Diagonal Tuple Space Search in Two Dimensions

Mikko Alutoin and Pertti Raatikainen

VTT Information Technology
P.O. Box 1202, FIN-02044
Finland
{mikko.alutoin, pertti.raatikainen}@vtt.fi

Abstract. Due to the evolution of the Internet and its seesj the process of
forwarding packets in routers is becoming more despln order to execute
the sophisticated routing logic of modern firewaltsultidimensional packet
classification is required. Unfortunately, the ndithensional packet classifi-
cation algorithms are known to be either time orage hungry in the general
case. It has been anticipated that more feasigtEitims could be obtained for
conflict-free classifiers. This paper proposes a novel two-dsizeral packet
classification algorithm applicable to the conflicte classifiers. It derives from
the well-known tuple space paradigm and it hastaech cost oD(log w) and
storage complexity o®(n2" log w), wherew is the width of the protocol fields
given in bits anch is the number of rules in the classifier. Thigemarkable
because without the conflict-free constraint therse cost in the two-
dimensional tuple space®&w).

1 Introduction

Traditional packet forwarding in the Internet issbd on one-dimensional route look-
ups: destination IP address is used as the key WieeRorwarding Information Base
(FIB) is searched for matching routes. The routesskored in the FIB by using a
network prefix as the key. A route matches a paitket network prefix is a prefix of
the packet's destination IP address. In the evettseveral routes match the packet,
the one with the longest prefix prevails.

This well-know process does not inherently meetiiregnents of some of the new
routing techniques. For example, finewalling, QoS based routing, programmable
andactive networking [1] as well as irapplication level routing the forwarding deci-
sion is based on multiple protocol fields [2]. Thewarding is no longer based on just
the destination IP address, but other attributescansidered as well. In firewalling,
for example, the packet may be matched againgstplé; composed of the source and
destination IP address, source and destination guitthe protocol field of the IP
header. In application level routing, a URL canused as an attribute when making
the forwarding decision. In summary, all these meuting techniques require multi-
dimensional packet classification [3, 4].

When it comes to the methods of packet classificatiinear search through the
FIB is an option. In the linear search, all FIBrégt are compared with the packet one

by one in order to eliminate the non-matching estriAmong the matching entries,
the one with the highest priority (e.g. the onehvilie longest network prefix in the
case of one-dimensional packet classification)his tbest matching entry. Unfortu-
nately, the linear search is too time-consumingbfackbone routers, which have to
make tens of millions of forwarding decisions pecand in order to keep up with the
line speed. Thus packet classification algorithrescalled for.

Efficient algorithms that facilitate wire-speed teuook-ups have been developed
for the problem of one-dimensional packet clasaifan [5]. When the number of di-
mensions grows, so does the search complexity. mergék-dimensional K > 3)
packet classification algorithm h&@(log n) search complexity witfO(n*) memory
space o0(log“'n) search complexity witkd(n) memory space, whereis the number
of FIB entries [6]. This is impractical for a higipeed router. In [7], it has been sug-
gested that more efficient packet classificatiaypethms could be developed for the
conflict-free FIBs. To support this claim, a twardinsional packet classification al-
gorithm, which exploits the conflict-free constraihas been provided. The algorithm
is based on Tuple Space Search [8].

The work reported in [7] inspired us to study thbject more deeply. After a care-
ful study, we came to the conclusion that the psegloalgorithm does not work. How-
ever, by elaborating the ideas in [7] and by addiogne new ones, it was possible to
come up with an algorithm that makes use of thdlictffree constraint. The algo-
rithm is shown to have the search costOgfog w) and the storage requirement of
O(n2" log w). This is remarkable, because without the corffiet constraint the
number of search steps has been shown to be eZaetly i.e.,O(w) [8].

Rest of the paper is organized as follows. Sectiagxplains the concept of con-
flict-free constraint and section 3 describes toecept of tuple space. Section 4 in-
troduces our contribution, the diagonal tuple spsearch in two dimensions, section
5 includes performance evaluation and section @€lodes the paper.

