An Efficient Probabilistic Packet Marking Scheme for IP
Traceback

Basheer Duwairi, Anirban Chakrabarti, and Govindarasu Manimaran

Department of Electrical and Computer Engineering
Towa State University, Ames, IA 50011, USA
{dbasheer,anirban,gmani}@iastate.edu

Abstract. Denial of Service (DoS) attacks represent a major threat to the avail-
ability of Internet services. Identifying the sources of these attacks is considered
an important step toward a DoS-free Internet. In this paper, we propose a new
scheme, called Distributed Link-List Traceback, which combines the good fea-
tures of probabilistic packet marking [6] and Hash-based traceback [9]. The main
idea used in the scheme is to preserve the marking information at intermediate
routers in such a way that it can be collected in an efficient manner. We evaluate
the effectiveness of the proposed scheme for various performance metrics through
combination of analytical and simulation studies. Our studies show that the pro-
posed scheme requires small number of packets, adjustable amount of memory.
At the same time, offers high attack source detection percentage.

1 Introduction

In DDoS attacks, the attacker’s machine (the master) instructs previously compromised
innocent machines (the slaves) to aggressively overwhelm the victim by high volume
streams of flooding packets with faked IP source addresses, leaving the victim with no
clue about the true sources of these packets. This distributed anonymous nature of the
attack helps the attacker to stay behind the scenes. Attack traceback, which can be defined
as the process of identifying the true physical sources of attack packets, has emerged as
a promising solution to DoS attacks. This has the following benefits: first, isolating or
even shutting down the attack facility, which greatly reduces the impact of the ongoing
attack or stopping it completely. Second, holding attackers responsible for abusing the
Internet. Personal identification of attackers can be done by further investigation and
analysis of the compromised systems discovered by the attack traceback process.

The stateless nature of the Internet combined with the destination oriented IP routing
increases the difficulty of tracing attacks back to their sources. This problem is also com-
plicated by the fact of having millions of hosts connected to the Internet, which implies
a huge search space. The imminent threats imposed by DoS attacks call for efficient and
fast traceback schemes. A good traceback scheme should provide accurate information
about routers near the attack source rather than those near to the victim, recognize and
exclude false information injected by the attacker, avoid using large amount of attack
packets to construct the attack path or attack tree, avoid imposing high processing and
storage overhead at intermediate routers, and if packet information is to be maintained
at intermediate routers then collecting this information must be efficient.

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 1263-[1269, 2004.
(© IFIP International Federation for Information Processing 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

1264 B. Duwairi, A. Chakrabarti, and G. Manimaran

In this paper, we develop a novel concept called Distributed link-list (DLL), which
refers to the process of keeping track of a selected set of routers that were involved in
forwarding certain packet by establishing a temporary link between them in a distributed
manner. We utilize this concept and develop a novel traceback scheme, called Distributed
Link-List Traceback (DLLT) that combines the desirable features of PPM [6] and hash-
based traceback [9]]. The rest of this paper is organized as follows. In the next section, we
discuss the related work. In section[3] we present the proposed work: distributed link-list
traceback. In section Bl we provide theoretical analysis. In section Bl we describe the
simulation studies. Finally, conclusions are drawn in section [6l

2 Related Work

Traceback schemes [6][9] [71[4] [2]1[8[3] usually rely on router assistance to determine
the path followed by attack packets and eventually identify the attack source. For exam-
ple, in PPM [6], routers mark forwarded packets (i.e., write their own IP addresses into
the packets) probabilistically, such that the victim can reconstruct the attack path after
receiving huge amount of packets. In hash-based traceback [9], bloom filters [1]] were
used to save packet digests at intermediate routers to be collected and searched when
attack is detected.

PPM requires very large number of packets to be collected before starting the trace-
back process. This is due to the fact of allowing routers to overwrite marking information
written by previous routers. Also, the ability of the attackers to spoof the marking in-
formation represents a major weakness of PPM [5]]. In Hash-based scheme, processing
of every packet passing through, imposes significant router overhead. Also, the method
employed to download packet information from network routers is inefficient and re-
quires special resources. Moreover, a major concern in Hash-based traceback is the small
window of time through which packets can be successfully traced.

