
A Scalable Framework for Content Replication in
Multicast-Based Content Distribution Networks

Yannis Matalas1, Nikolaos D. Dragios2, and George T. Karetsos2

1Digital Media & Internet Technologies Department,
Intracom Telecom, Athens, Greece

2School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

imata@intracom.gr, ndragios@telecom.ntua.gr, karetsos@cs.ntua.gr

Abstract. This paper proposes a framework for replicating content in multicast-
based CDNs. We focus on the design of a scalable and robust system that
provides local availability and redundancy of content. The system takes on-line
and distributed replication decisions on a per-object basis. The scalability and
local redundancy is achieved by partitioning the overlay of surrogate servers
into fully meshed groups. The proposed framework can incorporate any set of
local metrics and constraints for deciding the placement of replicas, thus
allowing the CDN designer to tune it to his specific deployment characteristics.

1 Introduction

Content Distribution Networks (CDNs) have become a common technology that
enables content providers to distribute their popular content to a large number of
users. Herein, we assume such a CDN system for distributing bulky files over a
satellite network. Scalability, availability and efficiency of such a system are of vital
importance especially in deployments that include a large number of receivers
covering extended and distant regions. Efficient and scalable content distribution is
achieved by applying: (a) multicast transmission, and (b) a distributed content
replication algorithm that places content close to clients. The scalability of this
algorithm is assisted by the partition of the CDN into relative small neighborhoods
and the restriction of its scope within their bounds. At the same time, replication
algorithm aims at providing content redundancy and load balancing in the CDN.

Different formulations for the problem of content placement in CDNs have been
proposed in the literature, each one focusing on different objectives. From our
perspective, content placement can be broken in two sub-problems. The first one,
referred as server placement problem, is that of finding the locations where replica
servers must be placed. Server placement is related to the design phase of a CDN and
the deployment of the networking infrastructure. So far, it has been addressed in [2, 4,
9, 10, 11, 12] by algorithms, which are centralized, encompass high complexity and
are executed off-line. The second sub-problem, referred as content replication, is the
selection of the subset of the available servers to store replicas of a specific object in a
way that minimizes the replication cost [3, 5, 7]. This is an optimization problem that
must be usually solved on-line, i.e., the decision algorithm must run after some event.
Hence, heuristics and distributed algorithms are preferable.

mailto:imata@intracom.gr
mailto:ndragios@telecom.ntua.gr
mailto:karetsos}@cs.ntua.gr

Herein, we address only content replication, and we propose a generic approach to
its formulation and solution. Our objective is to describe a framework for this
formulation, which permits an efficient on-line solution. This solution, is heuristic and
sub-optimal, but has the advantage that is scalable and provides local redundancy
guarantees for the content. Our approach has similarities with several previous
approaches in its various aspects. It is distributed but considers cooperation of
neighboring nodes as [5, 7, 8] have also suggested. It can take into account various
different metrics, such as storage space availability, server load, previous user
accesses and subscriptions [3, 5, 7]. On the other hand, it does not consider metrics
related to delivery performance (e.g., latency) as in [2, 5, 6, 7, 9, 11]. In our view,
network conditions should be considered later during request routing. Also, it can be
assumed that statistical data about workload and link properties have been taken into
account during a prior network design phase. Section 2 presents our CDN model and
our content replication policy, and its evaluation is attempted in section 3.

2 CDN Model and Content Replication Policy

Satellite networks are a particularly appealing solution for content distribution and
cache pre-filling due to their inherent broadcasting capabilities [1]. In our model, a
one-hop satellite network is used for the distribution of large files from the origin
server to a large number of geographically dispersed surrogate servers via IP
multicast. Content distribution is triggered either by the content provider according to
some schedule (push model), or by client requests (pull model). A few seconds before
the eventual content transmission, the origin server multicasts an announcement in a
well-known multicast address. All surrogate servers receive the multicast
announcement, and each one decides whether it should replicate the advertised
content or not. By applying a cooperative decision scheme, where all the servers in
the neighborhood use the same decision policy based on identical neighborhood
information, all servers eventually take a common decision. A surrogate that decides
to replicate the content joins the corresponding multicast addresses (made known via
the announcement) and receives it. A reliable multicast protocol, whose details are
beyond the scope of this paper, is used for the content transmission to the surrogates.