2 Conflict-Free Constraint

Multiple FIB entries can match a packet at eactkdop and thus some arbitration
must be done to determine the best matching onthelrone-dimensional look-ups,
the length of the prefix is used for this purpds® entries with a longer network pre-
fix get priority. In the multidimensional look-up#he principles remain the same, i.e.,
the longer match gets priority. Nevertheless, itas always that simple to determine
which match is the longest one. From now on, a &iBy is referred to asrale - a
commonly used term in packet classification [3].n€ider what happens if a FIB
contains the following rules:

Rulel From network a.b.c.* to network n.*.*.*
DENY packets

Rule2 From network a.*.*.* to network n.b.c.*
PERMIT packets

Let's suppose that a packet arrives from netveokkc.* and its destination is
in networkn.b.c.* . Both rules match the packet, but which one is |tmger
match. It is impossible to say, because both argdbin one dimension but shorter in
the other. So, the two rules are in conflict. Gatgrtwo rules are in conflict when
they overlap and neither onencloses the other [9]. Overlap means that all the pre-
fixes of the two rules are non-disjoint. This isi@rin the example case, because
a.b.c.* is asubset ofl.*.** andn.b.c.* is a subset ofi.*** | En-
closure means that one of the rules is at leaspasific as the other one in all dimen-
sions. Clearly neither Rulel or Rule2 enclosesther one.

Before a rule can be inserted into a FIB, all dotdlbetween the rule and the al-
ready inserted rules need to be detected [10] esalved. There are two methods for
resolving conflicts, i.eimplicit conflict resolution andexplicit conflict resolution [9].

In the former case, the conflicting rules are assigpriorities that are used to arbitrate
between the matching rules. In the explicit cohftesolution, aresolving rule is re-
quired for each conflict. A resolving rule spedifiexplicitly the action that prevails in
the conflict region. Resolving rules are no diffgréhan the ordinary rules in the FIB,
except that they are removed when either one otdmdlicting rules is removed. A
pseudo-code for computing prefixes of a resolvinig is given below. It is adapted
from [9].

Functi on ResolvingRule(R _,R,)
for i =1to k do
Rll=Longer(R iR i)
end for
reurn (R)
end Function

In the above example, the resolving rule would be:

Rule3 From network a.b.c.* to network n.b.c.*
ACTION (= PERMIT packets or DENY packets)

Whenever a packet matches both Rulel and Rule#l] &lso match the resolving
rule (Rule3). In such cases, the resolving rukbésbest match, because it is always at
least as specific as either one of the conflictinigs in every dimension. The action
part of the resolving rule is decided by the erttigt handles the conflict resolution.

The conflict-free constraint on the FIB means thate is a resolving rule for each
conflicting rule pair in the FIB. This is a mandataequirement for the algorithm
which is put forward in this paper.

3 Tuple Space Search

The tuple space search [8] is a scheme proposedfitidimensional packet classifi-
cation applications. Next, the basic features efdgbheme and its major tools are ex-
plained.

3.1 Tuple Space Paradigm

In the tuple space search, rules are grouped hms#tkir prefix length and a group is
referred to as tuple [8]. The groups are stored in hash tables and gamp forms a
separate hash table. Irkk@limensional FIB, the tuples are vectors of lergthor ex-
ample, in a two-dimensional tuple space, riRes (100* 11% andR, = (001*, 01%
both map to tupld; = [3, 2], whileRs; = (*, 110*) maps to tupld, = [0, 3].

The key idea is that rules are hashed by usingctimecatenation of the prefix
strings. When a packet is being classified, eapletis probed for a matching rule.
The concatenation of bits from the packet's heéidiels forms the hash key. The tu-
ple vector indicates the number of bits taken ichedimension. Note that a probe re-
sults in finding either one or none matching tugiries.

The search complexity of this packet classificatioethod is proportional tm, the
number of tuples. This is an improvement to thedksear search through the FIB,
for which the search cost is proportionalNpthe number of rules in the FIB. How-
ever, the worst case bound is StlIN).

