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Abstract Gupta and Kumar have shown that effective wireless range decreases in inverse
function of local traffic density. We show that a variable traffic density impacts
the curvature of paths in a dense wireless ad hoc network the same way a variable
optical density bends light paths. We set up the general laws that paths must
satisfy in presence of traffic flow density. Introducing Time constraint in packet
delivery, we generalize this curvature problem to a space-time problem with
mobile networks.

1. Introduction

Mobile ad hoc networks involve nodes that are moving on a network do-
main and communicate via radio means. The domain of a network can be
indifferently a battlefield, a urban quarter, a building floor, etc. Most papers
in the litterature take as an assumption models where the distribution of traffic
and nodes are uniform over their network domain. This basic model leads to
fundamental results, as the illuminating result of Gupta and Kumar ? which
states that the maximum capacity per node in a flat domain is in O,/ m)
In this paper we will depart from the uniform model and assume that the traf-
fic density varies with node location. We will provide results on how shortest
path are affected by traffic density gradients. In particular we will show that in
asymptotic conditions the routing paths obey to similar laws as in non linear
optic.

We also generalize this result to the case where nodes are mobile and can
hold the packet for some time before retransmitting it. Relaxing time con-
straint in the packet delivery and introducing mobility pattern depending on
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node position, we generalize the equation we obtained for a stationary network
and prove that mobility can actually increase the network capacity.

In their reference paper on the capacity of mobile ad hoc networks, Gupta
and Kumar ? showed that in presence of traffic density of A bit per time unit per
square unit area, the typical radius of correct reception decays in O(\%\) This

result assumes an uniform density model and quantity A is the density of traffic
including the load generated by packet that are retransmitted on their way to
their destination on multihop paths. To our view, this estimate is the most fun-
damental result. As a direct consequence the average number of hops needed
to connect two arbitrary points in a bounded domain is therefore O(/\) since
the distance must be divided by the radio ranges. As pointed out by Gupta and
Kumar, this property has a strong implication in the evaluation of the maxi-
mum capacity attainable by a random node when the node density increases.
If C is the capacity generated by each node and N is the number of nodes
in the network, Gupta and Kumar found that the maximum bandwidth attain-
able is Cy = W, quantity « depending on propagation models. How-

ever the order of magnitude is easy to get: the density of traffic generated
per unit square are is O(CN). Let r(C, N) be the typical radio range, thus
the number of retransmissions needed to route a packet from its source to its
destination is O(W). The latter estimate, in turn, yields a traffic density

(including retransmissions) of O(%) Therefore r(C, N) = O(y/ dg—l\’l)
namely r(C, N) = O((CN)™!). The average number of neighbor per node is
O(wr(C, N)2N); it should be larger than log N in order to guarantee connec-
tivity, which leads to the estimate C' = O((N log N)~1/2).

If instead we consider that the network spans on a domain in dimension D,
then the radius of correct reception decays in the inverse of the Dth root of
emitter density, which impacts the maximum capacity (replacing the exponent
—1/2 by —1/D).

This paper addresses the case where the traffic pattern is not uniform but
varies as a continuous function of node location. We investigate the case where
the traffic and node densities are large enough to make the efficient radio ranges
infinitely small (compared to traffic density gradient and domain size). In this
perspective, shortest paths (in number of hops) from sources to destinations
look like continuous lines. In the sequel we call lines generated by shortest
path routes, propagation lines. In the uniform model propagation lines are
expected to be straight lines. In this paper we limit our investigation to the
propagation lines and we analyze how the latter are affected by the variation
of traffic density. We summarize our findings into macroscopic differential
equations involving propagation lines curvatures.

The paper is organized as follows. The second section investigates more
thoroughly a model of mobile ad hoc network in order to provide more accurate
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estimates about Gupta and Kumar results. The model assumes a 2D domain
under slotted time with a density of A emitters per slot and square area unit.
Under this simple model we will provide quantitative confirmation of Gupta
and Kumar results. The third section introduces the concept of massively dense
networks and how propagation lines are affected by variable traffic density.
At a macroscopic level the variable traffic density acts like a variable optical
index and curves the propagation lines from sources to destinations. The fourth
section introduces the time component and node mobility in the problem and
shows that larger packet delivery delay can reduce the number of hops.

