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Abstract. In this paper the D-BMAP/G/1 queue is considered. The
goal is to derive an explicit expression for the transform of the queueing
delay of the nth arriving customer, based on a transient analysis. While
deriving this transform, intermediate results such as an explicit expres-
sion for the transform of the probability of having an empty system at
the nth departure, are also obtained. These results are then applied to
the dimensioning of a playout buffer for variable bit rate video traffic.

1 Introduction

In this paper the D-BMAP/G/1 queue is considered. This is a discrete-time
single-server queue of infinite capacity with general service times. The arrival
process is a discrete-time batch Markovian arrival process (D-BMAP), a quite
general traffic model for discrete-time Markov sources [1,2]. In [1] and [2], a
steady state analysis of queueing systems with a D-BMAP as input is performed.
The goal of this paper is to derive an explicit expression for the transform of the
queueing delay of the nth arriving customer of a D-MAP, based on a transient
analysis. The paper is based on results presented in [3] about the transient
analysis of the continuous-time BMAP/G/1 queue. While deriving the transform
of the queueing delay of the nth arrival, intermediate results such as an explicit
expression for the transform of the probability of having an empty system at
the nth departure, are also obtained. The transform of the queueing delay of the
nth arrival is used to dimension a playout buffer for a video application. The
time the video application needs to keep the first packet of a video stream in the
buffer before starting to playout is determined such that underflow is avoided.

The structure of the paper is as follows. Section 2 introduces the D-BMAP
arrival process as well as the queueing model considered in this paper. It also
summarizes the transient analysis of the queueing system and presents an expres-
sion for the transform of the queueing delay of the nth arrival in the D-MAP/G/1
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queueing system. The obtained results are then applied in Section 3 to dimension
a playout buffer for a video application. Finally, Section 4 concludes the paper.

2 The D-BMAP/G/1 Queue

2.1 The Discrete-Time Batch Markovian Arrival Process

A discrete-time batch Markovian arrival process (D-BMAP) is a general traffic
model for discrete-time Markov sources. Consider a two-dimensional discrete-
time Markov chain {N(k), J(k)|k ∈ N} on the state space N×{1, . . . ,M}. N(k)
is a counting variable representing the number of arrivals that have occurred
since time 0 until time k (not including the possible arrivals at time k), and
J(k) is the phase of the arrival process immediately before the possible arrivals
of time k occur. The transition matrix of the process has the following structure:

T =











D0 D1 D2 . . .
0 D0 D1 . . .
0 0 D0 . . .
...

...
...

. . .











,

where the Dn, n ≥ 0, are M × M matrices. The matrices Dn govern the
phase transitions of the arrival process for a batch arrival of size n. The ma-
trix D =

∑

∞

n=0 Dn is the transition matrix of the underlying Markov chain.
Define the matrix generating function of the D-BMAP as D(z) =

∑

∞

n=0 Dnzn,
|z| ≤ 1. Let π be the stationary probability vector of this Markov chain, i.e.,
πD = π, πe = 1, where e is a column vector of 1’s. The fundamental arrival
rate λ of this process is then given by λ = π (

∑

∞

n=1 n Dn) e.
More details and properties about D-BMAPs can be found in [1,2].

2.2 The Queueing Model

Consider a discrete-time single-server queue of infinite capacity with a D-BMAP
(Dn)n∈N

as arrival process. Call the underlying time unit of the D-BMAP a slot,
where slot l is the time unit between time instants l − 1 and l. Let the service
time have an arbitrary distribution H with z-transform h(z) =

∑

∞

k=1 H(k) zk,
where H(k) is the probability that the service time equals k slots.

2.3 The Embedded Process at Departures

Define
[

Ân(m)
]

i,j
as the probability that, given a departure at time 0 leaving at

least one customer in the system and the phase of the arrival process is i, the next
departure occurs at time m, at that time the phase of the arrival process is j,

and there have been n arrivals since time 0. Define
[

B̂n(m)
]

i,j
as the probability

that, given a departure at time 0 leaving the system empty and the phase of the



arrival process is i, the next departure occurs at time m, at that time the phase
of the arrival process is j, and there have been n + 1 arrivals since time 0.

Consider the queueing system at departure instants t0, t1, t2, . . . . Let L(tk)
be the number of customers in the system at instant tk (after the departure),
and let J(tk) be the phase of the arrival process at time tk. Then the pro-
cess {(L(tk), J(tk), tk+1 − tk)|k ≥ 0} is a semi-Markov chain with state space
N × {1, . . . ,M}. The transition matrix of the semi-Markov chain is given by

Q(k) =











B̂0(k) B̂1(k) B̂2(k) . . .