3.2 Markersand Pre-computation

Markers and pre-computation were introduced intfbarry out binary search for
one-dimensional IP route look-ups. The FIB in [Hncbe thought of as one-
dimensional tuple space: the FIB entries are roitesetworks and they are grouped
to tuples by the length of the destination IP adslferefixes. A hash key is generated
for each tuple by taking as many most significatg bf the destination IP address as
the hash table is wide. The basic linear searautir the tuples has a search cost of
O(w), w being the width of the destination IP addressits. BHowever, a much better
boundO(logw) can be obtained by using binary search for the ksl probes. The
binary search can be applied by employinaykers andpre-computation.

Markers are used to direct the binary search t& foo matching routes with even
longer network prefixes. The idea is that addinguate that has a network prefix of
lengthl will result not only in insertion of the route ihg hash table of width but
also in insertion of a marker in each hash tableviidth shorter thah. For example,
addition of route that has prefix 1101 will produvarkers 110, 11 and 1, which are
inserted in hash tables of width 3, 2 and 1, redpsyg. Thus an entry in a tuple can
be associated with one route and one marker. Materdutes whose network prefixes
start with the samkbit sequence share markers in the hash tablebakatwidth< I.

When a hash table (widthis probed during a binary search, the other halles
can be divided into two groups: longer half (width) and shorter half (widtk |). If

no matching marker is found, the longer half carelainated and the search focuses
on the shorter half. This can be done because ewatghing route in the longer half
would have left a matching marker in the probedhhiable. If instead a matching
marker is found, the binary search is directechtolonger half. Now, the shorter half
cannot be dismissed straight away, because there gaiarantee that the longer half
will eventually contain any matching routes. Thiguation is dealt with pre-
computation.

The idea of pre-computation is that one can comfiigdest matching route in the
shorter half for each marker beforehand and storethhe marker. In this way, one can
dismiss the shorter half since the matching matkes already yielded the best
matching route in that set. The algorithm must kieagk of the current best matching
route all along the search and update it each &imew matching marker is found. If
the matching entry is associated with a route,notitwith a marker, the search stops
and that route is the best matching one.

To summarize, the markers and pre-computation eansked to trade off memory
space and route/rule insertion time for faster fapKkime.

3.3 Markersand Pre-computation in M ultidimensional Tuple Space

To understand how markers and pre-computation wotke multidimensional tuple
space, consider a tuple=[l, I, ...,l. The tuple space can be partitioned into three
disjoint sets with respect @, i.e., Short(T;), Long(T;) andIncomparable(T;) [8]. Set
Short(T;) contains the tuples that are no longer thian any dimension, i.e., tuplg =

[hy, hy, ...,] belongs to seghort(T;) if and only ifhy < |; (1<i<k)andT; # T,
Similarly, tupleT; = [hy, hy, ..., h] belongs to setong(T) if and only ifh 2 I; (1<i <

K) andT; # T. The rest of the tuple space belongs tol seamparable(T;). Note par-
ticularly that if two overlapping ruleB andR map to tuple§; andT, , respectively,
and if tupleT; belongs to sdincomparable(T;) then the two rules are in conflict.

Each rule that maps to tuplg can leave a marker in tuples in Short(T;). Mark-
ers inT; in turn contain their best matching rule, obtaitgdpre-computation, in set
Short(T;). It follows that if tupl€eT; is being probed and it does not contain a matching
marker, set.ong(T;) can be dismissed and the search can be restracterisShort(T;)
andlIncomparable(T;). Let us call the union of these setd=ad(T;). If instead there is
a matching marker ifi; then one can dismiss s#tort(T;) by pre-computation and re-
strict the search to setsng(T;) andIncomparable(T;). Let's call the union of these
sets asuccess(T;).

