
A Tabu Search Heuristic for the Off-Line MPLS
Reduced Complexity Layout Design Problem

Sergio Beker, Nicolas Puech, and Vasilis Friderikos

École Nationale Supérieure des Télécommunications,
Computer Science and Networks Department,

46, Rue Barrault, 75634 Paris CEDEX 13, France
{beker|npuech|freideri}@enst.fr

Abstract. MPLS paths can be calculated on-line as demands arrive
or off-line for an estimate of the traffic demand over time. Off-line cal-
culation has the advantage of allowing a globally optimal network de-
sign. From the operational standpoint, a layout design for large networks
should consider minimizing the layout complexity, thus reducing the cost
of operation. In this paper, we formulate an optimization problem whose
objective is to minimize the number of required hops. An end-to-end
path delay constraint provides quality of service (QoS) guarantees. The
resulting Minimum Path Set and Flow Allocation Problem (MPSFAP),
formulated as a Mixed Integer Non Linear Program (MINLP) is NP-
complete. As such, it is only possible to solve it exactly on small size
networks. To overcome this limitation, we designed a Tabu Search (TS)
based algorithm that computes good quality approximate solutions for
the MPSFAP problem. Solutions for medium to large size networks in
reasonable CPU time and within acceptable optimality tolerances are
found using the proposed TS based algorithm.

keywords MPLS, Traffic Engineering, Layout Complexity, Multicommodity
Flow, MINLP, Tabu Search, LSP.

1 Introduction

One of the main reasons for present market enthusiasm around MPLS architec-
ture is its capability to implement evolved traffic engineering (TE) functionalities
[1] (e.g. required to support the Next Generation Internet). In MPLS based IP
networks, all packets in a Label Switched Path (LSP) between source and des-
tination nodes follow a predefined route, enabling TE mecanisms such as load
sharing and flow separation. This allows the network operator to offer differenti-
ated services with Quality of Service (QoS) guarantees, while using the available
resources cost-effectively. Planning and dimensioning the network under varying
traffic conditions then becomes a central issue for the operator.
Given the physical topology, the operator has to design a layout or virtual topol-
ogy (i.e. find an optimal set of paths and a flow distribution over the physical
network) to meet a given demand, as well as to adapt the layout to varying

traffic conditions. Additionally, each path must ensure some Quality of Service
(QoS) requirements (e.g. end-to-end delay, throughput).

To design the MPLS layout, on-line or off-line approaches have been pro-
posed. On-line methods calculate paths as demands arrive, either by updating
the routing protocol metrics for each link [2], or by calculating the route at the
source node using available network load information. As the resulting problem
of finding one constrained path is usually NP-complete [3], a number of algo-
rithms have been proposed in order to find approximate solutions in times com-
patible with the on-line operation. Constrained Shortest Path First (CSPF) [4]
provides Open Shortest Path First (OSPF) extensions to find the shortest path
meeting one or a set of constraints. Minimum Interference Routing (MIRA) [5]
proposes an algorithm to find a path avoiding the critically loaded links, and [6]
improves MIRA by finding a set of k-minimum interferring paths with bounded
length. On-line approaches have the advantage of adapting the network layout
to changing load conditions. However, by taking into account the flow dynamics
incrementally, an on-line method might produce a sub-optimal resource usage
in the long run. Off-Line LSP layout design considers global information about
the state of the network and traffic characteristics over time. The network can
be optimally engineered and set up around a point of operation on a long term
basis. Complementary, on-line decisions can be made as how to route arriving
demands, in order to be able to accommodate traffic variations in the short term.
Common objective functions for the off-line design aim at minimizing the maxi-
mum loaded link or minimizing the average cross network packet delay. However,
the operator’s main concern is to reduce the cost of operation while honoring
the Service Level Agreements (SLAs). The cost of operation is directly related
to the number of paths (hence to the layout complexity) to be monitored [7].
A main objective in the network design should then be to minimize the layout
complexity, while meeting QoS guarantees.