Â0(k) Â1(k) Â2(k) . . .

0 Â0(k) Â1(k) . . .
...

...
...

. . .











, k ≥ 0,

which shows that the system has an embedded Markov chain of M/G/1-type.

2.4 The Delay of the nth Arrival in the D-MAP/G/1 Queue

Let
[

Ĝ(r)(k,m)
]

i,j
be the probability that the first passage from state (l + r, i)

to state (l, j), with 1 ≤ i, j ≤ M , l ≥ 0 and r ≥ 1, occurs in k transitions during
m slots and (l, j) is the first state visited in the set {(l, l′)|1 ≤ l′ ≤ M}. Define

G(z) =
∑

∞

k=1

∑

∞

m=k Ĝ(1)(k,m)ym with |y| ≤ 1. Then from [4], G(z) satisfies

Property 1. G(z) = z h(D(G(z))).

Define the n-step transition probability matrices P
(n)
i,j as

[

P
(n)
i,j

]

k,l
= P [L(tn) = j, J(tn) = l|L(t0) = i, J(t0) = k] ,

and the transform matrix P̃i,j(w) =
∑

∞

n=0 P
(n)
i,j wn, |w| ≤ 1. Then it is proven

in [4] that

Property 2. P̃i,0(w) = [G(w)]
i [

I − (I − D0)
−1 [D [G(w)] − D0]

]−1
.

This result can then be used to derive an expression for the transform of the
delay for the D-MAP/G/1 queue. A D-MAP is a D-BMAP in which no batch
arrivals occur, i.e., Dn = 0 for n ≥ 2.

Let [Wn(k)]i,j be the probability that, given a departure at time 0 and the
phase of the arrival process is i, the queueing delay of the nth arrival is k slots
and the phase of the arrival process immediately after the nth arrival is j. Denote
its z-transform as wn(z) =

∑

∞

k=0 Wn(k)zk, and let w(y, z) =
∑

∞

n=1 wn(z)yn,

|y| ≤ 1, |z| ≤ 1. Define the matrix U as U = (I − D0)
−1

D1. Then the following
theorem holds [4]:

Theorem 1. w(y, z) = y(w1(z) +
∑

∞

l=0 W1(l)D(G(y))lG(y)(I − UG(y))−1

(U − (zI − D0)
−1D1))

(

I − h(z)y(zI − D0)
−1D1

)−1
.

w1(z) gives the transform of the queueing delay of the first arrival and is set
to the initial conditions of the system when the first customer arrives.

More details about the transient analysis can be found in [4].



3 Application to the dimensioning of a playout buffer

In this section the results are applied to the dimensioning of a playout buffer for a
video application. This is achieved by numerically inverting the two-dimensional
transform of the queueing delay of the nth arrival in Theorem 1 using [5].

Consider a scenario in which the traffic of a variable bit rate video source
is sent towards a video player. Because of varying delays within the network
caused by the random queueing delays in the routers in the network, the end-to-
end delay between source and receiver can fluctuate from packet to packet. This
phenomenon is called jitter. To compensate for the jitter, the video player uses a
playout buffer. The player waits a fixed amount of time ∆ after the first packet
has arrived before starting the video playout. In order to avoid underflow, it is
important to carefully choose the initial delay ∆. In [4] it is derived that this is
achieved if the delay of the jth packet dj satisfies dj ≤ d1 + ∆ (j ≥ 1).

Recent measurements [6] revealed that video streamers generate video traffic
in bursts of multiple video frames. The duration of these bursts can vary from 1.5-
2 ms for short bursts and 5-7 ms for long bursts. The silences between the bursts
may be much longer than the bursts themselves, implying that the instantaneous
bit rate during a burst is much higher than the average bit rate of the stream.

D-MAPs and D-BMAPs are good models for bursty traffic sources (e.g., VBR
video) [1,7]. In this paper the traffic generated by a video streamer is modelled
by a 4-state D-MAP which incorporates the typical characteristics of the video
traffic as described above. The transition matrix D of the D-MAP is given by









1 − α α 0 0
β 1 − β − γ γ 0
0 0 1 − δ δ
φ 0 ε 1 − ε − φ









. D1 =









λ1(1 − α) λ1α 0 0
0 0 0 0
0 0 λ2(1 − δ) λ2δ
0 0 0 0









,

and D0 = D − D1. Note that this D-MAP is a kind of on/off source, with
two on states (state 1 and state 3) during which packets are generated in a
slot with probabilities λ1 and λ2 respectively, and two off states during which no
packets are generated. A period in the first, respectively second on state is always
followed by a period in the first, respectively second off state, while a period in
an off state is always followed by a period in an on state. So this D-MAP mimics
the bursty character of a video source. By carefully choosing the values of the
parameters, properties such as the mean burst and silence durations, the average
arrival rate and the instantaneous arrival rates during the bursts can be tuned.