(a) (b)
mobile clientmobile clientfixed client

group A

origin
server

surrogate
servers

surrogate
servers

group B

access network

multicast enabled network
e.g., satellite

300

350

400

450

500

550

6 14 20 30 40

Group Size

D
ec

is
io

n
de

la
y

(m
se

cs
)

Average delay Max delay

Fig. 1. (a) CDN model. (b) Simulation results for decision delay (K=0.3*GroupSize).

Fig. 1.a shows an abstract view of our CDN model that skips deployment specific
details. A fully meshed grouping of the surrogate servers, based on geographical or
network proximity criteria, has been determined during a prior network design phase.
There are several reasons justifying this partitioning: (a) Replication decisions in a
neighborhood must be independent from the decisions taken in other neighborhoods.
(b) The server delivering to a client should not have long distance from this client. (c)
The cooperation between servers in a group can ensure local content availability and
redundancy. (d) The decision algorithm and the exchange of control messages inside a
restricted neighborhood can be fast and incur only local traffic. (e) It maps to realistic
CDN deployments where the nodes serving a geographical area (e.g., city, state,
country) are relatively few and can be connected by fast links.

Ideally, if we replicated all objects in all the surrogate servers we would achieve
the maximum possible content availability and the best delivery performance. There
are, however, certain restrictions in doing so: (a) the overall storage space in a CDN is
limited and, thus, we must restrict replication to the necessary, and (b) the distribution
mechanism, although multicast-based, may present scalability issues due to the use of
a reliable multicast protocol based on negative acknowledgements. A way to improve
the CDN scalability is to multicast each object only in a subset of the receivers.

Apart from scalability, content replication aims at content availability in the sense
of local replica redundancy and load balancing. In order to account for possible server
failures and departures or conditions of overloaded servers, multiple replicas of an
object should be available to support the demand in a given geographical area or in a
given group of clients. To further enhance the content and system availability, the
replication policy should avoid storing content in already loaded servers.

Most existing content placement approaches [2, 5, 6, 7, 9, 11] consider as known
the locations of the clients and their distances from the candidate locations, and try to
optimize the content delivery quality (e.g., minimize average latency). Using such a
formulation they try to solve two problems in one step: the problem of finding the
best server to replicate an object and the problem of finding the best server to deliver
the object to clients. This formulation is valid for the off-line solution of the server
placement problem where the distribution of clients and the network topology can be
assumed to be static. In the case of content replication, however, such a formulation
presents difficulties because: (a) its solution is computationally expensive and not
scalable [6, 7], and (b) it ignores the network dynamics and the fact that content
replication and content delivery do not usually occur at the same time. For these
reasons, we de-correlate the content replication from the content delivery phase.

Each surrogate computes various local metrics that reflect different aspects of the
server’s current status and preferences of its local community. In our experimental
system the metrics considered were related to the current load of the server, the
available storage space and the users interest in the specific object. The parameters
contributing to the estimation of the server load were the CPU usage (CPUusage), the
memory usage (RAMusage), the aggregate bit-rate of all active multicast receptions
(InRate), the aggregate bit-rate of all active client connections (OutRate) and the
number of active client connections (ActiveConns). The storage space availability
(Storageavail) was reflected by the amount of currently free disk space that is reserved
for object replicas. The users interest in an announced object was quantified by two
terms: (a) the Subscriptions number that is the score found when we match the

metadata of the object against the subscriptions of the local clients, and (b) the
PastUsage that is the number of client hits to previous versions of the object.