Can binary search work fdedimensional tuple spaces? It turns out that it ognn
because sdhcomparable(T;) is included both irBuccess(T;) andFail(T;). Due to this
overlap, the binary search cannot work. In fachai$ been proved in [8] that the best
case search cost for any algorithm, which perfoansearch irk-dimensional tuple
space k>2), is Q(W<?Y). A related result has been provided in [11], whiéthas been
stated that by deploying markers and pre-computétie worst case search cost is
O(W* log w). For the special case of two-dimensional tupkcspthe search cost has
been shown to be exactlw?l, i.e.,O(w) [8].

Despite these rather disturbing results, it has Iseiggested in [7] that by imposing
the conflict-free constraint on the FIB faster skaalgorithms can be obtained. To
prove their claim the authors put forward an aldponi for two-dimensional packet
classification for the conflict-free FIBs [7]. Afta careful study, we came to the con-
clusion that the proposed algorithm does not wbidwever, by refining some of the
given ideas and adding new ones, we were able neeagp with an algorithm that
seems to work. This algorithm is named as the diagtuple space search in two di-
mensions and indeed, it has the search cost Ithaa(w).

4 Diagonal Tuple Space Search in Two Dimensions

The diagonal tuple space search algorithm usesarsaik a new and innovative way,

i.e., markers are inserted diagonally. The pseundtedelow describes the procedure
of inserting the markers. This procedure is exeteteh time a new rule is added into
the FIB.

Funct i on SetMarkers(Rule R)

/* Tuple T is initially the tuple

* to which the rule maps to */
TupleT=[IR I, IR[2] I1;

/* One marker is inserted in each iteration */
whi l e (T!=]0, 0])
if (T[1] > T[2])

T[] =T[] - 1;
else
if (T[2] > T[1])
T[2] = T[2] - 1;
else /* T[1] equals T[2] */
T[] =T[1] -1,
T[2]=T[2] - 1;
InsertMarkerAtTuple(T, R);
end while

end Function

An example of a two-dimensional FIB is shown in.Fig The arrows describe the
way the rules place their markers. For example, rifile maps to the shadowed tuple
Ty = [2, 2] markers are inserted into tuples [1, 44l §0, 0]. A rule mapping to tuple
[0, 5] inserts markers to tuples [0, 4], [0, 3], &, [0, 1] and [0, O]. Tuple [0, O] is a
virtual tuple which contains the default rigs: = (*,*). Fig. 1 also shows how the
rest of the tuple space is divided into s&tert(Ty), Long(Ty) andIncomparable(Ty)
with respect to diagonal tuplg = [2, 2]. Definitions of the sets were given ir thre-
vious section.

il
o T,
Vvl] Short(Ty)

Incomparable(T,)

i REASES

Long(Ty)

Fig. 1. Two-dimensional tuple space with respect to diadytuple [X, y]=[2, 2]

The algorithm starts with a binary search overdtagonal tuples in order to find
the longest diagonal tuplg, which contains a matching entry. The followingdhem
states where the best matching rule resides wéiier to tupld .

Theorem 1

If the longest diagonal tuple, which contains a matching entry, is Ty = [d, d] then
the best matching rule resides in set Short(Tg.1) 7 Incomparable(Tg.1), where Tg.q =
[d+1, d+1].

Proof.

Any matching rule in sdtong(Tg.1) places a matching marker in the diagonal tuple
Tg+1. If Ty is the longest diagonal tuple, containing a maighentry then sety.; O
Long(T4+1) contains no matching rules. Sintg, O Long(Tg1) O Short(Tg.y) O In-
comparable(Ty.1) = 1, it follows that the best matching rule resid@ union
Short(Tg.1) O Incomparable(Tg.1).