2. Quantitative results on time slotted networks
Quantification of the problem

Kumar and Gupta estimates were originally derived from information theory
considerations and are not related to any particular network implementation. If
we assume a specific implementation, then there will be a quantity 5 such that

the typical radius of correct reception of a packet is equal to \% By typical

radius we mean the radius below which probability of correct reception of a
packet is above a given threshold. The quantity 5 will depend on many pa-
rameters such as the probability threshold, the attenuation coefficient of wave
propagation and the minimum signal-over-noise ratio required for correct re-
ception. Notice that the typical disk of correct reception contains in average a
finite number of transmitters per slot, since the area is proportional to%.

If we consider a network dispatched in a domain of dimension D then the
estimate of the radius will be 177 In the sequel we will look at 2D domains
generalizing occasionnaly the results on other dimensions.

When the density A increases in a fixed domain, then the minimum number
of hops connecting two points A, B tends to be equivalent to d( A, B)lﬂz where
d(A, B) denotes the euclidian distance between mobile node A and mobile
node B. Meanwhile, the increase of the number of relays naturally increases
the traffic density. If v is the actual traffic density generation per unit area,
i.e. the traffic locally generated on mobile nodes, not the traffic relayed by the
mobile nodes, then the average density traffic will satisfy the identity: A =

I/J% where d is the average euclidian distance between two end points in a
connection.

This previous identity assumes that the pattern of path between points covers
the domain in an uniform manner so that the traffic density, generated and
relayed, is constant on the whole domain. In this case the path that connect two
points with the minimum number of hops is very close to the straight line. But
the question arises about the shape of the shortest path when the traffic density
is not uniform. We will show that when the density increases while keeping
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proportional to a given continuous function, then the propagation paths tend
to conform to continuous line, that we call propagation lines. Under these
assumptions we will provide the general equations that the propagation lines
must satisfy. We will show that variable traffic densities affect shortest path the
same way as variable optical indices affect light path in a physical medium.

Propagation model

We consider the following model: time is slotted, all mobile nodes are syn-
chronized, transmissions on begining of slots. We consider an area of arbitrary
size A (we will ignore border effect). N transmitters are distributed according
to a Poisson process. We call A the density of transmitter per slot and per square
area unit. We have A = fN/.A where f is the rate of packets transmission per
slot and per node.

Let a node X at a random position (we ignore border effects). We assume
that all nodes transmit at the same nominal power. The reception signal at dis-
tance 7 is P(r) = r~* with @ > 2. Typically « = 2.5. Let W the signal
intensity received by node X at a random slot. Quantity W is a random vari-
able: let w(z) its density function. In ? it is shown that the Laplace transform
of w(z), W() = [ w(z)e *dx satisfies the identity:

o
W(6) = exp(2wA / (e —1yrdr) . 1)
0
Using standard algebra we get
w(0) = exp(—Anl'(1 — %)02/0‘) 2)

If the node location domain was a line instead of an area (consider a sequence
of mobiles nodes on a road) then we would have

1
B(8) = exp(—AT(1 — =)6"/*) 3)
o
If, instead the location domain was a volume (consider aircrafts network), then
~ 4 3 3/a
w(h) = exp(——?;)ﬂrI‘(l — 5)0 ) (D)
In the following we restrict ourselves on a 2D domain.

Neighbor model

A node is considered neighbor of another node if the probability of receiv-
ing packets from each other is greater than a certain threshold m. For example
po = 1/3. Under this model, we can affect to py the value which optimizes
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the distance traveled by a packet per transmission as in ?. We assume that the
slotted system contains an acknowledgment mechanism so that each succesful
transmission does not triger any new retransmission for the same hop. In this
case the distance travelled by the packet is equal to the distance from the trans-
mitter to the receiver. When the transmission fails then the distance is zero and
the node reschedule a new retransmission at a random time (we assume that A
involve the load due to retransmissions).

