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Abstract. If efficient network analysis tools were available, it could become 
possible to detect the attacks, anomalies and to appropriately take action to con-
tain the attacks. In this paper, we suggest a technique for traffic anomaly detec-
tion based on analyzing correlation of destination IP addresses in outgoing traf-
fic at an egress router. This address correlation data are transformed through 
discrete wavelet transform for effective detection of anomalies through statisti-
cal analysis. Our techniques can be employed for postmortem and real-time 
analysis of outgoing network traffic at a campus edge. Results from trace-
driven evaluation suggest that proposed approach could provide an effective 
means of detecting anomalies close to the network. We also present data ana-
lyzing the correlation of port numbers as a means of detecting anomalies. 

1.   Introduction 

At present, attacks on Internet infrastructure, in the form of denial of service (DoS) 
attacks and worms, have become one of the most serious threats to the network secu-
rity. If efficient analysis tools for analyzing and monitoring traffic were available, it 
could become possible to detect the attacks, anomalies and to appropriately take ac-
tion to mitigate them before they have had much time to propagate across the net-
work. In this papera, we study the possibilities of traffic-analysis based mechanisms 
for attack and anomaly detection. 

Traffic is monitored at regular intervals to obtain a signal that can be analyzed 
through statistical techniques and compared to historical norms to detect anomalies. 
By observing the traffic and correlating it to previous states of traffic, it may be pos-
sible to see whether the current traffic is behaving in a similar/correlated manner.  

Our methodology to detecting anomalies envisions two kinds of detection mecha-
nisms: postmortem and real-time modes. 

Recently, statistical analysis of aggregate traffic data has been studied [1, 3, 9]. 
Our previous work [1] and the work in [3] have studied traffic volume as a signal for 
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wavelet analysis and these earlier works have considerably motivated our current 
study here. Traditionally, various forms of signatures have been utilized for represent-
ing the contents or certain identities. Traffic analysis signatures have been proposed 
for detecting anomalies. For example, disproportion of bi-directional flows can be 
used as a signature of anomalistic traffic [4]. The changing ratios (i.e., the rate of de-
crease) between the flow numbers of neighboring specific bit-prefix aggregate flows 
can be calculated and used for detecting peculiarities [5]. 

2.   Our Approach 

2.1   Traffic analysis at the source  

We focus on analyzing the traffic at an egress router. A traffic monitoring at a source 
network enables a detector to detect attacks early and is able to control hijacking of 
AD (administrative domain, e.g., campus) machines. Outbound filtering has been ad-
vocated for limiting the possibility of address spoofing i.e., to make sure that source 
addresses correspond to the designated addresses for the campus. With such filtering 
in place, we can focus on destination addresses and port numbers of the outgoing traf-
fic for analysis purposes.  

Our approach is based on the following observations: the outbound traffic from an 
AD is likely to have a strong correlation with itself over time. Recent studies have 
shown the traffic can have strong patterns of behavior over several timescales [3]. We 
hypothesize that the destination addresses will have a high degree of correlation for a 
number of reasons: (i) popular web sites are shown to receive a significant portion of 
the traffic, (ii) individual users are shown to access similar web sites over time due to 
their habits, and (iii) long-term flows, such as ftp download and video accesses, tend 
to correlate addresses over longer timescales. If this is the case, sudden changes in 
correlation of outgoing addresses can be used to detect anomalies in traffic behavior. 

2.2   General Mechanism of the detector and traces 

Our detection mechanisms can be explained in three major steps shown in Fig. 1. The 
first step is traffic parser, in which a network traffic signal is generated from packet 
header traces or NetFlow records as input. The second step involves data transforma-
tion for statistical analysis. In this paper, we employ wavelet transforms to study the 
address and port number correlation over several timescales. The final is detection, in 
which attacks and anomalies are checked using thresholds. The analyzed information 
will be compared with historical thresholds to see whether the traffic’s characteristics 
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Figure 1. The block diagram of our detector 



are out of regular norms. This comparison will lead to some form of a detection signal 
that could be used to alert the network administrator of the potential anomalies in the 
network traffic as explained in section 5, 6 and 7. 

To verify the validity of our approach, we run our algorithm on two kinds of traffic 
traces. First, we examine the detector on KREONet2 traces from July 21, 2003 to July 
28, 2003 which contain real worm attacks. Currently KREONET member institutions 
are over 230 organizations, which include 50 government research institutes, 72 uni-
versities, 15 industrial research laboratories, and is connecting with 155Mbps interna-
tional ATM link [7]. Additionally we employ the packet traces from the NLANR [2], 
which are later superimposed with simulated virtual attacks. We employ Auckland-IV 
traces which are transmitted about 5000 connections at the rate of 5Mbps and 1500 
packets/second. These traces were anonymized, but preserved IP prefix relationships. 