In this paper we focus on the problem of obtaining an MPLS layout which is
optimal w.r.t. the number of required hops in the set of LSP in the layout (in-
directly driving to a reduction in the number of required paths). The Minimum
Path Set and Flow Allocation Problem (MPSFAP) is formulated as a Mixed
Integer Non-Linear Multicommodity Flow Problem (MINLP-MCFP). The ob-
jective is to obtain the minimum set of paths and the associated flow distribution
under bounded end-to-end path delay for each Class of Service (CoS) for a given
traffic demand. We first define the notation used through the paper in Section 2.
In section 3 the general MPSFAP problem is set for multiple Classes of Service
(CoS). Even in the case when we consider only one class of traffic, the model is
intractable and may be solved exactly only for small size networks. This led us to
develop algorithms that provide (hopefully good quality) approximate solutions
to the considered problem. An adaptation of the Tabu Search (TS) heuristic
applied to the MPSFAP problem is presented in section 4. The evaluation of
numerical results for the MPSFAP problem with a single CoS are presented in
Section 5. Results obtained from exact solvers for small size networks are com-
pared to results obtained from the TS algorithm. The comparison shows that

the approximate TS solutions are close to the exact ones, making the TS based
algorithm a good candidate to solve MPSFAP on large problem instances. We
then test the TS algorithm on real size networks to assess our approach. Finally,
in Section 6 conclusions and future work are presented.

2 Model and Notation

2.1 Network

The physical network is represented by a directed graph G = (V, E), where V
is the set of vertices indexed 1, 2, . . . , N ; E is the set of directed edges indexed
1, 2, . . . ,M . The vertices represent the MPLS Label Switching Routers (LSR),
and each edge represents a connecting link between two LSRs. Link i has capacity
Ci. Let C be the single column matrix representing the M -dimensional capacity
vector.

2.2 Paths

Let the node couples q = (m,n), with m 6= n, be indexed 1, 2, . . . , Q where
Q = N(N − 1). Let the classes of service supported by the network be indexed
1, . . . , L. For each source-destination couple, a commodity dq,l describes the de-
mand requested for service class l and couple q. The commodity dq,l may be
routed via Kq different paths (or routes) binding the node couple q. We denote

by Kq the total number of such paths, indexed a1
q, a

2
q, . . . , a

Kq
q . Any path ak

q can

be represented as a vector with entries ak
q,i = 1 if path ak

q lies on link i, and 0
otherwise, for i = 1, 2, . . . ,M . The paths are acyclic, i.e. no path traverses twice
the same link or the same node. We can represent the K =

∑Q

q=1 Kq single paths
between all pair of nodes as the M × K arc-path incidence matrix A:

A =
(

A1 A2 . . . AQ

)

where :

Aq =













a1
q,1 ... a

Kq

q,1

a1
q,2 ... a

Kq

q,2
...

...

a1
q,M ... a

Kq

q,M













for q = 1, ..., Q, and where the block Aq is the arc-path matrix corresponding to
the Kq paths for the node couple q. Each path ak

q has an associated weight wk
q,l

to carry a portion of commodity dq,l. Let W be the K × L weight matrix.

2.3 Demands and Flows

The demand matrix is represented by a Q×L dimensional matrix D whose entry
dq,l stands for the amount of traffic requested for the service class l for the node
couple q. Let be the flow assigned to path ak

q for the service class l denoted by

bk
q,l. The K × L matrix B represents the flow distribution per class and path:

D =











d1,1 . . . d1,L

d2,1 . . . d2,L

...
...

...
dQ,1 . . . dQ,L











B =





























b1
1,1 . . . b1

1,L

...
...

...

bK1

1,1 . . . bK1

1,L

...
...

...
b1
Q,1 . . . b1

Q,L

...
...