We assume that a packet can be decoded if its signal-over-noise is greater
than a given threshold K. Typically K = 10. Therefore another node is
neighbor if its distance r is such that P(W < r%/K) > py, i.e. when
r < r(A) where 7()) is the critical radius such that f; @ w(z)dz = py. By
simple algebra it comes that r(\) = X~1/2r(1). This result confirms the result
of Gupta and Kumar in this very specific network model. We find 8 = r(1).
The surface covered by the radius () is the neighborhood area o(\) = ﬂ/\ﬁ
and o(1) = 7r(1)2.

Computation of 3, (1) and o (1)

In order to simplify the presentation we set C' = 7['(1 — %) and vy = % By
application of reverse Laplace we have:

+100 47
P(W < z) = % /_ N 3‘#@9%{9 )

Expanding w(0) =Y, ﬁ'—,ﬁﬁanv, we get

PW<z)= ﬁ Z ﬂ /:"Zoc =192 49 (6)

By bending the integration path toward the negative axis we get

1 / T grimigegg ~ ST / " grr-1e0z g
_ 0

27 J_ico T

sin(mny) T(ny)z=™"

Il

Figure 1 shows the plot of P(W < z) versus z for @« = 2.5 and A = 1.
Notice that P(W < z) reaches py = 1/3 close to z = zp = 20. Therefore
B =r(1) = (zoK)~'/* ~ 0.12. Therefore o(1) ~ 0.045.
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Figure 1. Quantity P(W < z) versus z for a = 2.5, no fading.

Modeling of fading

Signals propagating through random obstacles experience random fadings.
An usual modeling of fading consists into introducing a random factor F' to
signal attenuation at distance r: r~°. For example log F is uniform on [—v, v].
In this case we have a new expression of w(6):

i5(6) = exp(~mAL(1 — 2)g(~2)6/%) )

with ¢(s) = E(F~*%), the Dirichlet transform of the fading. When fading is

uniform on [—v, v] we have ¢(s) = % For any given real number z we
also have P(W < zF') equaling

5 PR b ) ) ®

n

which helps the computation of o (1) with fading.

3. Massively dense networks

We now consider massively dense networks on a 2D domain. We denote
by A(z,y) the traffic density at the point of coordinate (z,y) on the domain.
We suppose that function A(z,y) is continuous in (z,y), or at least Lebesgue
integrable. When A(z,y) are uniformly large, the results of Gupta Kumar
together with the result of the previous section state that the radio ranges tend
to be “microscopic” and routes can be considered as continuous lines between
nodes. Packets travelling on a route C passing on the point of coordinate (z,y)
will experience hops of length ﬁ passing in the vicinity of point (z,y).
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Let n(z,y) = @ The number of hops that a packet will experience on
route C is something close to [, n(x(s),y(s))ds where s is a curvilign absciss
on route C.

In the sequel we are looking for route with the shortest hop number. Search-
ing the path that minimize the hop number between two points A and B
is therefore equivalent for looking for the path light between A and B in a
medium with non-uniform optical index A(z,y). There is a known result about
the optimal path that minimize a path integral [, nds.

THEOREM 1 The optimal path satisfies on each of its point z(s) = (z(s), y(s))
such that s is acurvilign absciss (ds = /(dz)? + (dy)? = |dz|):

d dz(s),
2 (n(a(s) Z22) = Vn(as) ©

where V is symbol of gradient vector.

The proof is classical. If we consider a small perturbation C* of optimal path C
where z*(s) = z(s) + dz(s) we should have [.. nds* — [, nds = 0[[, nds] =
0. We have [ [, nds| = [, d[nds]. Since §[n] = Vn.éz(s) and §[ds] = dz .déz

we get
dz ddz
6[/nds /Vnéz ds—}-/nd—g

Integrating by part the second right hand side integral of the above and assum-
ing that both C and C* share the same end points (i.e. 6z(s) = 0 at both ends),
we get:

6[/Cnds] :/C(Vn—dii(n—)) 52(s)ds

Since dz(s) can be arbitrary, and that in all case d[f, nds] = 0, then Vn —
js (ng s) = 0 on the optimal path.

