A Preliminary Study of Scalability of TCP/IP
based clusters under Database Workloads

Krishna Kant

Enterprise Technology Labs
Intel Corporation

Abstract. In this paper we study the scalability of non-partitioned,
clustered database management systems as a function of inter-process
communication (IPC) latency and number of nodes. It is assumed that
the clustered DBMS has a fully shared IO subsystem and multiversion
concurrency control over the data in various buffer caches. The cluster
interconnect fabric is assumed to be TCP/IP over Ethernet with and w/o
hardware offload. The main contribution of the paper is to shed some
light on the scalability of DBMS workloads in a scaleout environment as
a function of number of nodes and interconnect latencies.

1 Introduction

In the e-business environment, mid-tier and backend applications have tradi-
tionally been implemented on SMPs (symmetric multiprocessors) because of
its easier programming model and efficient inter-process communication (IPC).
However, with the emergence of high bandwidth, low-latency cluster intercon-
nect technologies, there is a move afoot towards clustered implementations.
In particular, the availability of cost effective 10 Gb/sec Ethernet networking
solutions along with hardware offloaded TCP/IP could make clustered imple-
mentations even more attractive. In this paper we examine the scalability clus-
tered implementations for DBMS systems since such systems are significantly
impacted by IPC overhead and latency. We assume a shared disk type of clus-
tered DBMS (such as the Oracle 9i/10g product) and a TPC-C like workload
(http://www.tpc.org/tpce/default.asp). In order to avoid complexities and id-
iosyncracies of actual systems, the modeling in this paper is not intended to
project performance for any real system; its purpose is merely to study a simple
model of clustered DBMS based on a limited set of measurements.

Although several papers in the literature have discussed IPC performance
issues, much of the work is concentrated on the high performance computing
(HPC) side rather than the commercial workloads. There are some industry
papers that show substantial benefits of low latency interconnect technologies on
application performance [1], but no performance models or sensitivity analyses
are presented.

It is well known that end-to-end IPC latencies via the traditional TCP /IP
over Ethernet stack can be almost an order of magnitude higher than other

specialized fabrics such as Myrinet, QsNet, IBA, etc. [1]. A detailed discussion
of these along with a study of performance benefits of HW TCP offload for
front-end servers is contained in [4], and will be omitted here. Most of these
inefficiencies can be addressed by using the Virtual Interface Architecture [VIA]
like interface [3] and efficient fast-path processing. The former is supported by
the RDMA (remote DMA) protocol [8] which is gaining widespread acceptance.
We assume that RDMA /TCP offload is performed in a programmable engine
which we call as packet processing engine (PPE). This PPE can be located in
multiple places in the platform as reported in [4]; however, to avoid clutter, we
shall consider only the “north-bridge” implementation that participates in the
processor coherence protocol.

2 Clustered Database Overview

Oracle 9i/10g presents a premier example of clustered DBMS and is used as
the representative clustering mechanism in this paper. In this architecture, also
known as real application cluster (RAC), all nodes share a common disk subsys-
tem that holds the entire database [6]. That is, no partitioning of the database
among nodes is required for clustered operation. For efficient access, each node
may cache portions of the data or indices in its main memory (normally called
“buffer cache”). If a node requires data that is not present in its local buffer
cache, it checks if the data is available in the buffer cache of another node and
if not, it initiates the disk I0. Given a high BW, low latency and low overhead
interconnection fabric, this technique can substantially reduce the IO overhead
and thereby improve the scalability of the cluster.

RAC maintains a distributed directory indicating location and status of all
database blocks available in various buffer caches. The directory information
is migrated dynamically depending upon the data access pattern so that the
directory entry is resident at the most frequently used node.

RAC uses multiversion concurrency control (MCC) to achieve high scalabil-
ity [2] where each lockable entity (assumed to be a page here) carries with it the
undo log and the version numbers. Thus, a read transaction does not need any
locking since it can always get at the correct version of the page. Also, dirty data
can be shared among nodes directly. The major additional cost of MCC is in
heavier duty directory management and maintaining cascading undo logs that
must be carried around. Of course, write locking is still required. In the model,
the choice of values for the various RAC related parameters are somewhat ar-
bitrary, since detailed measurements quantifying these are not available. This is
adequate since the purpose of the paper is merely to illustrate scalability rather
than do performance projections of an actual system.

For the workload, we used TPC-C, which is a popular benchmark for studying
on-line transaction processing (OLTP). TPC-C is usually considered an inappro-
priate benchmark for clustering purposes since it is possible to partition TPC-C
database such that the IPC traffic between nodes becomes negligible. However,
note that in the RAC context, the database is not partitioned. We also assume

that the query processing itself is not partitioned among nodes, although it is
reasonable to assume intelligent transaction management/scheduling to take ad-
vantage of already cached data in various nodes. In this case, TPC-C becomes a
reasonable clustered database workload. These assumptions also allow us to use
existing non-clustered TPC-C measurements to calibrate our model.