3.   Signal Generation 

Individual fields in the packet header are analyzed to observe anomalies in the traffic. 
Individual fields in the traffic header data take discrete values and show discontinui-
ties in the sample space. For example, IP address space can span 232 possible ad-
dresses and addresses in a sample are likely to exhibit many discontinuities over this 
space making it harder to analyze the data over the address space. In order to over-
come such discontinuities over a discrete space, we convert packet header data into a 
continuous signal through correlation of samples over successive samples. To inves-
tigate the sequence of a random process, we employ a simplified correlation of time-
series for computational efficiency without compromising performance. 

For each address, am, in the traffic, we count the number of packets, pmn, sent in the 
sampling instant, sn. For computing address correlation signal, we consider two adja-
cent sampling instants. We define address correlation signal in sampling point n as 

∑∑ ∗= − m mnm mnmn pppnC 1)(  (1) 

If an address am spans the two sampling points n-1 and n, we will obtain a positive 
contribution to C(n). 

In order to minimize storage and processing complexity, we employ a simple but 
powerful data structure used in our previous work [8]. A location count [i][j] is used 
to record the packet count for the address j in ith field of the IP address through scal-
ing. This provides a concise description of the address instead of 232 locations that 
would be required to store the address occurrence uniquely. We filter this signal by 
computing a correlation of the address in two success samples, i.e., by computing 
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Consequently four correlation signals are calculated as C1n through C4n. The em-
ployment of this approximate representation of addresses allows us to reduce the 
computational and storage demands by a factor of 222. In order to generate the address 



correlation signal S(n) at the end of sampling point n, we multiply each segment cor-
relation Cin with scaling factors αi and generate S(n) as 

BCCCCAnS nnnn +∗+∗+∗+∗∗= )()( 44332211 αααα
1, 4321 =+++ ααααwhere  

(3) 

Our approach could introduce errors when the addresses segments match even 
though addresses themselves don’t match. In normal traffic without attacks, we com-
pared the full-32 bit address correlation with the correlation signal generated by our 
approach. The upper two sub-pictures and bottom two sub-pictures in Fig. 2 show the 
weighted signal computed with the full-32 bit address correlation and our data struc-
ture with respect to Auckland-IV traces. From the figure, we see that the differences 
are negligible i.e., our approach does not add significant noise. From a statistical 
standpoint, they have an approximately same mean (≅ 50) and dispersion (standard 
deviation ≅ 12.4 ~ 12.6), and have ρXY ≈ 0.77 as cross-correlation coefficient. 

3.1   Attacks 

Besides the actual attacks observed in the KREONet2 traces, we construct virtual at-
tacks on the Auckland-IV traces. This allows us to test the proposed technique under 
different conditions. As shown in Table I, these attacks cover a diversity of behaviors 
and allow us to deterministically test the efficacy of proposed mechanisms. These are 
classified by following criteria. 
• Persistency: The first 3 attacks send malicious packets for 3 minutes and pause for 

3 minutes. Such intermittent pattern is intended to model crafty attackers that at-
tempt to dilute their trails. The remnant attacks persistently assault. 

• IP address: The 1st attack among every 3 attacks targets for a single destination IP 
address. The 2nd attack style composes the IP address in which a portion of ad-
dresses preserve the class-A and a partition of addresses preserve class-B for the 
infiltration efficiency. The 3rd type is randomly generated address 

• Protocol: The three major protocols, ICMP, TCP and UDP, are exploited in turn 
• Port: The 1st port among 

every 3 attacks is a repre-
sentative #80 that stands for 
the reserved ports for well-
known services. The 2nd 
port targets for randomly 
generated destination ports 
that is used to probe port-
scan. The 3rd port is a 
#1434 that acts for the 
ephemeral client ports, 
which was exploited in 
SQL Slammer worm 

Fig. 2. Comparison of full-32 bit correlation and data structure 



• Size: The three denominations are random size, 4K Bytes and 404 Bytes [10]. 
The third-top sub-picture in Fig. 2 represents the weighted correlation signal of IP 

address in 3-day Auckland-IV traces with attacks. The simulated attacks are staged 
between the vertical lines, shown in the figure. 