Therefore finding the optimal path is just an application of geometric op-
tics. Notice that when Vn = 0 (uniform traffic density) propagation lines are
straight lines (no curvature).

However we face a major problem in the fact that the distribution of path
is actually impacting traffic density. This lead to an egg-and-chicken problem
which may not that easy to solve. We call ®(z,y) the flow density of infor-
mation transiting in the vicinity of point (z,y). Quantity ®(z,y) is expressed
in bit per meter, since it expresses the flow of packet crossing a virtual unit of
segment of length of 1 meter centered on point (z,y). This flow impact the
traffic density by the fact that each packet must be relayed every 8/\/\(z,y)
meter in the vicinity of point (z,y). Therefore locally:

A(z)

A(z) = @(z) 3

(10)
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In other words \(z) = (gﬂﬂ)2 and

n(z) = (11)

When considering domain of dimension D we have A\ = <I>’\1[;D and n =

(F%)ﬁ. Notice that the equations are singular when D = 1.

As an example we can assume a planar domain massively and uniformly
filled with mobile nodes and gateway nodes. We denote by p the spatial den-
sity of gateways. We assume that the mobile nodes are much more dense than
the gateways. We denote by v the traffic density generated in any point. v is ex-
pressed in bits per square meters per slot. The flow density @ is constant in the
domain and is equal to vd. We suppose that mobile nodes sends and receives

flows from their closest gateway. Therefore d = [5° exp(—muer?)dr =
1

2ypG”

v

o N

But in this case Vn = 0 and propagation lines are straight lines. The doc-

ument ? provides non trivial examples where the propagation lines are curved

and can be exactly calculed. This is the cases when traffic is generated toward

a central gateway or when the traffic is generated toward gateways regularly
spaced on a circle circonference.

12)

Practical implementation of shortest path protocol

Implementing a routing protocol that follows the geodesic lines is not a
difficult task. Indeed there is no need that nodes monitor their local traffic
density n nor to advertize the gradient vector. In fact a shortest path algorithm,
such as OLSR ?, will suffice. Of course one will need to limit the neighborhood
of the node to those whose hello success rate exceeds p. To this end we make
use of Hysterisis Strategy in advanced link sensing option and set up HYST-
THRESHOLD-HIGH parameter to value pg that provides the best success rate,
hop distance compromize. Tuned that way OLSR will automatically provide
the shortest path that fit the traffic density gradient curvature.

4. Introduction of time component

In the previous section we were assuming very strict timing constraints so
that packets are forwarded like hot potatoes without any pause between retrans-
missions. Recently Grossglauser and Tse ? showed that mobility increases the
capacity of wireless ad hoc networks. This due to the fact when nodes are
moving one just wait that nodes come closer instead of immediately starting
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relaying when nodes are far apart. In particular the increase in capacity can
be dramatic (in O(1) instead of O(X\~1/2)) if one consider ergodic mobility
patterns. Unfortunately the delay for packet becomes unbounded when the
density increases. The aim of this section is to quantify the gain in retransmis-
sions number while we let the time constraint on delay delivery T vary.

Although basic sensors networks or other smart dust are not expected to
be mobile, However one can imagine more sophisticated sensors produced by
via nanotechnology that can be mobile by themselves. The sensors can also
travel because they are embedded in a mobile device or because the back-
ground medium is mobile (think about sensor in a river stream) Interestingly
intermediate nodes can choose to store packet while moving instead of imme-
diately retransmitting it. As long they move to the right direction this may
considerably reduce the average number of retransmissions between source
and destination. Of course the consequence is that packet delay delivery will
considerably increase. This may be a solution for non urgent background traf-
fic to take advantage of mobility and therefore have much less impact on net-
work global load. Therefore we will model this very property by introducing
space-time considerations in the framework presented in this paper.