We assume that all TCP connections used for IPC are persistent, so that
connection setup/teardown overhead or latencies do not come into play for IPC.
RDMA does require pre-registration, pre-pinning and exposure of user buffers.
Registration and pinning require a Kernel call, which is expensive. Buffer ex-
posure requires an explicit message exchange. We assume that control message
buffers are registered and pinned at the time of thread creation and exposed to
the directory node once per transaction. For the IPC data messages, we assume
we assume that both pinning and exposure are done on the basis of adjustable
but small “windows” explicitly exposed for every data transfer. Note that buffer
exposure message are themselves IPC messages and need to be accounted for.

3 A simple performance model

The major performance modelling exercise is to accurately estimate the impact
of I0 (IPC and disk) on the workload as a function of cluster size. To this end,
we note that any IO has two major performance impacts:

1. Increased “path-length” (instruction count) of IO handling, which results in
increased utilization of the host processor.

2. Increased data retrieval latency which leads to increased stalls on the host
processor. Stalls happen whenever the communication latency cannot be
hidden by using multiple threads/processes.

The cluster size primarily affects the shared content (and hence locking & syn-
chronization frequency), amount of management information, and locality prop-
erties. Because the available measurements are only for small clusters, we have
assumed certain functional behaviors with respect to number of nodes which
remain to be validated.

In a typical benchmark performance context, one is usually interested in the
achieved throughput when the CPU utilization is as close to 100% as possible.
Assuming a multithreaded environment, the effective latency per transaction
includes the following components.

1. Latency corresponding to basic per transaction path-length excluding disk
IO and IPC, denoted Leomp-

2. IPC related latency. This includes code latency L.p, and the unhidable la-
tency L, for each communication.

3. Disk IO related latency. This includes code latency Lgi. and the unhidable
latency L,y for each I10.

Here, the estimation of the unhidable latency L, in turn, requires the estima-
tion of the overall thread stall time, denoted Lgyg. Let Np. and Ngisp denote,

respectively, the number of IPC communications and disk IOs per transaction.
Also, let L;p. and Lg;s, denote thread stall times per IPC and disk IO operation
respectively. Then L,y can be computed as the following weighted sum:

Lavg = (Lz'chipc + LdiskNdisk)/(Nz’pc + Ndisk) (1)

The estimation of the crucial parameters introduced above (including unhidable
latencies) is omitted here due to lack of space and may be found in [5]. With
this, the total per transaction latency L. can be estimated as:

Ltot = Lcomp + Nipc[Leph + Luh] + Ndisk [Ldkc + Luh] (2)

With this, the achievable throughput per node is given by simply 1/L;s.

Although absolute achievable throughput is interesting, a more important
performance metric is cluster efficiency, which we define as ratio of nodal through-
puts in the clustered and unclustered cases. The unclustered throughput can be
obtained by independent (and much more mature) performance projection mod-
els; however, we express the unclustered throughput in the same framework as
the clustered throughput. For brevity, the details of this calculation are omitted
here.

4 Sample Modelling Results

The model calibration proved to be an ardous process because of the lack of
consistent set of detailed measurements. The TCP offload related parameters
were obtained using a prototype system which uses one processor in a SMP
system as the TCP engine. Even here, RDMA related estimates are speculative
since currently we do not have a working RDMA prototype. A further difficulty
is that the modeled system (assumed to be a platform in 2005-2006 timeframe) is
different from the measured system and a translation of parameters was required.
The available TPC-C results were are also sketchy and were available only for 1,
2 and 4 node systems. In view of these deficiencies, the results must be treated
as merely indicative of trends, rather than as actual achievable results.

For the results presented here, we assume a “rated utilization” model where
the utilizations of various resources have been fixed at predetermined values. The
practical interpretation of this is that the system uses just enough units (NICs,
disk adapters, disk drives, etc.) to keep the utilization almost constant regardless
of the cluster size or configuration. Apart from simplicity, the main motivation
for this approach is that it does not color the cluster scalability results with
system configuration issues. In particular, we assume a rated utilization of 60%
for chipset, IO bus, disk adapter, NIC, and switch ports, and 30% for disk drives.
All switches were assumed to be 16-port layer-2 and the topologies attempted to
distribute the switch-port usage evenly. For the results shown here, we consider
the following 3 cases with respect to the IPC transport implementation.

1. Kernel based software RDMA/TCP implementation. TCP parameters are
calibrated based the study in [4], but RDMA calibration is speculative. This
case represents the lower bound on cluster performance.

2. Memory control hub (MCH) based hardware RDMA/TCP engine, which
was calibrated based on the current prototype and internal models of such
an engine.

3. An “ideal” case characterized by (a) zero path-length for the PPE, (b) zero
port-redirection latency in the switches, and (c) fully optimized host-PPE
interface (i.e., no interrupts, no scheduling delays, etc.). This case represents
an (almost unachievable) upper bound on performance.

