describing events and event streams in terms of
the resources they require, in order to provide a set of event stream solutions which
have a range of QoS requirements. The decision of how best to adapt the basic event
stream can then be based on such a set of solutions and the resources currently
available. Issues involved in this continued work will examine how best to
characterize QoS requirements using different metrics, as well as simulating the
dynamic resource profile of wireless networking. Scalability and cost/efficiency
analyses of the adaptation using different distribution architectures are also essential.

References

1. Ward, Mark. “Mobile games poised for take-off.” BBC News. News, 2 May 2005.
Available at http://news.bbc.co.uk/1/hi/technology/4498433.stm (17 May 2005).

2. Holden, Windsor. Juniper Research. White Paper, February 2005. Mobile Fun & Games -
Second Edition

3. Facer, K, R Joiner, D Stanton, J Reid, R Hull, and D Kirk. “Savannah: mobile gaming and
learning?” Journal of Computer Assisted Learning 20.6 (December 2004): 399-409.

4. Workman, SJH, G Parr, P Morrow, and D Charles. “Enabling Adaptive Multipoint
Multimedia over Wireless IP Networks.” Proceedings from PGNET 2004 (28-29 June
2004), 266-271.

5. Yan, Bo, and Kam W. Ng. “A Survey on the Techniques for the Transport of MPEG-4 over
Wireless Networks.” IEEE Transactions on Consumer Electronics 48.4 (November 2002):
863-873.

6. Ferretti, Stefano, and Marco Roccetti. “A novel obsolescence-based approach to event
delivery synchronisation in multiplayer games.” International Journal of Intelligent Games
and Simulation 3.1 (March/April 2004): 7-19.

7. Matijasevic, Maja, Denis Gracanin, Kimon P. Valavanis, and Ignac Lovrek. “A Framework
for Multiuser Distributed Virtual Environments.” IEEE Transactions on Systems, Man and
Cybernetics-Part B: Cybernetics 32.4 (August 2002): 416-429.

8. 3rd Generation Partnership Project (3GPP). Technical Specification Group Services and
System Aspects. Technical Specification, March 2004. Quality of Service (QoS) concept
and architecture (Release 6)

9. Busse, Marcel, Bernd Lamparter, Martin Mauve, and Wolfgang Effelsberg. “Lightweight
QoS-Support for Networked Mobile Gaming.” SIGCOMM’04 Workshops (30 August
2004).

12 Stephen Workman, Gerard Parr, Philip Morrow, Darryl Charles

10. Lo, Shou-Chih, Guanling Lee, Wen-Tsuen Chen, and Jen-Chi Liu. “Architecture for
Mobility and QoS Support in All-IP Wireless Networks.” 30 January 2003. IEEE Journal
on Selected Areas in Communications 22.4 (May 2004): 691-705.

11. Moon, Bongko, and A. Hamid Aghvami. “Quality-of-Service Mechanisms in All-IP
Wireless Access Networks.” 1 June 2003. IEEE Journal on Selected Areas in
Communications 22.5 (June 2004): 873-888.

12. Mirhakkak, Mohammad, Nancy Schult, and Duncan Thomson. “Dynamic Bandwidth
Management and Adaptive Applications for a Variable Bandwidth Wireless Environment.”
December 2000. IEEE Journal on Selected areas in Communications 19.10 (October 2001):
1984-1997.

13. Mukhtar, Rami G., Stephen V. Hanly, and Lachlan L.H. Andrew. “Efficient Internet Traffic
Delivery over Wireless Networks.” IEEE Communications Magazine (December 2003),
46-53.

14. Fu, Zhengua, Xiaoquo Meng, and Songwu Lu. “A Transport Protocol for Supporting
Multimedia Streaming in Mobile Ad Hoc Networks.” 1 October 2002. IEEE Journal on
Selected Areas in Communications 21.10 (December 2003): 1615-1626.

15. Akyildiz, Ian, Yucel Altunbasak, Faramarz Fekri, and Raghupathy Sivakumar. “AdaptNet:
An Adaptive Protocol Suite for the Next-Generation Wireless Internet.” IEEE
Communications Magazine, Volume: 42, Issue: 3, March 2004, pp.128-136.

16. Handley, M., V. Jacobson, and C. Perkins. “SDP: Session Description Protocol.” Internet
Engineering Task Force. Stds. org, 27 October 2003. Available at
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-sdp-new-15.txt (9 February 2004).

17. Liscano, Ramiro, Allan Jost, Anand Dersingh, and Hao Hu. “Session-base Service
Discovery in Peer-to-Peer Communications.” Proceedings from CCECE 2004-CCGEI
2004, Niagara Falls (May 2004).

18. Pangalos, Paul A., Konstantinos Boukis, Louise Burness, Alan Brookland, Caroline
Beauchamps, and AH Aghvami. “End-to-End SIP Based Real Time Application Adaptation
During Unplanned Vertical Handovers.” GLOBECOM '01. IEEE 6 (2529 November 2001):
3488-3493.

19. Guenkova-Luy, Teodora, Andreas J. Kassler, and Davide Mandato. “End-to-End Quality of
Service Coordination for Mobile Multimedia Applications.” 1 June 2003. IEEE Journal on
Selected Areas on Communications 22.5 (June 2004): 889-903.

20. Diot, Christophe, and Laurent Gautier. “A Distributed Architecture for Multiplayer
Interactive Applications on the Internet.” IEEE Network 13.4 (July-August 1999).

21. Meier, René, and Vinny Cahill. “STEAM: Event-Based Middleware for Wireless Ad Hoc
Networks.” Proceedings of the 22nd International Conference on Distributed Computing
Systems Workshops (ICDCSW’02) (2002).

22. Eugster, P.Th., P. Felber, R. Guerraoui, and S.B. Handurukande. “Event Systems: How to
Have Your Cake and Eat It Too.” Proceedings of the 22nd International Conference on
Distributed Computing Systems Workshops (ICDCSW’02) (2002).

23. Hinze, Annika, and Sven Bittner. “Efficient Distribution-Based Event Filtering.”
Proceedings of the 22nd International Conference on Distributed Computing Systems
Workshops (ICDCSW’02) (2002).

24. Aarhus, Lars, Knut Holmqvist, and Martin Kirkengen. “Generalized Two-Tier Relevance
Filtering of Computer Game Update Events.” NetGames 2002 (April 2002).

25. Sun Microsystems, Inc. “Java Technology.” Sun Developer Network. 2005. Available at
http://java.sun.com (17 May 2005).

26. Borella, Michael S. “Source Models of Network Game Traffic.” Computer
Communications 23.4 (February 2000): 403-410.

27. Färber, Johannes. “Traffic Modelling for Fast Action Network Games.” Multimedia Tools
and Applications 23 (2004): 31-46.

28. “Ethereal: A Network Protocol Analyzer”. Available at http://www.ethereal.com/ (14
February 2005).