Throughout this section we will assume that a node has a packet (or a se-
quence of packets) to transmit to a destination node with a time delivery con-
straint of 7. In words, each packet should arrive to its destination no later than
after a delay T'. It basically means that we add the time dimension to our 2D
problem. A path now contains the time dimension and will connect a source
space-time point (zg, ?) to a destination space-time point (z, t1), given that
t1 = to + T.When T = 0, and neglecting propagation delays and processing
in relay nodes, we get to our previous analysis restricted to space components.
Our aim is to show that with some mobility models, when T" tends to infinitely,
the number of retransmissions needed to connect point (z, to) to point (z1, t1)
tends to be negligible compared to the number of retransmissions needed to
connect point (zo, to) to point (21, ), (i.e. same spatial point but zero delay).

In order to set up notations and convention for this very general problem,
we will first start with an unrealistic mobility model.

A simplistic mobility model

In this first example, we make the assumption that a node which has a packet
to transmit or to relay can also trave with its packet at speed v. We also make
the unrealistic hypothesis that the node that carries the packet can travel in any
direction it wishes and that it makes the decision according to the destination
of the packet. Therefore at any time the node that carries the packet has to
make the decision of either transmitting it to the next hop or to travel with it on
the propagation path. When the node chooses to hold the packet, we say that
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the packet is in hold state. We consider the optimal path C when T' = 0 which
connects 2z, to z1, we assume that the space time path will be the path C plus a
time component. In order to avoid too many notations we will still denote the
space-time path by C .

With these very hypotheses, the number of actual hops the packet will expe-
rience during its propagation on path C is equal to [, n|dz —vdt| where v is the
vector speed at point z. Since we assume that the speed can be made colinear
with dz then the number of hops is equal to [, n|1 —vlg—;|| X |dz|. In the follow-

ing we call h = & the average (local) packet holding time per distance unit,
& [dal

or we will denote by v = % the average fraction of distance traveled in hold
state by a packet per distance unit. We therefore has T' = [, h|dz| = [, 1|dz|.

Under this hypothesis it is clear that when y — 1, then the number of hops
tends to be negligible compared to [, n|dz| (zero delay case). In this case we
don’t need to have T" unbounded, since in the most extreme case the node that
generated the packet can simply drive his way to the destination and deliver
the packet when in the neighborhood of the destination without transmitting it
to intermediate nodes.

However this model is far from realistic. There is no reason that the mobility
pattern of a node could depend that crucially on the destinations location of the
packet it is holding. In fact a relay node can hold several packet to different
destination at the same time and the node will have no way to split itself in
several parts in order to move toward these different destinations at the same
time. In the following subsection we consider a more realistic mobility model
where the nodes are subject to random walks that are independent to data traffic
conditions.

The random walk model

In this model we assume that at any time node travels at a random speed
toward a random direction and keep its speed and heading during a time dura-
tion 7. After time 7 it randomly change speed and heading. This like a particle
in motion in a gas. Quantity 7 refers to the free space motion delay during
which the particle moves in straight line. At the end of period 7 the particle
experiences a collision that changes its motion vector in a random way. Notice
that 7 can be made random as well (we may assume that it is exponentially dis-
tributed). We assume that the expectation of speed vector E[v] = 0. We also
assume that the speed vectors have isotropic direction and o1 is the covariance
matrix, I being the identity matrix. We could accept some un-isotropic aspects
so that covariance could depart from colinearity with identity matrix, but we
will not do it for the sake of presentation.

Quantity /co7 is the standard deviation of node location after one free space
travel. We assume that this quantity is of the same order as of hop distance r
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(remaining that r = % In other words the free space travel distance is of the
same order as the hop distance. It is also instrumenetal in our proof that the
speed is distributed on values that are not bounded by a finite number.