4.   Data Transform 

The generated signal can be, in general, analyzed by employing techniques such as 
FFT (Fast Fourier Transform) and wavelet transforms. The analysis carried out on the 
signal may exploit the statistical properties of the signal such as correlation over sev-
eral timescales and its distribution properties. 

Since wavelet analysis can reveal scaling properties of the temporal and frequency 
dynamics simultaneously unlike Fourier Transform used in [6], we compute a wavelet 
transform of the generated address correlation signal over several sampling points. 
Through signal can be detected in certain timescales that imply frequency compo-
nents, and in certain positions of the timescales that mean temporal information, we 
can induce the frequency and temporal components respectively. 

Discrete Wavelet Transform (DWT) consists of decomposition and reconstruction. 
We iterate a multilevel one-dimensional wavelet analysis up to 8 levels in case of the 
postmortem analysis, so our final analysis (approximation and detail) coefficients are 
[cA8, cD8, cD7, cD6, cD5, cD4, cD3, cD2, cD1]. We employ a daubechies-6 two-band 
filter. The filtered signal is down-sampled by 2 at each level of the analysis proce-
dure; the signal of each level has an effect that sampling interval extends 2 times. 
Consequently it means that the wavelet transform identifies the changes in the signal 
over several timescales. When we use t minutes as sampling interval, the time range 
at level j spans t*2j minutes. These time range can independently sample and restore 
frequency components of 1/t*2j+1 by the Nyquist sampling theorem. 

5.   Detection in Postmortem Analysis 

5.1 Selective reconstruction in DWT 

Our postmortem analysis allows the administrator to choose the timescales over 
which attacks/anomalies detection is desired. The network operator can analyze the 
traffic successively at different sampling times or choose to analyze the traffic at mul-

 1  
(2,I,SD) 

2 
(2,I,SR) 

3 
(2,I,R) 

4  
(2,P,SD) 

5  
(2,P,SR) 

6 
(2,P,R)

7  
(1,P,SD) 

8 
(1,P,SR) 

9  
(1,P,R) 

Duration 2 hours 2h 2h 2h 2h 2h 1 hour 1h 1h 
Persistency int. int. int. per. per. per. per. per. per. 

IP single semi- 
random 

random single semi- 
random 

random single semi- 
random 

random 

Protocol ICMP TCP UDP ICMP TCP UDP ICMP TCP UDP 
Port #80 random #1434 #80 random #1434 #80 random #1434 
Size random 4KB 404B random 4KB 404B random 4KB 404B 

TABLE I.  THE NINE KINDS OF SIMULATED ATTACKS 



tiple timescales at the same time. Because of the time-scaled decomposition of the 
wavelets we are able to detect changes in the behavior of the network traffic that may 
appear at some resolution but go un-noticed at others. 

The first three attacks described in (*,I,*) have an ON/OFF timing of 3 minutes. 
This signal could be effectively detected by only the 1st coefficient in case of 1-
minute sampling period. The last six attacks expressed in (*,P,*) are persistent at-
tacks. Attacks last for 1 hour at a minimum. It means that we could choose the cD5, 
cD6 and cD7 among all the coefficients for reconstruction that are equivalent to 32 
minutes, 1 hour 4 minutes and 2 hour 8 minutes respectively. 

The network operators can select reconstructed levels that they wish to be cap-
tured. We assume that the network administrators are interested in detecting shorter 
anomalies of sufficient intensity and anomalies of more than 30-minute duration. In 
order to detect these attacks, we extract only the 1st, 5th, 6th and 7th levels in decompo-
sition and reconstruct the signal based only on coefficients at these levels. 

5.2 Thresholds setting through statistical analysis 

We develop a theoretical basis for deriving thresholds for anomaly detection. The 
right-bottom sub-picture in Fig. 3 shows the histogram of the reconstructed signal of 
the ambient Auckland-IV traces in postmortem mode. We verify normality of the 
Fri/Sun data in Table II through the Lilliefors test for goodness of fit to a normal dis-
tribution with unspecified mean and variance. The postmortem transformed data have 
a normal distribution at 5% significance level, namely X~N(0, 3.382). The original 
weighted correlation data fail to pass the null hypothesis of normality; however, the 
DWT converts it to normal distribution. By selecting some of the levels, we have re-
moved some of the features from the signal that were responsible for the non-
normality in the original signal.  

When we set the thresholds to –10.15 and 10.15 respectively, these figures are 
equivalent to σ0.3±  confidence interval for random process X. This interval corre-
sponds to 99.7% confidence level. With such thresholds, we can detect attacks with 
error rate of 0.3%. 