When a surrogate server has computed the above values, it sends a message
containing this value-set to all its neighbors. At the same time, all the neighbors
perform exactly the same steps, and the result is that the value-sets describing the
status of the servers are disseminated in the neighborhood. Each server finally collects
an identical list of N value-sets (where N is the current size of the neighborhood),
which then uses to evaluate a cost function and a number of constraints. A generic
cost function for the replication of object i in server n could have the form:

replicationCostni = a1f1(CPUusagen)+a2f2(RAMusagen) +a3f3(InRaten) +
a4f4(OutRaten)+a5f5(ActiveConnsn)+a6f6(Subscriptionsni)+7f7(PastUsageni)

(1)

where are the weights of the various involved terms. An example constraint
related to storage space is Storage

71 aa ,...,

avail,n > Storagethresh (say Storagethresh =100MB). Of
course, there is an infinite space of possible cost functions and constraints that could
be alternatively applied. For instance, one could introduce a term related to storage
space availability in the cost function above, e.g., a8f8(Storageavail,n , Storagemax,n) or
apply constraints related to server load such as (e.g., InRaten < 10Mbps, OutRaten
<50Mbps, RAMusagen <80%). In any case, the focus of our work is not in the
identification of a specific problem formulation, but in the design of a cooperative
framework that permits the simple on-line solution of a whole family of formulations.
Each surrogate server m computes the cost for all members in the group and checks if
the identified constrains are satisfied. For the sub-list of group members that satisfy
the constraints, the cost values are sorted and the members corresponding to the K
lowest cost values are selected for local replication. If the server m is in the sub-list of
the low cost servers it takes the decision to replicate the object. Note that exactly the
same procedure is carried out in all servers, and since all servers of a group use
identical input values, objective function and constraints, their decisions are identical.

There are different policies to define the number K of replicas taken in the group.
A simple one is to set it proportional to the group size N, but not let it drop below a
minimum value. This policy for K implies that all objects will have the same number
of replicas in a group regardless from their popularity or their properties. Another
option is to have K depending also on the users interest for the specific object. Also,
we can have K depending on intrinsic object properties, such as its importance (e.g.,
the base layer of a scalable video is more important than the enhancement layers, and
should have more replicas) and the targeted audience (e.g., when the content provider
wants to increase or decrease the availability of specific objects in certain regions).

3 Evaluation

Scalability: An on-line content replication algorithm must have low complexity
and should generate the least possible network traffic. As [6] suggests, existing
centralized content placement algorithms [2, 5, 9, 10, 11, 12] are not scalable because
the computational complexity increases with network size N (in the best case O(N)).
In the proposed approach, the decision algorithm running in a specific node is

independent from the state and the decisions taken at nodes belonging to other groups.
Assuming a bounded group size (say M≤20), the computational complexity at any
processing node is also bounded O(M). Of course any distributed algorithm with
restricted scope (neighborhood size) shares the same advantage. At the limiting end,
purely local algorithms [3, 5, 7] have very low complexity O(1) but the decision
quality is lower. Messages transfers influence the scalability in two ways: They are
additional network traffic and they add extra delay in the decision process. In a
centralized algorithm each replication decision requires 2N message transfers. The
problem with these messages is that many of them travel long distances through
several network hops and through links that may be slow. Thus, the effective network
traffic is higher and the added delay due to these messages is large and, in the general
case, increases as the size of the CDN grows. In our algorithm, each surrogate sends
M-1 messages to its neighbors and receives M-1 messages from them. Hence, the
number of messages required to take replication decisions for an object in the M
nodes of a group is M(M-1), but these messages do not induce end-to-end traffic.
Also, the average added delay due to message transfers can be always kept below
some threshold if the network distance between group members is bounded. In
general, the delay due to message transfers of distributed algorithms decreases when
the scope of the algorithm becomes narrower. In fig. 1.b we have plotted the
simulation results for the replication decision delay (mean values of average and
maximum decision delay) for different group sizes in a 100Mbps LAN environment.
These results show the applicability of our algorithm for on-line replication decisions,
since for relatively small groups the replication decision delay is acceptable (<1 sec).

Local content redundancy: A drawback of existing centralized and purely local
replication algorithms is that they do not provide any guarantees for local redundancy
of replicas since they do not set any constraints related either to the relative placement
of replicas or to the number of replicas taken in a specific region. Our approach
inherently guarantees local redundancy as each group of surrogates takes exactly K
replicas, where K may be derived in different ways (see previous section).