100 1 — 60
55
0.90 2
50
5 080 N -\‘\.\ s
< o —e—sw 2 4 >
S 060 N z 3 —*
£ - § 30
W o050 N A\ MeH g 2 ——— —=— MCH
2 040 MY 2 20
B e . Ideal E 15 = Ideal
© = N~ ¢ 10 =
020 5 —
0.10 \ 04
1 10 #nodes 100 1000 1 10 nodes 100 1000

Fig. 1. Cluster Efficiency vs. cluster size Fig. 2. 256B msg latency vs. cluster size

1.00 045

090 4 —y ey 0.40
2 080 — 2 035 41— —
2 2
§ o [e . —e—sw 5 030 | =
S 060 . = S 025 | Tew W
e . ~. —mMCH [o e n_ e
2 040 . 2 o015 S
EREY Y jceel S o010 e Ideal
© o2 N O o5 R

010 T~ 0.00

1 10 100 1 10 100
Latency multiplier x 10 Latency multiplier x 10

Fig. 3. Latency sensitivity w/ 16 nodes Fig. 4. Latency sensitivity w/ 256 nodes

Figure 1 shows the cluster efficiency as a function of number of nodes (Npodes)-
The efficiency starts out at 1.0 and generally decreases with N, ,q.s- The effi-
ciency for Ideal and MCH cases remains high with small N,,4es but eventually
rolls off due to the overhead of managing nodes, duplication in buffer contents
of various nodes, and multiple switches in the path. Note that the SW TCP
shows a steadily decreasing efficiency because the substantial IPC overhead can-
not compensate for reduced I0. In fact, even a 2-node cluster shows an efficiency
of only 73%.

It has been well recognized in the literature that IPC latency limits the
scalability, i.e., the maximum cluster size that one could reasonably build. In
the absence of a standardized definition, let’s say that scalability refers to the
size at which the efficiency drops to 50%. With this definition, Figure 1 shows
that HW RDMA allows scalability to > 64 nodes whereas SW RDMA limits it
to 8 nodes. The interesting point to note is that even the Ideal curve provides a
scalability of only 100 nodes. That is, low IPC latency can only do so much for
the scalability — at some point myriad issue of platform latencies, OS overhead,
and application interface take over.

Figure 2 attempts to show end-to-end IPC latency Lgtit) as a function of
number of nodes. For this, we use a reference message size of 256B. Figure 2

shows that for small clusters, SW TCP provides a latency of 27 us whereas HW
TCP has a latency of only about 10 us.! The Ideal case shows another factor
of 3 reduction in latency (i.e., 3.5 ps). This last result is interesting since it
shows that using very fast PPE’s/switches still leaves various chipset, wire and
OS latencies which may be substantial.

Figures 3 and 4 attempt to directly show the sensitivity of cluster efficiency to
end-to-end IPC latency for N,,q4.s = 16 and 256. Here, the latency multiplier=
10 corresponds to normal latency and the latency for each successive point is
1.5 times that for the previous point. As expected, the latency sensitivity is
small initially, increases in the middle, and then decreases eventually. The major
differences between the 3 cases are due to the distinction between code and non-
code latencies. Code latencies directly contribute to worse performance since
they amount to a change in path-length, whereas non-code latencies can be
hidden to large extent by multiple threads. This explains why SW TCP shows
the highest sensitivity whereas the Ideal shows the least.

5 Conclusions and Open Issues

In this paper we studied the scalability of Ethernet based clustered non-partitioned
DBMS with multiversion concurrency control. The results show that in such an
environment, an end-to-end loaded latency of 10 us is adequate to scale the clus-
ter to 100 nodes and still achieve good cluster efficiency. Although the results
are preliminary due to novelty of technologies and other practical challenges, we
believe that our model provides a number of interesting insights into cluster per-
formance and scalability that have hitherto been unavailable to the researchers.
A more detailed setup and measurement work is currently underway.

References

1. B. Benton, “Infiniband’s superiority over Myrinet and QsNet for high performance

computing”, whitepaper at www.FabricNetworks.com.
2. P.A. Bernstein and N. Goodman, “Multiversion concurrency control — theory and

algorithms”, ACM Trans on Database Systems ., 8(4):465-483, December 1983.
3. D. Dunning, G. Regnier, et. al., “The virtual interface architecture - a protected,

zero-copy user-level interface to networks”, IEEE Micro, March 1998, pp66-76.
4. K. Kant, “TCP offload performance for front-end servers”, to appear in proc. of

GLOBECOM 2003, Dec 2003, San Francisco, CA.
5. K. Kant, “Scalability of TCP/IP based clusters under Database Workloads”, Full

paper available at kkant.ccwebhost.com/download.html.
6. T. Lahiri, V. Srihari, et. al., “Cach Fusion: Extending shared disk clusters with

shared caches”, Proc. 27th VLDB conference, Rome, Italy 2001.
7. J. Liedtke, K. Elphinstone, et. al., “Achieved IPC performance”, Proc. of 6th

workshop on hot topics in operating systems, May 1997, Chatham, MA.
8. J. Pinkerton, www.rdmaconsortium.org/home/The_Case_for_ RDMA020531.pdf

! Recall that these numbers are for 2006 platforms; for current platforms, SW TCP
latencies are more like 90 ps and HW offloaded latencies estimated to be 30 us.