When a packet arrive in a mobile node, the router has to select whether it
will transmit the packet to the next hop or keep it in hold state. We define
a decision process which is based on the localisation of the next hop and the
speed vector of the host node. If the node decides set the packet in hold state it
will keep it as long its speed does not change. Therefore a hold state will last at
least one 7 period. The decision making automaton use a parameter z that is a
positive real number and which depends on the delivery delay constraint T" of
the packet. Let 8 be the angle made by the direction to the next hop. The node
decide to immediately transmit its packet to the next hop iff the two following
conditions hold:

1 its speed is larger than parameter z;

2 the speed direction angle is contained in interval [—-6 — 7=, =0 + {75];

otherwise the packet stays in hold state. If the node keeps the packet in hold
state it will keep it to its next motion vector change. At this moment it will
proceed to a new packet state decision according to its new motion vector
and to the localisation of the curent potential next hop. If the node has been
decided to be transmitted immediately then the reciever will also proceed to
a state selection. A packet may be transmitted over several hops before re-
turning back in hold state. Basically when z = 0, then the packet is al-
ways immediately retransmitted to its next hops as with 7" = 0; and when
x — oo, then the packet is less likely retransmitted and stay longer in hold
state. The probability that a node chooses to immediately transmit the packet
is p(z) = H%P(M > z) and let v(z) = E|[v|, |v| > x]m sin(5),
it is clear that v(z) > Zsin({f5). since the computation is done on speed
greater than z with direction uniformly distributed in [—6 — 77, -0 + {77].
The average motion vector when the packet is in hold state is colinear with the
direction to the next hop and has modulus equal to p(z)v(z). According to
hypothesis we have lim,_, p(z) = 0 and lim,_, o v(z) = o0.

The average distance the packet will travel before a new decision has to be
taken (either in hold state or in immediate retransmission) is p(z)r + (1 —
p(z))p(z)v(z)7 with variance vy(z). Notice that limg oo vo(z) = co7?. It
comes that the average fraction of hold state travel per unit distance is

_ (L= p@)ela)r
r+ (1 —p(z))v(z)r

13)
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We have clearly lim,_,oy = 1 since v(z) tends to infinity, in this case we

also have p(2))o(2)7?
A e el 9

which also tends to infinity since the product p(z)v(z) tends to zero. However
we cannot be sure that the packet actually reaches its destination. We know that
the packet is on average on the path C. In order to check how far from path it is
actually we have to look at the variance of packet localization. After each deci-
sion step, the packet travels in average a distance p(z)r + (1 —p(z))p(z)v(z)T
with a variance vo(z). Therefore in order to travel a distance of one unit
the packet will have go through an average number of decision steps equal
S on +(1_p(1$))p($)v(z) —. Therefore the variance of its position is close to

V(T . .
Ok +(1_;( D PERE)T In order to be safe we have to prove that this variance
is small, so that the packet does not evade too far from the path and that when
time limit will be critical the number of hops it will have to travel in emergency

to reach its destination won’t be too long. Since v (z) ~ co7? which is of or-
. . 2 o
der of 72 the variance is at most equal to 5(%; which is order r/p(z) which is

small. In other words the number of hops is (using identity r = 71—1):

/cl+n(1—p(x)) @) |dz|+0(|dz|\/ (15)

Similarily the delivery delay T = [, rSbEa)r ;;“;p(w) |dz|. When the

parameter v(z)7 is large compared to 1/n then the number of hops is equiv-
alent to [, % and T ~ [, z)—(acl‘)i—:l(?). Notice that the optimal path may vary
when T changes, for example if mobility model is uniform on the network do-
main then when T is large optimal path will be straight lines. In other word the
curvature of optimal paths may also depend on the time component. Of course
all the quantities z, v(z) and p(z) may also vary on the spatial domain leading
to further optimization.

S. Conclusion and perspectives

It seems that propagation lines don’t change when the route optimization
criterium changes. For example if hop number is changed in packet total delay
time, the route should basically remains the same. The reason for this conjec-
ture is that the condition of traffic at any given point in the network location is
basically the same modulo an homothetic factor A(z). The only aspect which
changes is the distance travelled by the packet per hop, but the delay per hop
will be the same in distribution. We have a similar point about bandwidth al-
location criterium. The transmission at any point will take the same amount of
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bandwidth, only the per hop distance travelled by the packet will differ. Un-
der this perspective simple shortest path algorithms such as OLSR ? should be
asymptotically close to optimal.
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