The main contribution of this paper is a novel concept called Distributed Link-List
(DLL) and using which we developed a new traceback scheme, called Distributed Link-
List Traceback (DLLT). DLLT exhibits the features of PMM [6] in the sense that routers
probabilistically mark forwarded packets. Also, it exhibits the features of Hash-based
scheme [9] in the sense that processing and storage at intermediate routers are necessary.
The significance of DLLT is due to drastic reduction of the number of packets required
in the traceback process compared to PPM, and the adjustable memory requirement and
efficient marking information collection compared to Hash-based traceback.

3 Proposed Solution: Distributed Link-List Traceback

Distributed Link-List Concept: The main idea of DLL is to keep track of some of
the routers that were involved in forwarding certain packet by establishing a temporary
link between them in a distributed manner. DLL is based on “store, mark and forward”
approach. A single marking field is allocated in each packet. Any router that decides
to mark the packet, stores the current IP address found in the marking field along with
the packet ID in a special data structure called Marking Table maintained at the router,
then marks the packet by overwriting the marking field by its own IP address, and then

An Efficient Probabilistic Packet Marking Scheme for IP Traceback 1265

forwards the packet as usual. Any router that decides not to mark the packet just forwards
it.

A link list is inherently established because the marking field serves as a pointer to
the last router that did the marking for the given packet and the marking table of that
router contains a pointer (i.e., the IP address) of the previous marking router and so on.
Therefore, each packet received by the destination contains the start point of a link list
that is part of the packet path. We call it distributed link-list because each router decides
by its own to be on the list or not according to certain marking probability.

Details of Distributed Link-List Traceback: Distributed Link-List Traceback
(DLLT) uses DLL concept to keep track of the routers that have been involved in for-
warding malformed packets toward the victim. DLLT employs a probabilistic marking
and storage scheme. When a router receives a packet, it makes a decision based on cer-
tain marking probability ¢ of whether to mark the packet (i.e., write some information,
called the marking information, into the packet) or not. Whenever a router decides to
mark a packet it has to store the marking information found in the packet before remark-
ing it. Therefore, packet marking and storage is an integrated procedure. Before going
into details of this procedure, we show the main data structure used for storing packet
information.

Logging packet information at intermediate routers is not a new idea. Storing packet
digests was considered in [9]. However, our storage scheme is probabilistic in nature,
which means that only fraction of the traffic is to be logged at each router. Also, we store
this information in such a way as to ensure that it can be collected in a predetermined
manner. We borrow the idea of using bloom filters [[L] from [9], and we modify it to
satisfy our requirements:

— Storing the packet digests to be able to verify that a given packet has been actually
forwarded by the router.

— Mapping the digests of a given packet to certain memory location where the marking
information of that particular packet can be stored.

The first requirement can be achieved exactly the same way as in [9], where a bloom
filter computes j distinct packet digests for each marked packet using j independent
uniform hash functions, and uses the n-bit result to index the 2"-sized bit Digests Array
(DA). The array is initialized to all zeros, and bits are set to one as packets are received.

The second requirement can be achieved by storing the marking information of a
given packet in the Marking Information Table (MIT) at the memory location indexed
by the first hash function that maps to zero bit in the digests array. Fig. [l depicts both
the DA and MIT with j hash functions. It also shows the marking information of a given
packet before and after being marked. The marking fields reserved in each packet and
in the MIT are shown also.

It can be realized that probabilistic edge marking (an edge is composed of two
adjacent routers on the packet path) is simple to implement in our scheme. Whenever
a router decides to mark a packet we enforce the subsequent router to mark the same
packet. This can be achieved by maintaining a 1-bit field called marking flag as part of the
marking information to be held in the packet. This flag is used to enforce deterministic
marking when it is on. When it is off the marking becomes probabilistic. With this flag,
the probabilistic edge marking in DLLT can be implemented as follows: When a router

1266 B. Duwairi, A. Chakrabarti, and G. Manimaran

Marking Information Table (MIT)

Array 32-bit IP Address

Note:
hash function number (hfn)

represents the number of the
hash function used to index

the location of the marking
information of the given packet
in the MIT.

192.120.77.13

N

192.120.156.100] 1]

Fig. 1. Digests array (DA) and marking information table (MIT) at router R. The marking infor-
mation of a given packet before and after being marked at router R which has the IP address of
192.129.156.100

receives a packet, it checks the marking flag. If it is on, it has to do the marking and
storage procedure and then reset the flag. Otherwise (i.e., when the flag is off), it takes
the decision based on some probability q. If the decision outcome is to mark the packet
it will do so, and then set the flag such that the next adjacent router will do the marking
deterministically.

