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Abstract. This paper proposes a framework for replicating content in multicast- 
based CDNs. We focus on the design of a scalable and robust system that 
provides local availability and redundancy of content. The system takes on-line 
and distributed replication decisions on a per-object basis. The scalability and 
local redundancy is achieved by partitioning the overlay of surrogate servers 
into fully meshed groups. The proposed framework can incorporate any set of 
local metrics and constraints for deciding the placement of replicas, thus 
allowing the CDN designer to tune it to his specific deployment characteristics. 

1   Introduction 

Content Distribution Networks (CDNs) have become a common technology that 
enables content providers to distribute their popular content to a large number of 
users. Herein, we assume such a CDN system for distributing bulky files over a 
satellite network. Scalability, availability and efficiency of such a system are of vital 
importance especially in deployments that include a large number of receivers 
covering extended and distant regions. Efficient and scalable content distribution is 
achieved by applying: (a) multicast transmission, and (b) a distributed content 
replication algorithm that places content close to clients. The scalability of this 
algorithm is assisted by the partition of the CDN into relative small neighborhoods 
and the restriction of its scope within their bounds. At the same time, replication 
algorithm aims at providing content redundancy and load balancing in the CDN.  

Different formulations for the problem of content placement in CDNs have been 
proposed in the literature, each one focusing on different objectives. From our 
perspective, content placement can be broken in two sub-problems. The first one, 
referred as server placement problem, is that of finding the locations where replica 
servers must be placed. Server placement is related to the design phase of a CDN and 
the deployment of the networking infrastructure. So far, it has been addressed in [2, 4, 
9, 10, 11, 12] by algorithms, which are centralized, encompass high complexity and 
are executed off-line. The second sub-problem, referred as content replication, is the 
selection of the subset of the available servers to store replicas of a specific object in a 
way that minimizes the replication cost [3, 5, 7]. This is an optimization problem that 
must be usually solved on-line, i.e., the decision algorithm must run after some event. 
Hence, heuristics and distributed algorithms are preferable. 

mailto:imata@intracom.gr
mailto:ndragios@telecom.ntua.gr
mailto:karetsos}@cs.ntua.gr


 

Herein, we address only content replication, and we propose a generic approach to 
its formulation and solution. Our objective is to describe a framework for this 
formulation, which permits an efficient on-line solution. This solution, is heuristic and 
sub-optimal, but has the advantage that is scalable and provides local redundancy 
guarantees for the content. Our approach has similarities with several previous 
approaches in its various aspects. It is distributed but considers cooperation of 
neighboring nodes as [5, 7, 8] have also suggested. It can take into account various 
different metrics, such as storage space availability, server load, previous user 
accesses and subscriptions  [3, 5, 7]. On the other hand, it does not consider metrics 
related to delivery performance (e.g., latency) as in [2, 5, 6, 7, 9, 11]. In our view, 
network conditions should be considered later during request routing.  Also, it can be 
assumed that statistical data about workload and link properties have been taken into 
account during a prior network design phase. Section 2 presents our CDN model and 
our content replication policy, and its evaluation is attempted in section 3.  

2   CDN Model and Content Replication Policy  

Satellite networks are a particularly appealing solution for content distribution and 
cache pre-filling due to their inherent broadcasting capabilities [1]. In our model, a 
one-hop satellite network is used for the distribution of large files from the origin 
server to a large number of geographically dispersed surrogate servers via IP 
multicast. Content distribution is triggered either by the content provider according to 
some schedule (push model), or by client requests (pull model). A few seconds before 
the eventual content transmission, the origin server multicasts an announcement in a 
well-known multicast address. All surrogate servers receive the multicast 
announcement, and each one decides whether it should replicate the advertised 
content or not. By applying a cooperative decision scheme, where all the servers in 
the neighborhood use the same decision policy based on identical neighborhood 
information, all servers eventually take a common decision. A surrogate that decides 
to replicate the content joins the corresponding multicast addresses (made known via 
the announcement) and receives it. A reliable multicast protocol, whose details are 
beyond the scope of this paper, is used for the content transmission to the surrogates. 

(a) (b)
mobile clientmobile clientfixed client

group A

origin
server

surrogate
servers

surrogate
servers

group B

access network

multicast enabled  network
e.g., satellite

300

350

400

450

500

550

6 14 20 30 40

Group Size

D
ec

is
io

n 
de

la
y 

(m
se

cs
)

Average delay  Max delay

 
Fig. 1. (a) CDN model. (b) Simulation results for decision delay (K=0.3*GroupSize). 