Recall that sethort(Ty) is covered by pre-computation afig has already been
probed. Thus the search can be restricted evemefurExcluding seTy O Short(Ty)
yields search areéShort(Tg.;) O Incomparable(Tg.1)) n (Long(Tg) O Incompara-
ble(Ty)). This remaining search area consists of two nggts (see Fig. 2). Later we
will show that if the matching entry ify, let this entry bdsg, is not associated with a
marker, but a rule only, then that rule is the lmeatching rule. For now, suppose that
a marker is associated wiHy in step 1 and the algorithm continues to step 2.

i

Lol

s
il Bl 5 5

(Short(T 4,,) w Incomparable(T,.,)) ~ (Long(T,) « Incomparable(T,))

Fig. 2. Remaining search area after step 1 of the algorith

In order to keep the search cost low, the algoritls®s a new technique that we
call mirroring. Due to mirroring, only two additional binary selaes are needed to
conclude the packet classification. These two bisaarches are performed on tuples
[d, y = d] and tuples = d, d]. This results in the search cost@flog w), because
three binary searches are enough to classify aepatke basic need for mirroring is
that it must be ensured that every matching rulany tuple x <d, y > d] is repre-
sented among the tupled > d] and that every matching rule in any tupte>[d, y <
d] is represented among the tuplgs>[d, d]. This representation is achieved by using
mirror rules.

Mirror rules are called for, when a conflict aridestween a rule and a diagonal
marker (i.e. a marker that resides in a diagonaleju The mirror rules are updated
each time the FIB is changed. The condition pa afirror rule is computed in the
same way as the condition part of a resolving (sdée theResolvingRule proce-
dure in section 2). The action part of a mirrorerid the same as that of the rule,
which is used to produce it. For example, if a ile= (*, 110*) has a conflicting
markerM = (00*, 11*) at tuple [2, 2], a mirror rulB, = (00*, 110%*) is produced in
tuple [2, 3] to represem®; in column 2. If multiple rules produce a mirrorthre same
entry, the mirror that is produced by the longegt prevails. For example, if there is
another ruleR, = (0*, 110%), which is also in conflict with mark&/, then the action
part of mirror ruleR,,is that ofR,.

Let us concentrate on explaining how mirroring veoik the upper rectangle. From
now on, the ternoriginal rule is used to refer to the rules which are not mircdes.

In other words, an original rule is either an oedtinrule or a resolving rule.

Step 2 of the algorithm is to perform binary seaschtuples @, y = d]. Suppose
step 2 returns a matching entry that is in tdple [d, y], T, # Tq. Now, tuplesx < d,

y >y, can be dismissed from the search, because athétehing rules in that part of
the tuple space are either in coluthor have a corresponding mirror rule in column
d. This is contradictory to the fact that] was found to be the longest tuple in col-
umnd. Hence, the tuplexk d, y >y,] do not contain a matching rule.

At this point, it is clear that if the upper reaga contains a matching rule, it will
be in sefl, 00 Short(T,). If T, contains an original rule, this is clearly the thmstch-
ing rule in the upper rectangle. If it does nottedmthe original rule but contains a
mirror rule, the mirror rule is the best match live tupper rectangle. T, contains no
rules but only a matching marker, pre-computat®mised to determine whether the
upper rectangle contains matching rules at all.

The next theorem shows that if a matching rul@isfl in the upper rectangle, it is
the best matching rule in the whole tuple space.

Theorem 2

If tuple T, contains a matching rule and set Long(T,, contains no matching rules
then no tuple in set Incomparable(T,,) contains a matching rule.

Proof.

If two matching ruleR,, andR, reside in pair-wise incomparable tupiesandT,
then, by the conflict-free constraint, there i®iadt matching ruléR, which belongs to
setLong(T,) n Long(T,). Now, if setLong(T,) contains no matching rules then set
Long(T) n Long(T,) contains no matching rules either. This is corittady to the
assumption that both tuples contain a matching. ritus if tupleT,, contains a
matching rule and s&iong(T,,;) contains no matching rules then no tuple inlsedm-
parable(T,,) contains a matching rule.

The algorithm as a whole is as follows.

Step 1: Perform binary search on the diagonal suppleorder to find the longest
matching entryfEq among them. LefE, reside inTq = [d, d]. If E4 is asso-
ciated with a marker proceed to step 2, otherwéterm the rule which
caused the match ify as the best matching rule.

Step 2: Perform binary search on tupldsy[= d] to find the longest matching
entryE, among them. LdE, reside in tupld,.