After detecting an attack, the victim has to collect marking information that belongs
to k of the received attack packets. This information can be retrieved from intermediate
routers by following the link list associated with each of the chosen k packets. The attack
sources are then determined by inferring the relative ordering of routers based on the
retrieved marking information.

4 Analysis

Storage Analysis: The amount of storage that needs to be allocated to a traceback
scheme is a critical issue. In this section, we quantify the amount of memory required
in both DLLT and Hash-based scheme [9]]. First, we review some characteristics of the
bloom filters (or what we call digests arrays) that would be necessary in our analysis. A
bloom filter is characterized by its size s bits, the number of hash functions used j, and
its capacity factor f. A bloom filter of size s and capacity factor f can be used to store
the digests of at most s/ f packets. The effective false positive rate of a bloom filter is
directly dependent on the previous parameters. Please refer to [|L] and [9]] for theoretical
and experimental bounds on the false positive rate. What follows is a quantification of
memory requirement at each router in both schemes.

Let b denotes the number of bits required to store the marking information of one
packet in the MIT (i.e., this includes 32-bit IP address plus [lg(7)] bits for the hash
function number). To store marking information of x packets, we need an MIT of size
xb bits to be shared among f Digests Arrays each of size z bits. Therefore, the total
memory requirement (M ;) to store x packets information is given by: My = x(b+ f).

An Efficient Probabilistic Packet Marking Scheme for IP Traceback 1267

Assuming an aggregate incoming link capacity of p packets/sec and marking probability
of value ¢ at each router, = can be replaced in the previous equation by gp. Therefore,
the amount of memory required to store a second’s worth of digests can be rewritten as:
Mg = gp(b + f). In Hash based scheme, To store digests of x packets, we just need
a digests array of size fx bits. Meaning that the amount of memory required to store
a second’s worth of digests assuming an aggregate link capacity of p packets/sec can
be expressed as: Mpqsp=fp. Expressing M+ as a function of ¢ makes it adjustable to
meet the limitations imposed by current memory technology.

Number of Attack Packets Required to Identify the Attacker: Our objective is
to find a bound on the minimum number of packets that has to be received by the victim
such that every router on the path from attacker to victim is involved in marking at least
one of these packets with high confidence probability u. Let k represents this lower
bound. Let the marking probability at router 1% be q. Let P; be the probability that R
fails to mark any packet out of the k packets. Clearly, Py = (1 — q)*. Therefore, the
probability that R will succeed in marking (we call it the success probability) at least
one packet is given by:

Pi=1-Pr=1-(1-¢)" (1)

To obtain the desired bound we can safely assume that the success probability for all
routers a long a path of length [is the same and equal to that of the farthest router (i.e.,
as given in equation [T}

If we define X to be a random variable that represents the number of routers out
of [that were successful in the marking process ({ is path length), then X follows the
binomial distribution with success probability Ps given in equation[Il We need to find
k such that: P(X = 1) > u (i.e., the probability that each router succeeds in marking at
least one packet is larger than u. But, P(X = 1) = (1 — (1 — ¢)*)! > w, solving for k,
we obtain:

> lg(1 —u'/h)
- 1g(l—q)
For example, for an attack path of length 15 and marking probability of 0.3 and confidence
probability 0.95 the number of packets required by DLLT is 16 compared to 1340 in
PPM [6]. This significant reduction is due to the mechanism employed by DLLT to
maintain marking information of routers far away from the victim.

2

5 Simulation Studies

We have carried out several simulation experiments to evaluate the proposed scheme.
Detection Percentage (DP) defined as the percentage of exactly detected attack sources,
is the metric used to evaluate our scheme. For example, if a attack sources are exactly
located out of m attack sources, then we express the detection percentage as %100 %.

In each simulation experiment we generated a random attack tree with m attackers
and one victim. The attack path length [was the same for all attackers. Packets were
marked according to a specific probability g. Attackers were instructed to inject their
packets simultaneously with a rate of 1000 packets/attacker. k attack packets were used
to conduct the traceback process. The default values for m, g, [, and k£ were set to be 100,

1268 B. Duwairi, A. Chakrabarti, and G. Manimaran

0.15, 20, and 1000 respectively. Each of the following results represents the average of
500 independent simulation runs based on the default parameter values unless otherwise
specified. The simulation experiments were designed to study the effect of the above
parameters on detection percentage. The results are shown in Fig.[2]

We measured the detection percentage of DLLT under different circumstances. Fig.
RIshows the detection percentage as a function of the marking probability g for different
values of k, [, and m, respectively. In all these experiments we used the default param-
eter values mentioned above except for the parameter under investigation which made
equal to the values shown in the figure. From theses figures we can make the following
observations:

In all cases, the detection percentage of DLLT increases by increasing the marking
probability. This is expected since marking routers would have better chance to appear in
the information collected by the victim. Therefore, attack source identification becomes
more accurate by increasing ¢g. However, we should not forget the effect of increasing ¢ on
the amount of storage required by DLLT, and we should limit the marking probability
to low values. Therefore, higher number of packets must be used to initiate marking
information retrieval.