Fig. 1.a shows an abstract view of our CDN model that skips deployment specific 
details. A fully meshed grouping of the surrogate servers, based on geographical or 
network proximity criteria, has been determined during a prior network design phase. 
There are several reasons justifying this partitioning: (a) Replication decisions in a 
neighborhood must be independent from the decisions taken in other neighborhoods. 
(b) The server delivering to a client should not have long distance from this client. (c) 
The cooperation between servers in a group can ensure local content availability and 
redundancy. (d) The decision algorithm and the exchange of control messages inside a 
restricted neighborhood can be fast and incur only local traffic. (e) It maps to realistic 
CDN deployments where the nodes serving a geographical area (e.g., city, state, 
country) are relatively few and can be connected by fast links.  

Ideally, if we replicated all objects in all the surrogate servers we would achieve 
the maximum possible content availability and the best delivery performance. There 
are, however, certain restrictions in doing so: (a) the overall storage space in a CDN is 
limited and, thus, we must restrict replication to the necessary, and (b) the distribution 
mechanism, although multicast-based, may present scalability issues due to the use of 
a reliable multicast protocol based on negative acknowledgements. A way to improve 
the CDN scalability is to multicast each object only in a subset of the receivers. 

Apart from scalability, content replication aims at content availability in the sense 
of local replica redundancy and load balancing. In order to account for possible server 
failures and departures or conditions of overloaded servers, multiple replicas of an 
object should be available to support the demand in a given geographical area or in a 
given group of clients. To further enhance the content and system availability, the 
replication policy should avoid storing content in already loaded servers. 

Most existing content placement approaches [2, 5, 6, 7, 9, 11] consider as known 
the locations of the clients and their distances from the candidate locations, and try to 
optimize the content delivery quality (e.g., minimize average latency). Using such a 
formulation they try to solve two problems in one step: the problem of finding the 
best server to replicate an object and the problem of finding the best server to deliver 
the object to clients. This formulation is valid for the off-line solution of the server 
placement problem where the distribution of clients and the network topology can be 
assumed to be static. In the case of content replication, however, such a formulation 
presents difficulties because: (a) its solution is computationally expensive and not 
scalable [6, 7], and (b) it ignores the network dynamics and the fact that content 
replication and content delivery do not usually occur at the same time. For these 
reasons, we de-correlate the content replication from the content delivery phase.  

Each surrogate computes various local metrics that reflect different aspects of the 
server’s current status and preferences of its local community. In our experimental 
system the metrics considered were related to the current load of the server, the 
available storage space and the users interest in the specific object. The parameters 
contributing to the estimation of the server load were the CPU usage (CPUusage), the 
memory usage (RAMusage), the aggregate bit-rate of all active multicast receptions 
(InRate), the aggregate bit-rate of all active client connections (OutRate) and the 
number of active client connections (ActiveConns). The storage space availability 
(Storageavail) was reflected by the amount of currently free disk space that is reserved 
for object replicas. The users interest in an announced object was quantified by two 
terms: (a) the Subscriptions number that is the score found when we match the 



 

metadata of the object against the subscriptions of the local clients, and (b) the 
PastUsage that is the number of client hits to previous versions of the object. 

When a surrogate server has computed the above values, it sends a message 
containing this value-set to all its neighbors. At the same time, all the neighbors 
perform exactly the same steps, and the result is that the value-sets describing the 
status of the servers are disseminated in the neighborhood. Each server finally collects 
an identical list of N value-sets (where N is the current size of the neighborhood), 
which then uses to evaluate a cost function and a number of constraints. A generic 
cost function for the replication of object i in server n could have the form: 

replicationCostni = a1f1(CPUusagen)+a2f2(RAMusagen) +a3f3(InRaten) + 
a4f4(OutRaten)+a5f5(ActiveConnsn)+a6f6(Subscriptionsni)+7f7(PastUsageni ) 

(1) 

where  are the weights of the various involved terms. An example constraint 
related to storage space is Storage
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avail,n > Storagethresh (say Storagethresh =100MB). Of 
course, there is an infinite space of possible cost functions and constraints that could 
be alternatively applied. For instance, one could introduce a term related to storage 
space availability in the cost function above, e.g., a8f8(Storageavail,n , Storagemax,n )   or 
apply constraints  related to server load such as  (e.g., InRaten < 10Mbps, OutRaten 
<50Mbps, RAMusagen <80%). In any case, the focus of our work is not in the 
identification of a specific problem formulation, but in the design of a cooperative 
framework that permits the simple on-line solution of a whole family of formulations. 
Each surrogate server m computes the cost for all members in the group and checks if 
the identified constrains are satisfied. For the sub-list of group members that satisfy 
the constraints, the cost values are sorted and the members corresponding to the K 
lowest cost values are selected for local replication. If the server m is in the sub-list of 
the low cost servers it takes the decision to replicate the object. Note that exactly the 
same procedure is carried out in all servers, and since all servers of a group use 
identical input values, objective function and constraints, their decisions are identical. 