...

b
KQ

Q,1 . . . b
KQ

Q,L





























Let us define R = (rq,i) the Q×K commodity-path incidence matrix, where entry
rq,i = 1 if i lies in the range [K1+K2+ . . .+Kq−1+1,K1+K2+ . . .+Kq−1+Kq]
and 0 otherwise, for 1 ≤ q ≤ Q and 1 ≤ i ≤ K. Let xi be the value of the total
flow traversing link i, for 1 ≤ i ≤ M , and X be the M dimensional single column
matrix of link flows:

X = A · B · 1IL (1)

where 1IL is the L-dimensional column matrix with all its entries set to 1.

3 Minimum Path Set and Flow Allocation Problem
(MPSFAP)

As stated before, the cost of operation for large networks is related to layout
complexity. We define layout complexity as the number of paths necessary to
transport a given demand matrix D. The MPSFAP problem can be formulated
as a MINLP problem, whose objective is to minimize the total number of re-
quired paths:

Given:

A,C,D,Θ,∆, ǫ

minimize:

L
∑

l=1

tW(l) · H(l) (2)

subject to:

X = A · B · 1IL ≤ (1 − ǫ)C (3)

R · B = D (4)

hk
q,l

M
∑

i=1

λak
q,i

Ci − xi

≤ θq,l l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (5)

0 ≤ bk
q,l ≤ hk

q,lδq,l l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (6)

hk
q,l ∈ {0, 1} l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (7)

where:

– Θ is the Q×L matrix containing the maximum tolerable delay θq,l for each
commodity dq,l;

– ∆ is the Q× L matrix containing the maximum acceptable flow δq,l on one
path for the commodity dq,l;

– ǫ > 0, and λ is the average packet size.
– H is a K × L matrix, whose entries are binary variables taking the value

hk
q,l = 1 if path ak

q is in use by commodity dq,l, and 0 otherwise. H(l) and

W(l) are the single columns corresponding to the lth CoS of H and W

respectively.

Constraint (4) expresses that traffic demands must be met by allocated flows (no
flow loss). Constraint (5) ensures that no packet belonging to class l traversing
a path connecting the node pair q will experience a delay greater than θq,l. The
path weights wk

q,l can be used by the operator to fine tune the cost structure of
the path layout. Hop-count based weights, for instance, account for the cost of
signaling long paths:

wk
q,l =

M
∑

i=1

ak
q,i l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (8)

According to the studied objective function, flows are allocated to the paths up
to the limit given by the constraints (5) and (6).
The advantage of the flow distribution obtained with the objective function (2) is
that commodity splitting is reduced. Its main drawback is that it usually leads to
an important path delay difference between the various LSPs. This doesn’t have
a major impact if a flow-by-flow load sharing strategy is used (e.g. all packets in
a TCP flow are forwarded on the same LSP).

In the case of packet-by-packet load sharing strategy, the objective func-
tion should include a term to distribute flows according to path delay to avoid
significant packet reordering:

α

L
∑

l=1

tW(l) · H(l) + β

Q
∑

q=1

Kq
∑

k=1

L
∑

l=1

hk
q,l

M
∑

i=1

λak
q,i

Ci − xi

(9)

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are factors used to balance the importance of
each term in the objective function.

4 Tabu Search: A Metaheuristic Approach

The major drawback of multicommodity flow models is that they are computa-
tionally intractable even for small problem instances. Optimization algorithms
based on metaheuristics have recently gained interest because they are able to
cope with problem instances of large size. Among others, simulated annealing
[8], genetic algorithms [9] and Tabu Search (TS) [10, 11] have been proposed
to tackle multicommodity flow problems. The computed solution however is not
guaranteed to be optimal. That is why it is necessary to check the accuracy of
the solutions provided by such a heuristic based algorithm and to compare them
with exact solutions on small size problems.