Step 3: IfT, # Tg, gO to Step 4, else go to step 6.

Step 4: IfE, is not associated with any rule (but a marker prdp to step 5.1,
else go to step 5.2.

Step 5.1: Find the best matching rule in Sedrt(T,) by pre-computation. If the
rule is in rectanglex{< d, y > d], return this rule, else go to step 6.

Step 5.2: IfE, is associated with an original rule, return thaey else return the
mirror rule.

Step 6: Perform binary search on tuplesz[d, d] to find the longest matching
entryE, among them. L€, reside in tupld,.

Step 7: IfT, # Ty, go to step 8, else go to step 10.

Step 8: IfE, is not associated with any rule (but a marker prdyp to step 9.1,
else go to step 9.2.

Step 9.1: Return the best matching rule residirget®hort(T)).

Step 9.2: IfE is associated with an original rule, return thaey else return the
mirror rule.

Step 10: IfT4 contains an original rule, return that rule, efstirn the best match-
ing rule residing in setShort(Ty) (and which is found by pre-
computation).

Since the two rectangles are pair-wise incomparahke search continues to the
lower rectangle only when no matching rule is foimthe upper rectangle. Due to the
symmetrical nature of the problem, there is no neeexplain steps 6 to 9 in detail.
Step 10 is reached only if neither of the rectamglentains a matching rule.

To conclude the explanation, recall that the pafaftep 1 was partly postponed to
a later stage. Since Theorem 2 is now availables ielatively easy to finalize the
proof. The claim was that Ey in step 1 is not associated with a marker, bulh \ait
rule only, then that rule is the best matching .rillew, T4 obviously contains a
matching rule while setong(Ty) contains no matching rules. Consequently,lget
comparable(Ty) is also dismissed by Theorem 2.

As a final remark, a short explanation is providéd the algorithm in [7] does not
work. The reasoning in [7] is based on the assunptiat can be formulated as fol-
lows: "If a matching marker residesin tuple T,, and a matching rule R, resides in tu-
ple T, and tuples T, and T, are pair-wise incomparable then, by the conflict-free con-
gtraint, there is a matching resolving rule R, in set Long(T,,)". This theorem does not
hold, because a matching marker in tupledoes not guarantee that there is a match-
ing rule in setLong(T.). Namely, it is possible for a rule to insert a chéttg marker
even if the rule itself does not match. Our aldorittackles this problem via mirror-

ing.

5 Performance Evaluation

In this section, the search and storage complexifethe algorithm are evaluated.
When it comes to other lookup algorithms [5, 718], which deploy hash tables, the
search complexity/cost has been evaluated in tefrtise asymptotic tight bound on
the number of hash probes required to classify ckgia The storage complexity is
generally evaluated by deriving asymptotic tightibd on the number of hash table
entries needed to store the FIB and its assocd#l structures. These measures are
used in the following analysis as well.

The search cost of the diagonal tuple space séareto dimensions i©(log w),
because three binary searches at most are needibssdy a packet. This looks very
good, recalling that without the conflict-free ctrafmt the theoretical best bound is
O(w). What can we say about the storage complexityalRénxat an original rule re-
quires one mirror rule for each conflicting diagbtugple. Within an incomparable di-
agonal tupleTy = [d, d] a rule that maps to tuple k d, y > d] may have up to &>
conflicting markers. At first glance, this yieldset storage complexity dd(n2"w),
wheren is the number of rules in the FIB. However, theay search on a col-
umn/row does not require that markers are creatadl the tuples. It is enough to cre-

ate them only in the tuples, which may be visitedirdy the binary search [5]. Thus
any rule leavetog w markers at most. This gives the storage complefi®(n2" log
w). Table 1 contains a comparison between the seamdhstorage complexities of
packet classification algorithms, which are usdbtawo-dimensional FIBs.