Figure 3.  The distribution of the ambient traces 

TABLE II. THE STATISTICAL PARAMETERS 

 ambient 
traffic  

 postmortem 
analysis 

 

 x  s  x  s  

1st week 53.0 13.5 -0.0 3.3 

Mon/Tue 58.1 13.0 -0.2 3.8 
Wed/Thu 55.3 13.2 -0.2 3.5 

Fri/Sun 48.2 12.4 -0.0 3.4 

2nd week 51.5 14.5 -0.0 3.9 
3rd week 50.6 14.1 +0.1 3.3 
4th week 47.8 13.5 -0.0 4.1 

 



5.2.1 Statistical consideration of thresholds: Wide-Sense Stationary 

If statistical parameters of network traffic, such as mean and standard deviation, are 
stationary distributed under given traffic, parameters of specific day could be applied 
to other days. We gather the 4-week traces and analyze their statistical summary 
measures. Table II shows the distribution in other days. We could infer wide-sense 
stationary (WSS) regarding these traces from the following: (i) the average is not de-
pendent on time, and (ii) autocorrelation function is a function of time difference re-
gardless of sample path. From the viewpoint of communication, the postmortem 
analysis of the ambient trace could be considered as WSS Gaussian white noise, on 
the other hand, the attack and anomaly could be considered as signal of interest. It il-
lustrates that the thresholds could remain approximately the same over several days. 

5.3 Detection of anomalies using the real attack traces 

Detection results of our composite approach with respect to 7-day KREONet2 traces 
are shown in Fig. 4. The top-most sub-picture illustrates a weighted correlation signal 
of IP addresses that is used for wavelet transform with real attacks. The second sub-
picture is the wavelet-transformed and reconstructed signal in postmortem and its de-
tection results. The actual attacks assail between the vertical lines, and the detection 
signal is shown with dots at the bottom of the second sub-picture. 

A 7-day wide DWT window and a 20-minute wide DETECTION window are used 
for DWT analysis and detection, respectively. To evaluate the reconstructed signal we 
use σ0.4± as statistical threshold in second sub-picture of Fig 4. Overall, our results 
show that our approach may provide a good detector of attacks. 

First 2 attacks attempted to attack web-server, which sequentially generated source 
port and targeted for 80 TCP port. A single source machine sent 48 byte-sized packets 
to (semi) single destination IP addresses in /24 address which preserved first 3 bytes 
of IP and randomly changed the last byte. 

Figure 4.  Address based detection results using real attack traces in postmortem 



The last attack is the SQL slammer worm attack which generated random IP ad-
dresses at a specific port. A few compromised machines enormously sent 404 byte-
sized packets to randomly generated destination IP addresses and 1434 UDP port. 

As the bottom 2 sub-pictures shown, except the first attack, the remaining 2 attacks 
didn’t set off any distinguishable variance in volume. It shows that the approach using 
traffic volume itself doesn’t appropriately detect the bandwidth attacks. 

5.4   Effectiveness of DWT 

For evaluating the effectiveness of employing DWT, we compare the detection results 
of our scheme employing DWT with a scheme that directly employs statistical analy-
sis of the correlation signal. The anomaly detection results are shown in Table III. At 
low confidence levels (below 90%), DWT doesn’t offer any advantage. However, 
when confidence levels of most interest (90% ~ 99.7%) are considered, DWT pro-
vides significantly better detection results than the simpler statistical analysis. This 
clearly shows that DWT offers significant improvement in the detection of anomalies. 

6.   Detection in Real-time Analysis 

6.1 Individual reconstruction in DWT 

In real-time analysis, the network administrator may not have the luxury to selectively 
analyze the traffic at different timescales since attacks and anomalies need to be de-
tected as they occur. Due to this lack of a priori knowledge of timescales of attacks or 
anomalies, real-time analysis requires analysis of data at all the time scales. Because 
of these two needs of analyzing data at all timescales, and the need to have lower la-

 confidence 
level 

DWT 1 2 3 4 5 6 7 8 9 false 
positive

false 
negative 

1.0σ 68 % IPa .c . . . . . . . . 5 0 
  DWTb . . . . . . . . . 6 0 
1.5σ 86 % IP . . . . . . . . . 4 0 
  DWT . . . . . . . . . 5 0 
2.0σ 95.5 % IP . xd . . . . . . . 3 1 
  DWT . . . . . . . . . 3 0 
2.5σ 98.5 % IP . x x . x . . x . 1 4 
  DWT . . . . . . . . . 2 0 
3.0σ 99.7 % IP . x x . x . . x x 0 5 
  DWT . . . . . . . . . 0 0 
3.5σ 99.95 % IP x x x . x x . x x 0 7 
  DWT . . x . . . . x . 0 2 
4.0σ 99.99 % IP x x x x x x x x x 0 9 
  DWT . x x . x . . x . 0 4 

a. IP means the original IP correlation signal without applying of DWT  
b. DWT means the DWT transformed signal 
c. . means a detection 
d. x means a non-detection 