A detailed description of the TS algorithm can be found in [10]. Briefly,
TS consists of exploring the space of solutions until a number of iterations is
reached or until a specific cost criterion is satisfied. The exploration starts with
an initial solution computed by another algorithm (e.g. randomly generated).
At each iteration, TS computes a set of solutions or neighborhood derived from
the current solution via perturbations applied to it. All the solutions of the
neighborhood are evaluated (see below) and the best one is selected as the new
current solution. In order to prevent the algorithm from cycling along the same
series of current solutions, a tabu list is maintained. It contains a number of
last visited solutions, which cannot be chosen as long as they belong in this
list. This allows the algorithm to choose a solution worse than the current one,
allowing it to escape from the local minima encountered during the search. Three
problem-specific elements must be defined in order to apply TS to the considered
problems:

Initial Solution: An initial solution (i.e. layout) must be computed. It will
constitute the starting point for the exploration of the solution space. The initial
layout is the one obtained by choosing the shortest path for all the demands in
the traffic matrix given as input.

Perturbation mechanism: A perturbation mechanism is necessary to gener-
ate a neighborhood of the current solution. Neighbor solutions are calculated by
randomly choosing a source-destination pair. The current solution sets a given
flow value along each path connecting this node pair. This flow distribution is
randomly changed so that a new flow distribution meeting the flow demands
but not necessarily meeting the link flow and path delay constraints is obtained.
Hence, the neighbor generation process leads to new candidate solutions that
may be considered as valid (solutions that meet all the constraints) or invalid

(solutions that do not meet the link flow or path delay requirements). In partic-
ular, the flows in the paths belonging to the chosen node pair are rearranged in

a way that current flow traversing each path is taken into account in order not
to unnecessary make appear new paths.

A cost function: A cost function f : S → IR that maps elements in the solution
space S to real numbers must be defined to allow for solution comparison. We
used a cost function that evaluates distinctly valid and invalid solutions. For
valid solutions, the TS cost function is the function defined by Equation 2 for
MPSFAP and defined by Equation 10 for MTDFAP (see Section 5 below for full
definition of MTDFAP problem). For invalid solutions, an extra threshold value
is added to ensure that the evaluation of an invalid solution is always greater
than for any valid solution, along with a term dependent on the overload. This
term is a descendent function of the overload proportion on overloaded links, so
a slope towards valid solutions is created in the solution landscape. A complete
description of the TS algorithm can be found in [12].

5 Experimental Results

MPSFAP belongs to the class of NP-complete problems, as it can be viewed
as a constrained shortest path problem between all couples, which is itself a
NP-complete problem [3]. In order to find the TS parameters which lead the
algorithm to the production of good results, and in order to show that our TS
based algorithm provides acceptable approximate solutions, we used a couple of
small sized networks, denoted by NET1 and NET2. NET1 is a 4-node, 8-link and
24-LSP network. NET2 is a 4-node, 10-link and 38-LSP network. The simplicity
of these networks allowed us to obtain exact results from a numerical solver and
to use them as a reference for the evaluation of the TS solutions.

��� ��� �

2.5 Gbps

2.5 Gbps

2.5 Gbps

2.5 Gbps

�� ��� �

��� ��� � �� ��� �

��� ��� �

2.5 Gbps

2.5 Gbps

2.5 Gbps

2.5 Gbps

�� ��� �

��� ��� � �� ��� �

2.5 Gbps

2.5 Gbps

Fig. 1. NET1 and NET2 networks.

The TS algorithm was then tested on two real size networks denoted by
VTHD and NSFNET. VTHD, consisting of 9 nodes 24 links and 550 LSPs, is a
model version of a French network designed for research purposes, in the context

of the VTHD (Vraiment Très Haut Débit) [13] research project. NSFNET is a
14-node, 42-link and 496-LSP network.

�� � ��

� � � �� � 	

 	 � ��

� �� � ��

�
��
�� �
� ��

�
��
� � �
� ��

� 	� �
� � � � 	 �

� � �� � �

 �

��� � �

�
 � � �� 	
�

�
� ��

�
�

�"!