Increasing the number of packets used by the victim to identify attack sources results
in better detection percentage. This can be observed in Fig[Z (left). As can be seen in
Fig.[2 (middle), the attack path length seems to have negligible effect on the detection
percentage. This can be explained by recalling that in short attack paths there is a low
chance for any of the routers to mark a given packet, while in long attack paths there is
a low chance for most of the routers to mark the given packet.

Fig. Bl(right) depicts the effect of increasing the number of attackers m while fixing
the number of attack packets used by the victim k. It is clear that the detection percentage
is affected negatively by this increase. In fact, the detection percentage in this case can
not be increased without increasing the number of packets k used by the victim.

1.2 m=100

M=200 s
m=300
m=400 =
1 M=500 ---=--- E|

@AO.
¥

0.8 -

0.6 -

Detection Percentage (x100)
Detection Percentage (x100)
Detection Percentage (x100)

0.4 - [

0.2 ¥

o o o
0.05 0.15 025 0.35 0.45 005 0.15 025 0.35 0.45 005 0.15 025 0.35 0.45
Marking Probability (q) Marking Probability () Marking Probability (a)

Fig. 2. Left: Effect of number of attack packets k used by the victim on the detection percentage.
Middle: Effect of attack path length [on the detection percentage. Right: Effect of number of
attackers m on the detection percentage.

An Efficient Probabilistic Packet Marking Scheme for IP Traceback 1269

6 Conclusion

An efficient traceback scheme is necessary to identify the sources of denial of service
attacks which impose an imminent threat to the availability of Internet services. In
this paper we proposed an efficient traceback scheme called DLLT. In this scheme, the
probabilistic nature of marking and storage offers the advantage of minimizing router
and storage overhead. Also, storing the packet digests at intermediate routers provides
an authentic way to verify that a given router has actually forwarded certain packet. This
prevents attackers from passing spoofed marking information to the victim even if the
marking probability is very low. DLLT employs an efficient scheme to collect marking
information from intermediate routers. Moreover, we showed that the number of packets
required to identify the attack sources is low. Simulation studies show that DLLT offers
high attack source detection percentage.

References

1. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” in Communications
of ACM 13, July 1970, 422-426.

2. H.Burch and B. Cheswick, “Tracing anonymous packets to their approximate source,” in Proc.
2000 USENIX LISA Conf., Dec. 2000, pp.319-327.

3. D.Dean, M. Franklin, and A. Stubblefield, “An algebraic approach to IP traceback,” in Network
and Distributed System Security Symposium (NDSS ’01), Feb. 2001.

4. M. T. Goodrich, “Efficient Packet Marking for Large-Scale IP Traceback,” in Proc. of ACM
CCS 2002, Nov. 2002.

5. K. Park and H. Lee, “On the Effectiveness of Probabilistic Packet Marking for IP Traceback
under Denial of Service Attack,” in Proc. of IEEE INFOCOM 2001, Mar. 2001.

6. S. Savage, D. Wetherall, A. Karlin and T. Anderson, “Practical network support for IP trace-
back,” in Proc. of ACM SIGCOMM, Aug. 2000, pp. 295-306.

7. D. Song and A. Perrig, “Advanced and authenticated marking schemes for IP traceback,” in
Proc. of IEEE INFOCOMM 2001, April 2001.

8. R.Stone, “Centertrack: An IP overlay network for tracking DoS floods,” in Proc. of 9y, USENIX
Security Symposium, Aug. 2000.

9. A. C. Snoeren, C. Partiridge, L. A. Sanchez, C. E. Jones, F. Tchhakountio, S. T. Kent, and W.
T. Strayer, "Hash-Based IP TraceBack,” in Proc. of ACM SIGCOMM, Aug. 2001.

	Introduction
	Related Work
	Proposed Solution: Distributed Link-List Traceback
	Analysis
	Simulation Studies
	Conclusion