TABLE III.  THE DETECTIONABILITY OF THE IP CORRELATION SIGNAL AND THE DWT SIGNAL 



tencies of attack/anomaly detection, real-time analysis is much more challenging. Be-
cause the number of the transformable samples is closely connected with the size of 
DWT window, the maximum allowable levels are restricted at log2n, where n is the 
number of samples. If we want to investigate a specific level j, it requires 2j samples 
for reconstruction at least. In our analysis here, we employed the most recent 2-hour 
data of traffic for prompt response and robustness. Detecting anomalies through all 
individual levels will have a number of advantages: (i) By setting a high threshold at 
each level, anomalies can be detected with high confidence, (ii) Depending on net-
work administrator’s filtering criteria, he/she can adjust the threshold between accu-
racy and flexibility as shown in Table IV, and (iii) the attributes of attacks, such as 
the frequency and pattern, can be straightforwardly determined. 

6.2   Detection of anomalies using the simulated attack trace 

Figure 5. Address based detection results using simulated attack traces in real-time 
 

 1  
(2,I,SD) 

2 
(2,I,SR) 

3 
(2,I,R) 

4 
(2,P,SD) 

5 
(2,P,SR) 

6  
(2,P,R)

7  
(1,P,SD) 

8 
(1,P,SR) 

9 
(1,P,R) 

f 
pc 

f 
n 

1.0σ  0a 0 0 0 0 0 0 0 0 11 0 
1.5σ 0 0 0 0 0 0 0 0 0 7 0 
2.0σ 0 0 0 0 0 0 0 0 0 5 0 
2.5σ 0 0 0 0 0 1 0 0 0 3 0 
3.0σ 0 0 0 0 0 2 0 2 0 2 0 
3.5σ 0 0 1 0 20 9 0 3 2 2 0 
4.0σ 1 0 1 0 Xb 11 0 5 3 1 1 

a. Latency is measured by minute unit   
b. X means non-detection 
c. false positive is counted a series of relevant signal as 1 

TABLE IV.  THE LATENCIES IN NINE KINDS OF ATTACKS IN REAL-TIME MODE 



We employed a 2-hour DWT window in 1-minute sampling interval. It can be de-
composed up to level 7. The results of our real-time analysis are shown in Fig. 5. The 
DWT signal at each timescales is shown along with the horizontal detector (an anom-
aly detected over successive samples at the same level). The bottom-most picture 
shows the composite detector that employs two-dimensional mechanism using hori-
zontal and vertical detection simultaneously. The results indicate that the real-time 
analysis detects all the attacks along with a few anomalies present in the base signal. 

Table IV shows the overall timing relationship between detection latency and the 
confidence level of our attacks in real-time mode. As we expect, the higher the confi-
dence level, the higher the detection latency. According to the network administra-
tor’s security standard, the appropriate confidence level could be established. 

7.   Multidimensional Indicators 

It seems feasible to carry out a similar correlation and wavelet-based analysis of net-
work packets based on their port numbers. Is it possible to combine several indicators 
to build a more robust anomaly detector that is less prone to false alarms? Fig. 6 
shows the comprehensive anomaly detector based on a combination of addresses and 
port numbers. The two kinds of dots at the bottom of the picture show detection re-
sults. The dots located on top are marked when both the address and port methods de-
tect anomalies simultaneously. The dots located on the bottom are displayed when 
only one of the two detection methods detects anomalies. It can be understood that the 
above markings imply very high confidence and the lower dots imply probable detec-
tions. 

7.1 Attack volume 

We carried out similar analysis of traffic to study the sensitivity of our detectors to the 
relative volume of attack traffic in Auckland-IV traces. We varied the ratio of attack 
traffic to normal traffic volume from 1:2, to 1:5 to 1:10. The results of this study are 
shown in Table V and VI. The results show that the proposed schemes are effective 
even when the attack traffic volume as low as 10% of the normal traffic. The latencies 
for real-time detection get longer with smaller attack traffic volume as to be expected. 