There are different policies to define the number K of replicas taken in the group. 
A simple one is to set it proportional to the group size N, but not let it drop below a 
minimum value. This policy for K implies that all objects will have the same number 
of replicas in a group regardless from their popularity or their properties. Another 
option is to have K depending also on the users interest for the specific object. Also, 
we can have K depending on intrinsic object properties, such as its importance (e.g., 
the base layer of a scalable video is more important than the enhancement layers, and 
should have more replicas) and the targeted audience (e.g., when the content provider 
wants to increase or decrease the availability of specific objects in certain regions). 

3   Evaluation 

Scalability: An on-line content replication algorithm must have low complexity 
and should generate the least possible network traffic. As [6] suggests, existing 
centralized content placement algorithms [2, 5, 9, 10, 11, 12] are not scalable because 
the computational complexity increases with network size N (in the best case O(N)). 
In the proposed approach, the decision algorithm running in a specific node is 



independent from the state and the decisions taken at nodes belonging to other groups. 
Assuming a bounded group size (say M≤20), the computational complexity at any 
processing node is also bounded O(M). Of course any distributed algorithm with 
restricted scope (neighborhood size) shares the same advantage. At the limiting end, 
purely local algorithms [3, 5, 7] have very low complexity O(1) but the decision 
quality is lower. Messages transfers influence the scalability in two ways: They are 
additional network traffic and they add extra delay in the decision process. In a 
centralized algorithm each replication decision requires 2N message transfers. The 
problem with these messages is that many of them travel long distances through 
several network hops and through links that may be slow. Thus, the effective network 
traffic is higher and the added delay due to these messages is large and, in the general 
case, increases as the size of the CDN grows. In our algorithm, each surrogate sends 
M-1 messages to its neighbors and receives M-1 messages from them. Hence, the 
number of messages required to take replication decisions for an object in the M 
nodes of a group is M(M-1), but these messages do not induce end-to-end traffic. 
Also, the average added delay due to message transfers can be always kept below 
some threshold if the network distance between group members is bounded. In 
general, the delay due to message transfers of distributed algorithms decreases when 
the scope of the algorithm becomes narrower. In fig. 1.b we have plotted the 
simulation results for the replication decision delay (mean values of average and 
maximum decision delay) for different group sizes in a 100Mbps LAN environment. 
These results show the applicability of our algorithm for on-line replication decisions, 
since for relatively small groups the replication decision delay is acceptable (<1 sec).  

Local content redundancy: A drawback of existing centralized and purely local 
replication algorithms is that they do not provide any guarantees for local redundancy 
of replicas since they do not set any constraints related either to the relative placement 
of replicas or to the number of replicas taken in a specific region. Our approach 
inherently guarantees local redundancy as each group of surrogates takes exactly K 
replicas, where K may be derived in different ways (see previous section).  

Flexibility of problem formulation and solution: The decision quality of most 
centralized algorithms is related to the client perceived latency. However, the solution 
ignores the actual network conditions, which may change dynamically and deviate a 
lot from the initial assumptions, and does not account for mobility of clients. Also, 
various assumptions are made in order to simplify the solution of the optimization 
problem, e.g., the constraints are relaxed and incorporated in the cost function [7,11], 
or large and small objects are not differentiated [7]. It is not always easy to 
incorporate additional metrics in their cost or constraint functions without serious 
impact in their complexity. On the other hand, our approach makes no simplification 
and the constraints are always satisfied by the solution. It is flexible and can easily 
incorporate any type of local metrics and constraints according to the model at hand. 

Easiness of deployment: Centralized approaches assume that the central node 
knows the network topology and the latency to any node or client. Also, keeping this 
central node synchronized with the contents of all the nodes is a very difficult task. 
Achieving quick decisions and synchronization in such a system requires that the 
links with all the nodes are fast and reliable. The above requirements cannot be easily 
satisfied in real deployments with many nodes placed at distant locations. In our 
approach, configuration and synchronization involves only the neighborhood and is 



 

much simpler. Also, redundancy of processing nodes is not an issue. If any node fails 
the algorithm runs without problem in other nodes. The quality of the network links is 
important only between the nodes of the same group. And it is reasonable to assume 
that in a real deployment these nodes are placed topologically close to each other. 

4   Conclusions and Future Work 

We have proposed a scalable and flexible cooperative approach for content 
replication that solves several problems encountered by centralized and purely local 
algorithms. The grouping of surrogates provides a trade-off between scalability and 
local replica redundancy. Our approach lies somewhere in the middle between: (a) 
centralized algorithms, which take a near-optimal number of replicas but are not 
scalable and do not care about their relative placement, and (b) purely local 
algorithms, which are simple and scalable but the number of replicas taken may be far 
from the optimal while they make no provisions at all for their relative placement.  

An important topic for future work is the storage management of surrogate servers, 
and particularly the use of cooperative replica removal and regeneration policies. 
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