�"#

�
$

�"%

�

��

�
!

�
�

�
&

�$

�
%

�"#

�&

�
�
� � � ��

�
�
� � � ��

�
�
� � � ��

�
�
� � � ��

�
�
� � � ��

�
�
� � � ��

�
�
� � � ��

�
�
� � � ���

�
� � � ��

�
�
� � � ��

�
�
� � � ��

�
�
� � � ��

Fig. 2. VTHD and NSFNET networks.

We tested the algorithms in the particular case of a single service class. In
order to derive results we had to consider the solutions obtained under various
traffic conditions. We generated a series of 25 traffic matrices for the considered
test networks. The matrices were obtained randomly according to the following
method, which is derived from the method described in [14]. A certain percentage
F of the demands for each source- destination node pair q is a random variable
uniformly distributed within the interval [0,

Cq

a
] and the rest (100 − F) is uni-

formly distributed within the interval [0,
CqY

a
], where Cq is the total capacity

connecting the end nodes of couple q. The parameter a is an arbitrary integer

which may be 1 or more, and Y is the ratio
maxq{Cq}
minq{Cq}

. Parameter a is used to

tune the traffic intensity on the network so that the produced matrices can lead
to feasible MPSFAP problems, whereas Y allows a specific traffic distribution for
some node pairs in the network. Mean packet size is assumed to be 128 bytes. In
all cases link capacities are set to the same value of 2.5 Gbps. Results obtained
for MPSFAP are compared with the results obtained with a reference objective
function minimizing the total delay in the network, which we denote by mini-
mum total delay flow allocation problem MTDFAP, and where the objective is
to minimize:

Q
∑

q=1

Kq
∑

k=1

L
∑

l=1

hk
q,l

M
∑

i=1

λak
q,i

Ci − xi

(10)

subject to the same path-delay constraints. MTDFAP is also formulated as a
MINLP problem. This objective function is extensively used through the lit-
erature and serves as a reference. All numerical results are obtained from the
MINLP solver [15], available through the NEOS server on the Internet [16]. In all
cases, solutions are obtained with ǫ = 0.0001, and the flow limit for all commodi-
ties is δq = 2.5 Gbps (i.e. the path flows can use up to the maximum available
capacity in any link). Path delay limits are set to θq = 30 µsec for NET1 and
NET2 and θq = 50 µsec for VTHD and NSFNET networks.

Table 1 shows the values obtained for the objective function with the Tabu
Search heuristic algorithm and with the exact solver for both the MPSFAP and
the MTDFAP problems. The presented values represent the range and the mean
value of the objective function evaluations for 25 executions of each method
(one execution for each traffic matrix). The chosen parameter values were a = 4,
Y = 1 and K = 24 for the matrices generated for the tests with NET1 and a = 5,
Y = 1.33 and K = 38 for the tests with NET2. Although the TS algorithm
cannot always find the optimal value, the average evaluation difference between
the approximate and the exact solution is not very large, since it reaches 13, 75%
in the worst case. Results can be further improved by sacrificing more CPU
time, i.e. by examining a greater number of possible solutions. Figure 3 shows
the results obtained by the two algorithms for every matrix with MPSFAP for
the NET1 and NET2 networks. Infeasible matrixes show no value in the figure.

Table 1. Comparison of the values (number of hops) obtained by the TS algorithm
and the exact solver for NET1 and NET2.

MPSFAP MTDFAP (×10−3)

Network Range Average Range Average

Tabu Search Results

NET1 16-19 16.48 13.36-24.56 17.65
NET2 14-20 15.48 12.74-122.89 31.10

Exact Solutions

NET1 16-16 16 12.7-21.86 15.52
NET2 14-16 14.92 11.65-96.09 29

Fig. 3. MPSFAP evaluations obtained by Tabu Search and NEOS Server for NET1
and NET2 networks.