Figure 6.  The multidimensional detection results 



The results indicate that the DWT analysis of address correlation signal is useful over 
a wide range of attack traffic volumes. 

8.   Future work and Conclusion 

As a further research, the relation between sampling rate and latency should be in-
vestigated from statistical point of view. We also plan to study the effectiveness of the 
analysis of traffic header data at various points in the network. 

We studied the feasibility of analyzing packet header data through wavelet analysis 
for detecting traffic anomalies. Specifically, we proposed the use of correlation of 
destination IP addresses and port numbers in the outgoing traffic at an egress router. 
We studied the effectiveness of our approach in postmortem and real-time analysis of 
network traffic. The results of our analysis are encouraging and point to a number of 
interesting directions for future research. 
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 Mix. 
Ratio

1 
(2,I,SD)  

2  
(2,I,SR) 

3 
(2,I,R) 

4 
(2,P,SD) 

5 
(2,P,SR) 

6 
(2,P,R) 

7 
(1,P,SD) 

8 
(1,P,SR) 

9 
(1,P,R) 

f 
p 

f 
n 

1.0σ 1:2 0 0 0 0 0 0 0 0 0 11 0 
 1:5 0 0 0 0 0 0 0 0 0 9 0 
 1:10 0 0 0 0 0 0 0 0 0 9 0 
1.5σ 1:2 0 0 0 0 0 0 0 0 0 7 0 
 1:5 0 0 1 0 0 0 0 0 0 7 0 
 1:10 0 2 2 0 0 2 0 0 0 6 0 
2.0σ 1:2 0 0 0 0 0 0 0 0 0 5 0 
 1:5 0 0 2 0 6 0 0 0 0 5 0 
 1:10 0 4 2 0 7 10 0 0 9 5 0 
2.5σ 1:2 0 0 0 0 0 1 0 0 0 3 0 
 1:5 0 0 2 0 8 14 0 2 4 3 0 
 1:10 0 5 34 0 24 32 0 2 12 2 0 
3.0σ 1:2 0 0 0 0 0 2 0 2 0 2 0 
 1:5 0 0 5 1 8 30 0 5 6 2 0 
 1:10 0 7 38 0 28 32 0 5 16 2 0 
3.5σ 1:2 0 0 1 0 20 9 0 3 2 2 0 
 1:5 0 2 34 1 10 40 0 10 9 1 0 
 1:10 0 8 40 1 28 X 0 6 20 1 1 
4.0σ 1:2 1 0 1 0 X 11 0 5 3 1 1 
 1:5 0 2 40 3 50 X 4 12 12 1 1 
 1:10 0 10 X 1 X X 0 15 24 1 3 
 

TABLE VI.  THE DETECTION LATENCY OF THE VARIOUS MIXTURE RATIOS IN REAL-TIME MODE 

 Mix.
Ratio

1 
(2,I,SD)  

2  
(2,I,SR) 

3 
(2,I,R) 

4 
(2,P,SD) 

5 
(2,P,SR) 

6 
(2,P,R) 

7 
(1,P,SD) 

8 
(1,P,SR) 

9 
(1,P,R) 

f 
p 

f 
n 

1.0σ 1:2  . . . . . . . . . 6 0 
 1:5 . . . . . . . . . 6 0 
 1:10 . . . . . . . . . 6 0 
1.5σ 1:2 . . . . . . . . . 5 0 
 1:5 . . . . . . . . . 5 0 
 1:10 . . . . . . . . . 4 0 
2.0σ 1:2 . . . . . . . . . 3 0 
 1:5 . . . . . . . . . 4 0 
 1:10 . . . .    . . . . . 2 0 
2.5σ 1:2 . . . . . . . . . 2 0 
 1:5 . . . . . . . . . 3 0 
 1:10 . . . . . . . . . 2 0 
3.0σ 1:2 . . . . . . .   .  . 0 0 
 1:5 . .  x . . . . . . 2 1 
 1:10 . . x . . . . . . 1 1 
3.5σ 1:2 . . x . . . . x . 0 2 
 1:5 . . x . . . . . . 1 1 
 1:10 . x x . x x x . . 1 5 
4.0σ 1:2 . x x . x . . x . 0 4 
 1:5 . . x . . . x x . 0 3 
 1:10 . x x . x x x x . 1 6 

TABLE V.  THE DETECTIONABILITY OF THE VARIOUS MIXTURE RATIOS IN POSTMORTEM MODE 