Flexibility of problem formulation and solution: The decision quality of most
centralized algorithms is related to the client perceived latency. However, the solution
ignores the actual network conditions, which may change dynamically and deviate a
lot from the initial assumptions, and does not account for mobility of clients. Also,
various assumptions are made in order to simplify the solution of the optimization
problem, e.g., the constraints are relaxed and incorporated in the cost function [7,11],
or large and small objects are not differentiated [7]. It is not always easy to
incorporate additional metrics in their cost or constraint functions without serious
impact in their complexity. On the other hand, our approach makes no simplification
and the constraints are always satisfied by the solution. It is flexible and can easily
incorporate any type of local metrics and constraints according to the model at hand.

Easiness of deployment: Centralized approaches assume that the central node
knows the network topology and the latency to any node or client. Also, keeping this
central node synchronized with the contents of all the nodes is a very difficult task.
Achieving quick decisions and synchronization in such a system requires that the
links with all the nodes are fast and reliable. The above requirements cannot be easily
satisfied in real deployments with many nodes placed at distant locations. In our
approach, configuration and synchronization involves only the neighborhood and is

much simpler. Also, redundancy of processing nodes is not an issue. If any node fails
the algorithm runs without problem in other nodes. The quality of the network links is
important only between the nodes of the same group. And it is reasonable to assume
that in a real deployment these nodes are placed topologically close to each other.

4 Conclusions and Future Work

We have proposed a scalable and flexible cooperative approach for content
replication that solves several problems encountered by centralized and purely local
algorithms. The grouping of surrogates provides a trade-off between scalability and
local replica redundancy. Our approach lies somewhere in the middle between: (a)
centralized algorithms, which take a near-optimal number of replicas but are not
scalable and do not care about their relative placement, and (b) purely local
algorithms, which are simple and scalable but the number of replicas taken may be far
from the optimal while they make no provisions at all for their relative placement.

An important topic for future work is the storage management of surrogate servers,
and particularly the use of cooperative replica removal and regeneration policies.

References

1. A. Armon and H. Levy. Cache satellite distribution systems: modeling and analysis. In
Proceedings of IEEE INFOCOM, 2003.

2. Y. Chen, R. H. Katz, and J. D. Kubiatowicz. Dynamic replica placement for scalable content
delivery. In Proceedings of 1st Int. Workshop on Peer-to-Peer Systems, 2002.

3. M. Chen, J. P. Singh and A. LaPaugh. Subscription-enhanced content delivery. In
Proceedings of WCW’03, 2003.

4. C. Huang and T. Abdelzaher. Towards content distribution networks with latency guarantees.
In Proceedings of 12th IWQoS, 2004.

5. J. Kangasharju, J. Roberts, and K. W. Ross. Object replication strategies in content
distribution networks. In Proceedings of WCW’01, June 2001.

6. M. Karlsson, C. Karamanolis and M. Mahalingam. A framework for evaluating replica
placement algorithms. Technical Report HPL-2002-219, HP Labs, 2003.

7. M. Karlsson and C. Karamanolis. Choosing replica placement heuristics for wide-area
systems. In Proceedings of IEEE ICDCS, 2004.

8. M. Korupolu, G. Plaxton, and R. Rajaraman. Placement algorithms for hierarchical
cooperative caching. Journal of Algorithms, January 2001.

9. S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt. Constrained mirror placement on the
Internet. In Proceedings of IEEE INFOCOM, 2001.

10.B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby. On the optimal placement of
web proxies in the Internet. In Proceedings of IEEE INFOCOM, 1999.

11. L. Qiu, V. N. Padmanabhan and G. M. Voelker. On the placement of web server replicas. In
Proceedings of IEEE INFOCOM, 2001.

12. P. Radoslavov, R. Govindan, and D. Estrin. Topology-informed internet replica placement.
In Proceedings of WCW’01, June 2001.

13. H. Yu and A. Vahdat. Minimal replication cost for availability. In Proceedings of the 21st
annual Symposium on Principles of Distributed Computing, 2002.