Table 2 presents the total number of paths required by MPSFAP and MTD-
FAP to allocate the demand imposed by the 25 used traffic matrices. Despite the
small size of the tested networks, we can see that the MPSFAP problem leads
to solutions with a smaller set of paths than MTDFAP. MTDFAP tends to use

more available paths to balance the network load, in order to lower the total
cross network delay. The approximate solutions obtained with the TS algorithm
are close to the exact ones in terms of used paths. Nevertheless we must keep
in mind that the considered cost functions aim at minimizing the hop count,
and as such the TS algorithm sometimes reaches better values than the exact
solution in terms of used paths.

Table 2. Comparison of the number of used paths obtained by the TS algorithm and
the exact solver for NET1 and NET2.

MPSFAP MTDFAP (×10−3)

Network Range Average Range Average

Tabu Search Results

NET1 12-13 12.20 12-14 12.52
NET2 12-14 12.64 12-14 12.96

Exact Solutions

NET1 12-14 12.32 12-14 12.44
NET2 12-14 12.66 12-14 12.72

From this first series of tests on small size networks NET1 and NET2, we
observe that the approximate solutions computed by the TS algorithm are close
to the exact ones. This makes our algorithm a good candidate to solve more
complex problems. We performed a second series of experiments with TS on real
size networks. This time, the deterministic solver is unable to compute (exact)
solutions, so reference values will not be further available.

Exact solvers on powerful contemporary computers are not able to give a
solution in an acceptable amount of time for these networks, whereas our TS
algorithm is able to propose approximate solutions in a reasonable amount of
time. The time of execution of the heuristic method has a primary role in the
quality of the solutions, which can be clearly noticed in cases where a feasible
solution can hardly been found for a particular problem instance.

As before, we generated random sets of 25 traffic matrices for the considered
networks. More precisely, in order to take into account various parameter config-
urations, we generated two different matrix sets for the VTHD network (which
leads to test1 and test2). The chosen parameter values were a = 100, Y = 2.6
and K = 550 (respectively a = 120, Y = 2.6 and K = 550) for the matrices
generated for the first series (respectively second series) of tests with VTHD,
and a = 30, Y = 1.5 and K = 496 for the tests with NSFNET.In the first set of
VTHD traffic matrices (test1), parameter a is chosen to produce a quite heavy
load in the network, while in the second set (test2) the choice a = 120 leads to
milder traffic conditions. Table 3 shows the hop count on the network for two
set of traffic matrices in VTHD and one in the NSFNET network. Under heavy
traffic conditions, more paths are needed to allocate the demand, resulting in
a greater number of required hops. Table 4 shows the corresponding number of

required paths for the same sets of traffic matrices for VTHD and NSFNET net-
works. As seen before, MTDFAP solutions require additional paths with respect
to MPSFAP in order to minimize the total delay in the network.

Table 3. Value of the cost function (number of hops in the case MPSFAP) by the TS
algorithm for VTHD test1, VTHD test2 and NSFNET.

MPSFAP MTDFAP (×10−3)

Network Range Average Range Average

VTHD test1 145-227 162.67 149-214 169.35
VTHD test2 139-160 144 140-162 152.04
NSFNET 390-430 410.6 411-466 428.17

Table 4. Number of used paths computed by the TS algorithm for VTHD test1, VTHD
test2 and NSFNET.

MPSFAP MTDFAP (×10−3)

Network Range Average Range Average

VTHD test1 71-88 75.76 73-89 78.1
VTHD test2 71-75 72.20 72-77 74.48
NSFNET 182-193 186.83 187-200 191.17

We used a personal computer equipped with a Pentium IV processor at 2.4
GHz and 512 MB of physical memory to perform our tests. The typical processing
time for the above given solutions is 5-11min. for the VTHD topology and around
20min. for NSFNET.