Table 1. Comparison between two-dimensional packet clasdiéin algorithms

Algorithm Search Storage
Grid of tries O(w) O(nw)
Cross-producting O(log w) o(n%)
Tuple space search oW o(n)
Rectangle search O(w) O(nw)
Diagonal tuple space search| O(logw) O(n2" log w)

The grid of tries and cross-producting have beestrilged in [12]. Our algorithm
exploits the conflict-free constraint in reducimg tsearch cost dramatically, while the
storage still remains linear with respect to thenbar of rules in the FIB. The down-
side is that the storage complexity grows dradtica the protocol fields get wider.

6 Conclusions

New routing techniques, such as firewalling andliappon level routing, require
multidimensional packet classification in routeftdnfortunately, the generak-
dimensional packet classification problem has eend to be either time or storage
hungry. This fact has steered the research on patdssification algorithms towards
hardware based as well as heuristic schemes. Neless, it has recently been antici-
pated [7] that more efficient look-up algorithmsutmb be achieved by imposing the
conflict-free constraint on the Forwarding InforinatBase (FIB).

This paper proposes a novel search algorithm, naamdtie diagonal tuple space
search in two dimensions, applicable to the confie FIBs. The algorithm derives
from the tuple space paradigm [8] and its searahpdexity is O(log w). This is re-
markable, because without the conflict-free cofstrtlie number of search steps in a
two-dimensional tuple space is known to beD i.e.,O(w) [8].

The algorithm scales well with respect to the sife¢he FIB, because its storage
complexity isO(n2" log w). Nonetheless, the worst case storage requiregremts
drastically with respect to the width of the praibfields. Yet, it has to be stated that
the derived worst-case storage complexity is oveelgsimistic and we believe that for
real-life FIBs the scalability of the algorithm widwbe clearly better. It is for further
study to develop estimates for the practical storaguirement.

Characteristics of the developed search algoritbppert the claim that in some
cases the conflict-free constraint can be leverdgefihding more efficient packet

classification algorithms. At present, the algaritis applied in two dimensions and
further work concentrates on analyzing the impiaat of the conflict-free constraint
for the tuple space in three or more dimensions.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]

(12]

Alutoin, M., Raatikainen, P.: Control Interfat@e Router Extension. Proceedings of 21st
IASTED Conference on Applied Informatics (2003) 6802

Gupta, P., McKeown, N.: Packet ClassificationMultiple Fields. Proceedings of ACM
SIGCOMM'99, vol. 29, no. 4 (1999) 147-160

Gupta, P., McKeown, N.: Algorithms for Packeta€sification. IEEE Network, vol. 15,
issue 2 (2001) 24-32

Chao, H.J.: Next Generation Routers. Proceedioigthe IEEE, vol. 90, no. 9 (2002)
1518 — 1558
Waldvogel, M., Varghese, G., Turner, J., Platirig: Scalable High Speed IP Routing
Lookups. Proceedings of ACM SIGCOMM'97 (1997) 25-36

Overmars, M.H., van der Stappen, A.F.: Range@wdag and Point Location Among Fat
Objects. Journal of Algorithms, 21(3) (1996) 62%65
Warkhede, P., Suri, S., Varghese, G.: Fast RaClkassification for Two-Dimensional
Conflict-Free Filters. Proceedings of 20th IEEEokkdm, vol. 3 (2001) 1434-1443
Srinivasan, V., Suri, S., Varghese, G.: Packkts§ification using Tuple Space Search.
Proceedings of ACM SIGCOMM'99 (1999) 135-146

Hari, A., Suri, S., Palkar, G.: Detecting andsBling Packet Filter Conflicts. Proceed-
ings of 19th IEEE Infocom, vol. 3 (2000) 1203-1212

Baboescu, F., Varghese, G: Fast and Scalabigli€oDetection for Packet Classifiers,
IEEE Computer Networks, vol. 42 (2003) 717-735
Waldvogel, M.: Multi-dimensional Prefix MatchinUsing Line Search. Proceedings of
IEEE Local Computer Networks (2000) 200-207

Srinivasan, V., Varghese, G., Suri, S., M. Waldel: Fast and Scalable Layer Four
Switching. Proceedings of ACM SIGCOMM'98 (1998) 1312