In this example, the parameters are set as follows: α = 1/50, β = (1/950)−γ,
γ = 10−3, δ = 3/50, φ = 19γ/59, ε = (3/2950) − φ, and λ1 = λ2 = 0.6.
Assuming that the video traffic enters the network over a link of 100 Mbit/s
in packets of 1500 bytes, this means that the average bit rate of the source is
1.5 Mbit/s. Packets are generated during bursts which have an average duration
of respectively 6 ms and 2 ms and a standard deviation of respectively 5.94 ms
and 1.94 ms, and these bursts are followed by silence periods of on average 114 ms
or 118 ms respectively and a standard deviation of respectively 113.94 ms and



117.94 ms. 75% of the bursts are ‘long’ bursts, the remaining bursts are ‘short’
bursts. During a burst, packets are generated at a rate of 60 Mbit/s.

The transport of the video stream through the network and the introduction
of delay and delay jitter by the network is modelled by the D-MAP/G/1 queue.
The general service time distribution H follows a shifted binomial distribution
B(9, 1/3), i.e., if HB ∼ B(9, 1/3), then H(k) = HB(k − 1) for k > 0, where
H(k) is the probability that the service time of a packet equals k slots. This
distribution has a mean of 4 slots and a standard deviation of

√
2 slots.

Using the theory developed before, values ∆n are determined such that with
probability 1-p all of the first n generated packets arrive before their scheduled
playout time. It is assumed that at time 0 the D-MAP/G/1 queueing system
is empty, and the phase of the arrival process is i with probability πi, where
π = (π1, . . . ,π4) is the stationary probability vector of the D-MAP. Figure 1
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Fig. 1. The complementary cumulative
distribution of the queueing delay.
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n

(p = 0.05).

shows the complementary cumulative distributions of the queueing delay of the
nth packet, for n ∈ {40, 60, 80, 100, 120, 142} with p = 0.05 and p = 10−8. The

values for ∆n are denoted by ∆
(1)
n for p = 0.05 and by ∆

(2)
n for p = 10−8. Figure 2

shows the different values of ∆
(1)
n for increasing n. Both the queueing delay

and ∆n are measured in slots. The horizontal lines on Figure 1 are positioned
at probability p. It is the intersection of these lines and the delay curve for

packet n that gives the corresponding values for ∆
(1)
n and ∆

(2)
n . Because of the

bursty nature of the traffic, subsequent packets in a burst have larger delays with
a higher probability. Thus the values for ∆n need to increase with increasing n
since the probability that a packet needs more time to arrive at the playout buffer
than a previous packet also increases. Note the influence of the high variance of
the burst length on the delay curves. For a long burst the average burst length
is 6 ms, which corresponds to sending on average 30 packets. Because of the
high variance of the burst length however, the actual number of packets that
are sent in a burst can be much higher, hence the values for ∆n increase with



increasing n for values of n much larger than 30. This increase will however not
continue indefinitely because bursts are followed by silence periods during which
the buffer of the D-MAP/G/1 system is able to empty again. Therefore, ∆n will
stabilize to a fixed ∆, as is shown in Figure 2 for p = 0.05.

All of the delay curves first follow a common straight line and then drop
relatively fast. As n increases, the common portion of the curves becomes larger
because of the increasing delays. Therefore ∆n no longer increases when this
common portion crosses the horizontal line indicating that the required condition
of having a probability of 1 − p that packets arrive on time, is satisfied.

When p = 10−8 a stronger demand is imposed on the system, i.e., a higher
probability that packets arrive before their scheduled playout time is required.

Where for p = 0.05, ∆
(1)
n stabilizes to ∆(1) = 167 slots = 20.04 ms, ∆(2) will

take a much larger value for p = 10−8, as is confirmed by the different values of

∆
(1)
n and ∆

(2)
n in Figure 1.

4 Conclusion

In this paper the D-BMAP/G/1 queue was considered. For this queueing system
a transient analysis was done in order to derive an explicit expression for the
transform of the queueing delay of the nth arriving customer of a D-MAP. These
results were then applied to dimension a playout buffer for a video application. A
simple model was proposed to model the bursty nature of variable bit rate video
and used as traffic source into a network. The transport of the video stream
and the introduction of delay and delay jitter by the network was modelled by
the D-MAP/G/1 queue. Using the developed theory, values for the time ∆n the
video application needs to keep the first packet of a video stream in the playout
buffer were determined, such that with probability 1−p all of the first n packets
arrive before their scheduled playout time in order to avoid buffer underflow.
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