6 Conclusions and Future Directions

Our main concern in this paper is to obtain low complexity layouts, thus reducing
the cost of operation for large networks, while still providing QoS guarantees for
several CoSs. Reducing reconfiguration complexity (i.e. the number of paths
that must be changed) helps reducing service disruption times and resource
overdimensioning during transition management. We propose a MINLP model
to obtain low complexity layouts for the traffic demand, while keeping the QoS
guarantees. This model is NP-complete and as such solvers are able to compute
(exact) solutions only for small size networks. To overcome this limitation, we
designed a Tabu Search based algorithm that provides approximate solutions for
the studied problem. We compared the solutions computed by our algorithm to
the exact ones for small size problem instances. The comparison showed that the
approximate solutions are close to the exact ones, hence making the TS based

algorithm a good one to deal with the MPSFAP problem on real size problems.
We presented the results obtained with TS for two different real size networks.
The reasonable amount of CPU time required by the TS algorithm to solve these
problems make it a good method to tackle the MPLS layout design problem.

Results obtained on small networks show that layout and reconfiguration
complexity are significantly reduced when compared with classical approaches.
The formulated optimization problems are NP-complete. In order to compute
optimal layouts for larger networks, we need to devise efficient algorithms provid-
ing approximate solutions. We are currently working on algorithms implementing
heuristics which take advantage of the nature and knowledge of the underlying
problem, and metaheuristic such as simulated annealing or tabu search.

References

[1] D. Adwuche, G. Malcom, J. Agogbua, M. O’Dell, and J. McManus. Requirements
for traffic engineering over MPLS. RFC 2702, IETF, 1999.

[2] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights.
In Volume 2, p.519-528, INFOCOM 2000, 2000. IEEE.

[3] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Alogorithms and
Applications. Prentice Hall Inc., 1993.

[4] D. Katz, D. Yeung, and K. Kompella. Traffic engineering extensions to OSPF
version 2. Draft, IETF, 2002.

[5] M. Kodialam and T. Lakshman. Minimum interference routing with applications to
MPLS traffic engineering. In Volume 2, p.884-893, INFOCOM 2000, 2000. IEEE.

[6] G. Banerjee and D. Sidhu. Path computation for traffic engineering in MPLS
networks. ICN 2001, 2001. IEEE.

[7] S. Beker, D. Kofman, and N. Puech. Off-line reduced complexity layout design for
MPLS networks. In Proceedings of IP Operations and Management, IPOM 2003,
2003. IEEE.

[8] S. Kirkpatrick, C.D. Jr. Gelatt, and M.P. Vecchi. Optimization by simulated an-
nealing. Science, (4598), 1983.

[9] C. Gazen and C. Ersoy. Genetic algorithms for designing multihop lightwave net-
work topologies. Artificial Intelligence in Engineering, 13:211–221, 1999.

[10] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
MA, 1997.

[11] N. Puech, J. Kuri, and M. Gagnaire. Models for the logical topology design
problem. In Proceedings of the 2nd IFIP-TC6 Networking Conference. Springer-
Verlag, May 2002.

[12] S. Beker. Thesis: Optimization Techniques for the Dimensioning and Reconfigu-
ration of MPLS Networks. Télécom Paris, 2004 (to appear).

[13] Réseau national de reherche en télécommunications. Technical report, Ministère
de l’Economie, des Finances et de l’Industrie de France, 2000-2004. www.vthd.org.

[14] D. Banerjee and B. Mukherjee. Wavelength-routed optical networks: Linear for-
mulation, resource budgeting tradeoffs, and a reconfiguration study. Networking,
IEEE/ACM Transactions on, 8(5):598–607, 2000.

[15] R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP
branch and bound. SIAM Journal of Optimization, 8(2):604–616, 1998.

[16] J. Czyzyk, M. Mesnier, and J. Moré. The Neos Server. IEEE Journal on Compu-
tational Science and Engineering, 5:68–75.

